Research Article

Dynamics Feature and Synchronization of a Robust Fractional-Order Chaotic System

Xuan-Bing Yang,1,2 Yi-Gang He,1 and Chun-Lai Li2

1School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
2School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China

Correspondence should be addressed to Yi-Gang He; 18655136887@163.com and Chun-Lai Li; hnistlichl@163.com

Received 20 September 2018; Accepted 6 November 2018; Published 2 December 2018

Guest Editor: Viet-Thanh Pham

Copyright © 2018 Xuan-Bing Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Exploring the dynamics feature of robust chaotic system is an attractive yet recent topic of interest. In this paper, we introduce a three-dimensional fractional-order chaotic system. The important finding by analysis is that the position of signal x_3 descends at the speed of $1/c$ as the parameter b increases, and the signal amplitude of x_1, x_2 can be controlled by the parameter m in terms of the power function with the index $-1/2$. What is more, the dynamics remains constant with the variation of parameters b and m. Consequently, this system can provide rich encoding keys for chaotic communication. By considering the properties of amplitude and position modulation, the partial projective synchronization and partial phase synchronization are realized with linear control scheme. The distribution map of optimal synchronization region in the control-parameter space is charted by defining the power consumption of controller. Numerical simulations are executed to confirm the theoretical analysis.

1. Introduction

Over the past few decades, the dynamics and property of chaotic system have been extensively studied from different points of views as an active topic [1–4]. The investigation of chaos has benefited the exploration of the complex behavior, intrinsic nonlinear structure of natural system, and the construction of chaotic system, as well as practical applications such as secure communications and signal detection [5–9]. Robust chaotic system can usually provide signal-amplitude modulation by controlling one or some of the parameters in the dynamical equations yet keep the Lyapunov exponents and power spectral density invariable [10–14]. Therefore, it is a type of chaotic system with potential applications in synchronization, signal processing, image encryption, chaotic radar, and chaotic communication [10,12]. However, according to what we know, there is little information and variety about such system reported in the present literatures.

Although fractional calculus has a history of more than 300 years, it was not really applied to physics, life sciences, and psychology until the last decade [15–18]. Fractional calculus can provide an excellent description of hereditary and memory properties in various materials and processes. The advantage of the fractional system is that it holds more degrees of freedom and that contains a “memory” in it. Therefore, it is of universal significance to study fractional dynamics and its applications [19–22]. Synchronization of integer-order chaotic system is investigated extensively and deeply, and many different types and methods have been presented since the landmark work by Pecora and Carroll [23–29]. However, due to the computational complexity of fractional systems, not all synchronization methods of the integer-order system are suitable for the fractional-order one [10]. In the existing synchronization types, projective synchronization can be interpreted as that the state trajectories of the drive and response systems synchronize to a constant proportion factor. This characteristic is usually used to extend binary digital communication to faster M-nary communication [30,31]. Another synchronization type to be worth mentioning is phase synchronization, in which the controlled chaotic system adjusts the signal frequencies of dynamics to the rhythm of another chaotic system while the amplitudes go on varying in an irregular and uncorrelated fashion [32]. Phase synchronization has been observed in electrochemical oscillators [33], plasma discharge tubes [34], coupled HR neurons [35], fractional differential chaotic systems [36], etc.
In this paper, we attempt to explore some new dynamics properties of robust chaotic system by constructing a three-dimensional fractional chaotic system and to further consider the synchronization problem. Analysis of the derived system shows that the parameter m can control the signal amplitude of x_1, x_2 by the power function with the index $-1/2$ and that the parameter b can control the position of signal x_3 at the descent velocity of $1/c$. Then, by considering the vital property of amplitude and position modulation, a linear coupling scheme is designed to realize the partial projective synchronization and partial phase synchronization, respectively. Thus, the proportional factors in projective synchronization and the phase feature in phase synchronization are only determined by system parameters, which will improve the security of synchronous communication. The coupling-parameter range for synchronization is derived analytically and can be effectively narrowed down by appropriately selecting the auxiliary parameters. Numerical simulations are shown to further confirm the theoretical analysis.

