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In this paper, the stabilization problem of nonholonomic chained-form systems is addressed with uncertain constants. In this
paper, the active disturbance rejection control (ADRC) is designed to solve this problem. The proposed control strategy combines
extended state observer (ESO) and adaptive sliding mode controller. The control of nonholonomic chained-form systems with
dynamic nonlinear uncertain terms and uncertain constants is first discussed in this paper. In comparison with existing methods,
the proposed method in this paper has better performance. It is proved that, with the application of the proposed control strategy,
semiglobal finite-time stabilization of the systems is achieved. An example is given to illustrate the effectiveness of the proposed
method.

1. Introduction

The nonholonomic chained-form system was first proposed
by Murray and Sastry in [1]. In recent years, more attention
has been paid to the finite-time stabilization of the nonholo-
nomic chained-form systems [2–6]. According to Brockett’s
necessary conditions [7], there is no smooth-time-invariant
static state feedback control law that can stabilize a nonholo-
nomic system. A number of approaches have been proposed
to solve the stabilization problem including continuous time-
varying feedback control laws, discontinuous time invariant
control, and hybrid stabilization [8–14].

However, the complexity of understanding complex sys-
tems, the inevitable changes in system architecture, and the
difficulty of predicting changes in the environment are three
key points, leading to the dilemma that uncertainties always
exist in the modeling of actual power systems [15]. Plenty
of control methods have been developed [16–20] such as
adaptive control [21, 22] and robust control [23]. In recent
years, the active disturbance rejection control [2] technique
has been widely recognized for its abilities to handle with
uncertainties and its simplicity in the control structure.

Nevertheless, those control algorithms rely significantly
on a priori known amplitude of interference. In addition,
the finite-time control algorithm has the advantages of fast
convergence in the aspect of control performance compared
with other algorithms, such as continuous time-varying
feedback control laws [24–26].

In recent years, more and more studies have been done
on the stability of nonholonomic systems [27–34]. Yasir
Awais Butt [3] proposed a robust switching controller based
on discrete switching logic and ISM. This approach can
guarantee the desired performance and robustness properties
of the feedback control system. But this method does not
take dynamic nonlinear uncertain terms into consideration.
Qing Wang [2] designed the active disturbance rejection
control (ADRC), which proves that it is an effective method
to achieve finite-time stabilization of nonholonomic chained-
form systems when the magnitude of the interference is
unknown, but it can only be applied to relatively simple
chained-form systems. Wang [4] constructed an adaptive
output feedback controller by utilizing an adaptive control
method and a parameter separation technique to stabilize
the whole systems with unknown nonlinear parameters. To
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the best of the authors’ knowledge, there is no research
on stabilizing the dynamic feedback systems with bounded
unknown uncertain positive parameters of nonholonomic
robots about this issue.

In comparison with existing methods, our main contri-
butions can be summarized as the following three respects:

(1) There are no a priori assumptions and it can deal
with robust stability effectively in contrast with the
existing methods. The reason why a disturbance of
lower magnitude has an impact on the overall closed-
loop system is that a priori can be estimated and the
disturbance can be well compensated.

(2) The proposed controller can be applicable in the non-
holonomic systems in chained-form with bounded
unknown uncertain positive parameters.

(3) The proposed controllers can achieve the stabilization
of extended nonholonomic chained-form systems
with dynamic nonlinear uncertain terms. Compared
with existing methods, the proposed controllers
considered the dynamic nonlinear uncertain terms,
resulting in the fact that the proposed controllers
become more practical.

In this paper, a finite-time switching controller integrates
ESO and adaptive sliding mode controller, which is set up
to realize stabilization of a class of nonholonomic chained-
form systems. Numerical simulation demonstrates the effec-
tiveness of the proposed control method.

This paper’s fundamental framework is as follows. Sec-
tion 2 gives a formalization of the problem considered and
introduces some preliminaries. In Section 3, we present the
proposed switching controller and its stability analysis results.
Section 2 gives a formalization of the problem considered and
some preliminaries in this paper. In Section 3, we present the
proposed switching controller and its stability analysis results.
Section 4 states an illustrative example and the validity of
the proposed methodology. Section 5 will summarize the full
content. Section 6, as the last part of this paper, will introduce
the future research direction.