2. Model of Fractional-Order Chaotic System

2.1. Model Description. The introduced fractional system is written in the form

$$D^q x_1 = x_2 - ax_1$$
$$D^q x_2 = -bx_1 - cx_1 x_3$$
$$D^q x_3 = -n + mx_1 x_2$$

In system (1), $D^q x = \frac{d^q x}{dt^q}$ denotes the Caputo fractional derivative with the initial time $t = 0$ [37]. With the positive parameters a, b, c, n, and m, two equilibrium points of system (1) are obtained as

$$E_+ \left(\sqrt{\frac{n}{am}} \sqrt{\frac{am}{m}} - \frac{b}{c} \right),$$
$$E_- \left(-\sqrt{\frac{n}{am}} - \sqrt{\frac{am}{m}} - \frac{b}{c} \right).$$

The corresponding characteristic equation for any equilibrium point (x_{E1}, x_{E2}, x_{E3}) can be deduced as

$$\phi(\lambda) = -\lambda^3 - a\lambda^2 - (b + cx_{E3} + cmx_{E1}^2) \lambda$$
$$- acmx_{E1}^2 - cmx_{E1} x_{E2}$$

Specially, when selecting the parameter set $P = \{a = 2, b = 1, c = 1, n = 30, m = 1\}$, the corresponding equilibrium points and characteristic roots are

$$E_+ (3.873, 7.746, -1):$$
$$\lambda_1 = -3.1912,$$
$$\lambda_2 = 0.5956 + 4.2950i,$$
$$\lambda_3 = 0.5956 - 4.2950i$$

$$E_- (-3.873, -7.746, -1):$$
$$\lambda_1 = -3.1912,$$
$$\lambda_2 = 0.5956 + 4.2950i,$$
$$\lambda_3 = 0.5956 - 4.2950i$$

With the aid of stability theory of commensurate fractional system [38], the necessary condition for the chaos emergence is $q > \frac{2}{\pi} \tan \left(\frac{\lim(\lambda^*)}{\Re(\lambda^*)} \right) = \frac{2}{\pi} \tan \left(\frac{4.2950/0.5956}{4.2950} \right) = 0.9123$. For the parameter set P and the fractional order $q=0.96$, the 3D phase diagram and Poincaré map with dense dots are shown in Figure 1, revealing that system (1) is indeed chaotic.

![3D phase portrait](image)
![Poincaré map](image)

Figure 1: (a) 3D phase portrait; (b) Poincaré map with $x_3=0.6$.

Complexity
2.2. Dynamics Feature of Amplitude and Position Modulation. Our analysis found that the introduced system has the robust chaos of constant Lyapunov exponents with the variation of parameters m and b. More specifically, the parameter m can control some of the signal amplitude of state variables, and the parameter b can control the position of one of the variables with a certain speed. The revealed feature is rare in the current literature and we believe it will stimulate an exploration boom.

The linear transformation of $x_1 \rightarrow x_1/\sqrt{m}$, $x_2 \rightarrow x_2/\sqrt{m}$, and $x_3 \rightarrow x_3$ is first considered to deduce system (1) to the normalized form about parameter m [12], as follows:

\[
\begin{align*}
D^t x_1 &= x_2 - ax_1 \\
D^t x_2 &= -b x_1 - cx_1 x_3 \\
D^t x_3 &= -n + x_1 x_2
\end{align*}
\]

Therefore, the control parameter m can modulate the signal amplitude of variables x_1, x_2 according to $1/\sqrt{m}$, but the signal x_3 keeps its amplitude constant.

We substitute the nonzero equilibrium point E_+ or E_- into characteristic equation (3) to obtain

\[
\varphi(\lambda) = -\lambda^3 - a\lambda^2 - \frac{cm}{a} \lambda - 2cn
\]

Since (6) is irrespective to parameter m, the Lyapunov exponent spectrum remains invariable when m increases. The dynamics feature of amplitude modulation for system (1) is illustrated by bifurcation diagram and Lyapunov exponent spectrum, as shown in Figure 2. In the figure, the bifurcation diagrams are plotted with the local maxima of variables versus control parameter, and the spectrum of Lyapunov exponents is calculated by the wolf method.
When introducing the linear transformation of $x_1 \rightarrow x_1$, $x_2 \rightarrow x_2$, and $x_3 \rightarrow x_3 + k_p/c$, we then deduce system (1) to

\begin{align*}
D^\alpha x_1 &= x_2 - ax_1 \\
D^\alpha x_2 &= -(b + k_p)x_1 - cx_1x_3 \\
D^\alpha x_3 &= -n + mx_1x_2
\end{align*}

(7)

Therefore, the position of signal x_3 descends at the speed of $1/c$ as the parameter b increases, while the signals x_1, x_2 keep their amplitude invariable. Similarly, it is known that (6) is also irrespective to parameter b. Thus, the spectrum of Lyapunov exponent remains constant when b varies in field of real number. The phenomenon of position modulation for system (1) is described by bifurcation diagram and Lyapunov exponent spectrum, as shown in Figure 3. And the speed of position modulation influenced by parameter c is interpreted in Figure 4 by the bifurcation diagram and the maximal Lyapunov exponent spectrum, which signifies that a smaller c will give rise to a larger descent velocity.

3. Preliminaries for Synchronization of Fractional Chaotic System

In this section, some concepts and techniques are recalled for the stability analysis of fractional system.

Definition 1 (see [39]). When function $\alpha : R^+ \rightarrow R^+$ is continuous, strictly increasing, and $\alpha(0) = 0$, it is said to be
of class κ. If $\alpha \in \kappa$ and satisfies $\alpha(t) \to \infty$ with $t \to \infty$, it is said that α is of class κ_∞.

Lemma 2 (see \cite{40,41}). Let $z(t) \in \mathbb{R}$ be a continuous and derivable function. Then, for any time instant $t \geq 0$, it is held:

$$0.5D^q z^2(t) \leq z(t) D^q z(t), \quad \forall q \in (0,1)$$

Lemma 3 (see \cite{42,43}). Let $z(t) \in \mathbb{R}^n$ be a real-valued continuous and derivable vector function. Then, for any time instant $t \geq 0$, one will always hold the following inequality:

$$0.5D^q z^T(t) P z(t) \leq z^T(t) P D^q z(t), \quad \forall q \in (0,1), P = \text{diag}(p_1, p_2, \ldots, p_n) > 0$$

Theorem 4 (Lyapunov stability and uniform stability of fractional system \cite{42}). Considering the following fractional-order system with the Caputo definition

$$D^q z(t) = f(z,t), \quad q \in (0,1)$$

Let $z=0$ be an equilibrium point of system (10). If there exists a continuous Lyapunov function $V(z,t)$ and a scalar class-K function α satisfying

$$V(z,t) \geq \alpha_1(\|z(t)\|)$$

and

$$D^q V(z,t) \leq 0, \quad \forall q \in (0,1)$$

for any $z \neq 0$, then system (10) is Lyapunov stable at $z = 0$.

Furthermore, if there exists another scalar class-K function α_2 such that

$$V(z,t) \leq \alpha_2(\|z(t)\|)$$

then the origin of system (10) is said to be Lyapunov uniformly stable.

4. Partial Projective Synchronization of Fractional Chaotic System

4.1. Synchronization Scheme. The partial projective synchronization of the proposed system is studied here by taking the advantage of the property of amplitude modulation.

Let system (1) be as the drive system, and the response system is expressed as

$$D^q y_1 = y_2 - a y_1$$
$$D^q y_2 = -b y_1 - c y_1 y_3 + u_2$$
$$D^q y_3 = -n + m_1 y_1 y_2 + u_3$$

(14)

where u_2 and u_3 are the controllers to be determined.