2. Problem Statement and Preliminaries

Nonholonomic system in extended chained-form [35] can be
described by �̇�1 = 𝑘1𝑢1�̇�2 = 𝑘2𝑥3𝑢1...�̇�𝑛−1 = 𝑘𝑛−1𝑥𝑛𝑢1�̇�𝑛 = 𝑘𝑛𝑢2�̇�1 = 𝜁1 (𝑥, 𝑡) 𝜓1 + 𝑓1 (𝑥, 𝑧1, 𝜔1)�̇�2 = 𝜁2 (𝑥, 𝑡) 𝜓2 + 𝑓2 (𝑥, 𝑧2, 𝜔2)�̇�1 = 𝑓01 (𝑥, 𝑧1, 𝜔1)

�̇�2 = 𝑓02 (𝑥, 𝑧2, 𝜔2)𝑦1 = 𝑥1𝑦2 = 𝑥2
(1)

where 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 ∈ R𝑛 is a representation of the
system state vector. [𝑢1, 𝑢2]𝑇 ∈ R2 can be treated equally
as the velocity input for the kinematics model. 𝑓𝑖(.), 𝑓0𝑖(.),
and 𝜁𝑖(.) are some unknown continuously dynamic nonlinear
terms, 𝑓𝑖(0, 𝑧𝑖, 𝜔𝑖) = 0, (𝑖 = 1, 2). 𝑓𝑖(𝑥, 𝑡) ∈ R and𝜁𝑖(𝑥, 𝑡) ̸= 0(∈ R) for all (𝑥, 𝑡) ∈ R𝑛 × R(𝑖 = 1, 2) are
system dynamics and smooth nonlinear control directions,
respectively. 𝑧𝑖 ∈ R𝑚(𝑖 = 1, 2) represents nonlinear dynamic
auxiliary variable, 𝑦𝑖 ∈ R, (𝑖 = 1, 2) is the measured
output, and 𝜔𝑖 ∈ R𝑝, (𝑖 = 1, 2) are external time-varying
uncertain disturbances, assuming that 𝜔𝑖 and its derivative�̇�𝑖 are continuous and bounded. We donate the practical
control input [𝜓1, 𝜓2]𝑇 ∈ R2 as the formal inputs of force or
torque for the extended dynamic model, and 𝑘𝑖 ∈ R+(𝑖 =1, 2, . . . , 𝑛) are uncertain normal number parameter with
bounded unknowns.

Remark 1. System 2 can describe the motion state of multiple
(2,0) wheeled mobile robots. The pose of the robot in the
inertial coordinate system can be represented by a vector𝑞 = [𝑥, 𝑦, 𝜃]𝑇. 𝑢 means the forward speed and steering
velocity of the robot. [𝜓1, 𝜓2]𝑇 ∈ R2 can be donated as the
formal inputs of force or torque for the extended dynamic
model. As a result, we can control the pose of the robot by
means of devising [𝜓1, 𝜓2]𝑇 ∈ R2. 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 ∈
R𝑛 represents the state vectors of 𝑖 robots. In this case, 𝑥1
and 𝑥2 are targets, and their motion state can be measured.𝑥3 ∼ 𝑥𝑖 (𝑖 = 3, 4, . . .) robots follow 𝑥1 and 𝑥2. In addition,
there are dynamic nonlinear uncertainties in the process of
motion. According to the constraints of the robot motion
and the motion state, it is practicable to establish a model of
the nonholonomic motion system. After proper coordinate
transformation and input transformation, the model can be
converted into a nonholonomic chain system of system 2.

System 2 can be rewritten as�̇�1 = 𝑘1𝑢1�̇�1 = 𝜁1 (𝑥, 𝑡) 𝜓1 + 𝑓1 (𝑥, 𝑧1, 𝜔1)�̇�1 = 𝑓01 (𝑥, 𝑧1, 𝜔1)𝑦1 = 𝑥1
(2)

�̇�2 = 𝑘2𝑥3𝑢1...�̇�𝑛−1 = 𝑘𝑛−1𝑥𝑛𝑢1�̇�𝑛 = 𝑘𝑛𝑢2�̇�2 = 𝜁2 (𝑥, 𝑡) 𝜓2 + 𝑓2 (𝑥, 𝑧2, 𝜔2)�̇�2 = 𝑓02 (𝑥, 𝑧2, 𝜔2)𝑦2 = 𝑥2

(3)
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To begin with, consider system (2)

�̇�1 = 𝜁1 (𝑥, 𝑡) 𝜓1 + 𝑓1 (𝑥, 𝑧1, 𝜔1) (4)

Lemma 2 (see [36, 37]). Consider a first-order disturbed
system:

�̇� = 𝑢 + 𝑓 (𝑥, 𝑡) , (5)

where 𝑥, 𝑢 ∈ 𝑅1 are state variable and control input,
respectively, and 𝑓(𝑥, 𝑡) represents an external disturbance
with a known bound (0 < 𝑐 < +∞), satisfying𝑓 (𝑥, 𝑡) ≤ 𝑐 < +∞,𝑓 (0, 𝑡) = 0, ∀𝑡 ≥ 0. (6)

Taking a continuous sliding mode control law,

𝑢 = −𝑐 ⋅ {{{{{
sgn (𝑥) , |𝑥| ≥ 𝜛 (𝑡)𝑥𝜛 (𝑡) , |𝑥| < 𝜛 (𝑡) (7)

where𝜛(𝑡) denotes a continuous, time-variable boundary layer
and satisfies that

𝜛 (𝑡) > 0,
∫+∞
0
𝜛 (𝑡) 𝑑𝑡 < 𝜎, (8)

where 𝜎 is a nonnegative constant. Then, system 2 can be
asymptotically stabilized to the zero equilibrium point by (6).

Proof. For the proof, see Yang and Wang (2011).
Let 𝑥 = 𝑢1 − 1, then system (4) can be rewritten as

�̇� = �̇�1�̇� = 𝜁1 (𝑥, 𝑡) 𝜓1 + 𝑓1 (𝑥, 𝑧1, 𝜔1) (9)

Our goal is to stabilize system dynamics (9) regardless of
external disturbances and uncertainties. Just in this case,
system (9) could be straightforwardly stabilized to the zero
equilibrium point in finite time by using the first-order
continuous sliding mode control law. As a result, 𝑢1 could be
stabilized to the constant 1. The control signal is designed as

𝜓1 = − 𝑐𝜁1 (𝑥, 𝑡) ⋅
{{{{{
sgn (𝑥) , |𝑥| ≥ 𝜛 (𝑡)𝑥𝜛 (𝑡) , |𝑥| < 𝜛 (𝑡) (10)

Assumption 3 (see [2]). The time derivative of the𝑓1(𝑥, 𝑧1, 𝜔1) is bounded𝑓1 (𝑥, 𝑧1, 𝜔1) ≤ 𝑀 (11)

There exists some𝑀 > 0 such that

𝑀𝑞 + |𝜀 (0)| < 𝐸. (12)

𝜀(0) is the initial value of the estimation error 𝜀. Then
the resulting closed-loop system is stabilized in finite time.
Assumption 3 implies that the first control component 𝜓11
is bounded and the second control component 𝜓12 is cer-
tainly uniformly bounded. Thus, the composed signal 𝜓1 is
uniformly bounded and velocity input 𝑢1 → 1 in finite time.

Let 𝑑𝑖 = 𝑥𝑖+1, (𝑖 = 1, 2, . . . 𝑛 − 1), 𝑑𝑛 = 𝑢2, then system
(3) can be rewritten as

̇𝑑1 = 𝑘2𝑑2...̇𝑑𝑛−2 = 𝑘𝑛−1𝑑𝑛̇𝑑𝑛−1 = 𝑘𝑛𝑑𝑛̇𝑑𝑛 = 𝜁2 (𝑑, 𝑡) 𝜓2 + 𝑓2 (𝑑, 𝑧2, 𝜔2)�̇�2 = 𝑓02 (𝑑, 𝑧2, 𝜔2)𝑦2 = 𝑑1

(13)

which are extended nonholonomic chained-form systems.