Assumption 5. The state variables of systems (1) and (14) are all bounded, and there exist three positive constants σ_1, σ_2, and σ_3, such that $|x_1|$, $|y_1|$, $|x_2|$, $|y_2|$, $|x_3|$, $|y_3| \leq \sigma_1$, and $|x_3|$, $|y_3| \leq \sigma_3$.

The synchronization errors are set as $e_1 = y_1 - \sqrt{m_1} x_1$, $e_2 = y_2 - \sqrt{m_1} x_2$, and $e_3 = y_3 - x_3$, by taking the property of amplitude modulation considered. Then we obtain the error dynamical system

$$D^q e_1 = e_2 - ae_1$$
$$D^q e_2 = -be_1 - cy_1 e_3 - ce_1 x_3 + u_2$$
$$D^q e_3 = m_1 y_2 e_1 + m_1 \sqrt{m_1} x_1 e_2 + u_3$$

(15)

Theorem 6. For the drive system (1) and response system (14), the controllers are designed as $u_2 = -k_2 e_2$ and $u_3 = -k_3 e_3$. If the coupling parameters k_2 and k_3 satisfy
where \(p_1 \), \(p_2 \), and \(p_3 \) are positive auxiliary parameters to narrow down the values range of the coupling parameters, then the partial projective synchronization is realized with Lyapunov uniformly stability.

Proof. Let us propose the Lyapunov function
\[V(t) = 0.5(p_1e_1^2 + p_2e_2^2 + p_3e_3^2), \]
which satisfies \(\alpha_1(\|e\|) \leq V(t) \leq \alpha_2(\|e\|) \) for \(\alpha_1(\|e\|) = \lambda_{\min}(P)\|e\| \), \(\alpha_2(\|e\|) = \lambda_{\max}(P)\|e\| \), and \(P = \text{diag}(p_1, p_2, p_3) \). Taking \(q \)-order fractional derivative with respect to time \(t \) along the trajectories of (15), it yields
\[
D^q V(t) = 0.5D^q p_1e_1^2 + 0.5D^q p_2e_2^2 + 0.5D^q p_3e_3^2 \\
\leq p_1e_1D^q e_1 + p_2e_2D^q e_2 + p_3e_3D^q e_3 \\
= -ap_1e_1^2 - k_2p_2e_2^2 - k_3p_3e_3^2 \\
\text{with} \\
|e| = (|e_1|, |e_2|, |e_3|)^T , \\
\Pi = \begin{pmatrix}
-p_1 & p_1 - bp_2 + cp_2, & m_1p_2 \sigma_2 \\
p_1 - bp_2 + cp_2, & \frac{2}{2} & m_1p_2 \sigma_2 \\
\frac{m_1p_2 \sigma_2}{2} & m_1p_2 \sqrt{m/m_1} + cp_2, & \frac{2}{2} \\
\end{pmatrix}
\]

It requires \(\Pi \leq 0 \) for catering to \(D^q V(t) \leq 0 \). Thus we have
\[
\Delta_1 = -ap_1 \leq 0 \\
\Delta_2 = \det \begin{pmatrix}
-p_1 & p_1 - bp_2 + cp_2, & m_1p_2 \sigma_2 \\
p_1 - bp_2 + cp_2, & \frac{2}{2} & m_1p_2 \sigma_2 \\
\frac{m_1p_2 \sigma_2}{2} & m_1p_2 \sqrt{m/m_1} + cp_2, & \frac{2}{2} \\
\end{pmatrix} \geq 0 \\
\Delta_3 = \det \begin{pmatrix}
-p_1 & p_1 - bp_2 + cp_2, & m_1p_2 \sigma_2 \\
p_1 - bp_2 + cp_2, & \frac{2}{2} & m_1p_2 \sigma_2 \\
\frac{m_1p_2 \sigma_2}{2} & m_1p_2 \sqrt{m/m_1} + cp_2, & \frac{2}{2} \\
\end{pmatrix} \leq 0
\]