The following assumptions are made for the nonlinear
system.

Assumption 4. There exists a unbounded positive definite
function 𝐿0(𝑧2) such that, ∀(𝑑, 𝑧2, 𝜔2) ∈ R𝑛 ×R𝑚 ×R𝑏,
𝜕𝐿0𝜕𝑧2 (𝑧2) 𝑓02 (𝑑, 𝑧2, 𝜔2) ≤ 0, ∀𝑧2 : 𝑧2 ≥ 𝛿 (𝑑, 𝜔2) (14)

where 𝛿(𝑑, 𝜔2) is a nonnegative continuous function.
Assumption 5. ∀(𝑑, 𝑧2, 𝜔2) ∈ R𝑛 ×R𝑚 ×R𝑏, 𝜁2(𝑑, 𝑡) ̸= 0. The
sign of 𝜁2(𝑑, 𝑡) is known.
Remark 6. Assumption 3 implies that �̇�2 = 𝑓02(𝑑, 𝑧2, 𝜔2).
Assumption 5 ensures that the control signal always has an
effect on the system (13). Since the sign of 𝜁2(𝑑, 𝑡) is fixed, we
assume 𝜁2(𝑑, 𝑡) > 0 and let 𝜁0(𝑑) > 0 be a nominal model of𝜁2(𝑑, 𝑡).
Remark 7. Set continuous and saturated control law �̇�2 =−𝑘 sgn(𝑧2)|𝑧2|𝛼 where 𝑘 and 𝛼 are design parameters. For
instance, 𝐿0(𝑧2) = 𝑧22/2 can satisfy Assumption 4.

Let 𝑑𝑛+1 = 𝑓2(𝑑, 𝑧2, 𝜔2) + (𝜁2(𝑑, 𝑡) − 𝜁0(𝑑))𝜓2 where the
unknown system dynamics 𝑓2(𝑑, 𝑧2, 𝜔2) and the parameter
mismatch of control (𝜁2(𝑑, 𝑡) − 𝜁0(𝑑))𝑢2 are viewed as an
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extended state of the system. Assume 𝑑𝑛+1 is differentiable
with𝑚 = ̇𝑑𝑛+1, then system (13) can be rewritten as

̇𝑑𝑖 = 𝑘𝑖+1𝑑𝑖+1̇𝑑𝑛 = 𝑑𝑛+1 + 𝜁0 (𝑑) 𝜓2̇𝑑𝑛+1 = 𝑚𝑦2 = 𝑑1
(15)

The extended state observer was first proposed by Jingqing
Han in [38]. The extended state observer (ESO) is designed
as [2, 39, 40]

̇̂𝑑𝑖 = 𝑘𝑖+1𝑑𝑖+1 + 𝜙𝑛−𝑖𝑔𝑖 (𝑑1 − 𝑑1𝜙𝑛 )
𝑖 = 1, 2, . . . , 𝑛 − 1

̇̂𝑑𝑛 = 𝑑𝑛+1 + 𝑔𝑛 (𝑑1 − 𝑑1𝜙𝑛 ) + 𝜁0 (𝑑)𝜓2
̇̂𝑑𝑛+1 = 𝜙−1𝑔𝑛+1 (𝑑1 − 𝑑1𝜙𝑛 )

(16)

which is a nonlinear generalization of LESO for gain 𝜙
and pertinent chosen functions 𝑔𝑖(.), 𝑖 = 1, 2, . . . , 𝑛 + 1.[𝑑1, 𝑑2, . . . , 𝑑𝑛, 𝑑𝑛+1]𝑇 ∈ R𝑛+1 is the nonlinear extended
state observer state and depends on a small positive constant
parameter 𝜙.
Remark 8. In theory, the value of 𝜙 is chosen to be arbitrarily
small to make the trajectory tracking error as small as possi-
ble. However, the existence of noise and sampling constraints
in practice are responsible for the restrictions on the values of𝜙.