Therefore, we finally obtain inequalities (16) and (17). This completes the proof. \(\square \)

4.2 Simulation Analysis

The appropriate selection of parameters \(p_1, p_2, \) and \(p_3 \) can effectively narrow down the values
range of the coupling parameters, which is useful in actual synchronization process. However, it is a complicated relation between the coupling strengths \((k_2, k_3)\) and \((p_1, p_2, p_3)\). To optimize the synchronization scheme, we will evaluate the distribution map of optimal synchronization region in the coupling-parameter space, by coopting the idea introduced by Ma [44]. We first define the power consumption of the coupling-parameter space, by coopting the idea introduced optimally synchronize the scheme, we will evaluate the optimum synchronization scheme, we will evaluate the optimal synchronization region appears alternately as larger values of \(k\) and \(k\) increases. But to get shorter synchronous transition time, larger values of \(k_2\) and \(k_3\) are more appropriate.

Therefore, the optimal synchronization region will be the coupling-parameter region \((k_2, k_3)\) with the minimum \(P_{\text{msyn}}\).

In the numerical analysis, we choose the parameter values as \(a=2, b=1, c=1, n=30, m=1, m_1=16,\) and \(q=0.96\) and set the initial values of drive system and the response system as \(x(0)=(-0.2, 0.1, 0.5), y(0)=(0.6, -0.5, -0.2)\). The distribution about the maximal power consumption of synchronous controller in the coupling-parameter space \((k_2, k_3)\) is illustrated in Figure 5. It is known that the power consumption \(P_{\text{msyn}}\) is mainly determined by the coupling parameter \(k_2\), and the optimal synchronization region appears alternately as \(k_2\) increases. But to get shorter synchronous transition time, larger values of \(k_2\) and \(k_3\) are more appropriate.

The synchronization result with \(k_2=3.3, k_3=0.6\) is depicted in Figure 6, which provides the proportional factors \(\alpha_1 = \sqrt{m/m_1} = 0.25, \alpha_2 = \sqrt{m/m_1} = 0.25,\) and \(\alpha_3 = 1\). Figure 7 shows the synchronization result with the same proportional factors, when \(k_2=6, k_3=8\). The comparative analysis shows that larger parameters \(k_2\) and \(k_3\) will lead to shorter synchronous transition time.

5. Partial Phase Synchronization of Fractional Chaotic System

5.1. Synchronization Scheme. Select the drive system (1) and the following response system:

\[
D^\alpha y_1 = y_2 - ay_1
\]

\[
D^\alpha y_2 = -b_1 y_1 - cy_1 y_3 + u_2
\]

\[
D^\alpha y_3 = -n + my_1 y_2 + u_3
\]

And when considering the property of position modulation, the errors of partial phase synchronization are expressed as \(e_1 = y_1 - x_1, e_2 = y_2 - x_2,\) and \(e_3 = y_3 - x_3 + (b_1 - b)/\epsilon\), then the error dynamical system is obtained as

\[
D^\alpha e_1 = e_2 - a e_1
\]

\[
D^\alpha e_2 = -be_1 - cy_1 e_3 - ce_1 x_3 + u_2
\]

\[
D^\alpha e_3 = me_1 y_2 + mx_1 e_2 + u_3
\]

Theorem 7. For the drive system (1) and response system (23), the controllers are designed as \(u_2 = -k_2 e_2, u_3 = -k_3 e_3\). If the coupling parameters \(k_2\) and \(k_3\) satisfy the condition

\[
k_2 > \frac{(p_1 - bp_2 + cp_2 s_3)^2}{4ap_1 p_2}
\]

\[
k_3 \geq \frac{mp_2 s_2 (mp_3 s_1 + cp_2 s_1) (p_1 - bp_2 + cp_2 s_3) + k_2 p_3 (mp_1 s_1 + cp_2 s_1)^2 + ap_1 (mp_3 s_1 + cp_2 s_1)^2}{4ap_1 p_2 p_3 k_2 - p_3 (p_1 - bp_2 + cp_2 s_3)^2}
\]
8 Complexity

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \]

\[x \]

\[y \]

\[x_1, y_1 \]

\[x_2, y_2 \]

\[x_3, y_3 \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \]

\[\epsilon_1 \]

\[\epsilon_2 \]

\[\epsilon_3 \]

Figure 6: Partial projective synchronization with \(k_2 = 3.3; k_3 = 0.6 \): (a) time response; (b) synchronization error.

where \(p_1, p_2, \) and \(p_3 \) are positive constants, then the partial phase synchronization is realized with Lyapunov uniformly stability.

Here we skip the proof process for brevity since it resembles the one of Theorem 6.

5.2. Simulation Analysis. Likewise, to effectively evaluate the optimal synchronization region, we consider the distribution of coupling parameters by defining the maximal power consumption of synchronous controller, as follows:

\[
P_{\text{msyn}} = \max \left(|y_1 y_3| - |x_1 \left(x_3 - \frac{(b_1 - b)}{c} \right) | \right) \tag{27}
\]

In the numerical analysis, we choose the parameter values as \(a = 2, b = 1, c = 1, n = 30, m = 1, b_1 = 12, \) and \(q = 0.96 \) and set the initial values of drive system and the response system as \(x(0) = (-0.2, 0.1, 0.5), y(0) = (0.6, -0.5, -0.2) \). The distribution map about the maximal power consumption of synchronous controller in the coupling-parameter space \((k_2, k_3) \) is illustrated in Figure 8. It is found that the distribution of \(P_{\text{msyn}} \) is complicated when \(k_3 \) is less than 4, and there exists an optimized coupling-parameter region near \(k_3 = 1 \). When \(k_3 \) continues to increase with the condition of \(k_2 > 1 \), the value of \(P_{\text{msyn}} \) gradually decreases, and finally it keeps in the optimal synchronization region with \(k_2 > 9 \).

As the examples to explain our analysis, we select two sets of coupling parameters \((k_2 = 1, k_3 = 4) \) and \((k_2 = 10, k_3 = 4) \) to realize the optimal synchronization. It can be found that we can realize the partial phase synchronization of fractional chaotic system with the selected coupling parameters, but larger parameters \(k_2 \) and \(k_3 \) will lead to shorter synchronous transition time, as illustrated in Figures 9 and 10. Further, to analyze the influence of \(c \) on the difference between various states of synchronized systems, the representative process of phase synchronization when \(k_2 = 10, k_3 = 4, \) and \(c = 0.5 \) is considered, as shown in Figure 11. The graphs in Figures 10 and 11 signify that a smaller \(c \) will lead to a larger difference between the system variables of the phase synchronization.

6. Conclusion

Robust chaotic system is a recent research interest yet a promising candidate for signal processing, image encryption, chaotic radar, and chaotic communication. Therefore, it is worthwhile to explore the dynamics feature of robust chaotic system. In this paper, we introduced a robust fractional-order chaotic system and revealed the significant dynamics of position modulation and amplitude modulation.

The linear control scheme is designed to realize the partial projective synchronization and partial phase synchronization, by considering the property of amplitude and position modulation. The distribution of optimal synchronization region in the control-parameter space is evaluated by searching the minimum power consumption of the linear controller. Numerical experiments are executed to confirm the theoretical analysis. Since the relation of synchronization
variables only depends on the system parameters, it is not easy to attack and accurately reconstruct the drive system. Therefore, it could be significant in secure communication for masking signals.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant no. 51577046, the
Figure 9: Partial phase synchronization with $k_2=1; k_3=4$: (a) time response; (b) synchronization error.

Figure 10: Partial phase synchronization with $k_2=10, k_3=4$, and $c=1$: (a) time response; (b) synchronization error.
Figure 11: Partial phase synchronization with $k_2=10, k_3=4$, and $c=0.5$: (a) time response; (b) synchronization error.

References