Now with the state estimates [𝑑1, 𝑑2, . . . , 𝑑𝑛, 𝑑𝑛+1]𝑇 ∈
R𝑛+1, the active disturbance rejection control (ADRC) law,
which is based on the output of the ESO (16), can be designed
as

𝜓2𝑛𝑜𝑚 = − 1𝜁2 (𝑑, 𝑡)𝑑𝑛+1 + 𝜓20 (𝑑) (17)

where −(1/𝜁2(𝑥, 𝑡))𝑑𝑛+1 is to compensate the total uncertain-
ties and 𝜓20(𝑑) is to guarantee the stability and performance
requirements of the closed-loop system.

In order to protect the system from the peaking in the
observer’s transient response caused by the nonzero initial
error ‖[𝑑1(𝑡0) − 𝑑1(𝑡0), . . . , 𝑑𝑛(𝑡0) − 𝑑𝑛(𝑡0)]‖, we design the
system that uses a special controller as [39]. The control is
modified as

𝜓2 = 𝑊𝑠𝑎𝑡𝜙 (𝜓2𝑛𝑜𝑚𝑊 ) (18)

where the function 𝑠𝑎𝑡𝜙(.) is shown by [41]

𝑠𝑎𝑡𝜙 (𝑒)
{{{{{{{{{{{{{

𝑒 for 0 ≤ 𝑒 ≤ 1
𝑒 + 𝑒 − 1𝜙 − 𝑒2 − 12𝜙 for 1 < e ≤ 1 + 𝜙
1 + 𝜙2 for e > 1 + 𝜙

(19)

The function 𝑠𝑎𝑡𝜙(.) is nondecreasing, continuously differen-
tiable. The saturation bound𝑊 ensures that the saturation is
not invoked in the steady state of the ESO (16).

Set the scaled ESO estimation error as

Δ 𝑖 (𝑡) = 𝑑𝑖 − 𝑑𝑖, 𝑖 = 1, 2, . . . , 𝑛Δ 𝑛+1 (𝑡) = 𝑓2 (𝑑, 𝑧2, 𝜔2)
+ (𝜁2 (𝑑, 𝑡) − 𝜁0 (𝑑))𝑊𝑠𝑎𝑡𝜙 (𝜓2𝑛𝑜𝑚𝑊 )
− 𝑑𝑛+1.

(20)

For the purpose of getting a compact form of the closed-loop
equation for the state estimation error, we design these scaled
variables

𝜂𝑖 = 𝑑𝑖 − 𝑑𝑖𝜙𝑛+1−𝑖 = Δ 𝑖 (𝑡)𝜙𝑛+1−𝑖 , 𝑖 = 1, 2, . . . , 𝑛 + 1. (21)

Then substituting (15) and (16) into (22), the estimation error
state dynamics can be written as

𝜙 ̇𝜂𝑖 = 𝑘𝑖+1𝜂𝑖+1 − 𝑔𝑖 (𝜂1) , 𝑖 = 1, 2, . . . , 𝑛 − 1.𝜙 ̇𝜂𝑛 = 𝜂𝑛+1 − 𝑔𝑛 (𝜂1)𝜙 ̇𝜂𝑛+1 = 𝜙𝑚 − 𝑔𝑛+1 (𝜂1)
(22)

Assumption 9 (see [2, 39, 40]). ∀𝜂 = [𝜂1, 𝜂2, . . . , 𝜂𝑛+1]𝑇 ∈
R𝑛+1, there exist constants 𝜃𝑖, (𝑖 = 1, 2, 3, 4), 𝛾 and positive
definite, continuous differentiable functions 𝐿1, 𝑄1:R𝑛+1 →
R such that

(𝑖) 𝜃1 𝜂2 ≤ 𝐿1 (𝜂) ≤ 𝜃2 𝜂2 ,𝜃3 𝜂2 ≤ 𝑄1 (𝜂) ≤ 𝜃4 𝜂2
(𝑖𝑖) 𝑛−1∑

𝑖=1

(𝑘𝑖+1𝜂𝑖+1 − 𝑔𝑖 (𝜂1)) 𝜕𝐿1𝜕𝜂𝑖 (𝜂)
+ (𝜂𝑛+1 − 𝑔𝑛 (𝜂1)) 𝜕𝐿1𝜕𝜂𝑛 (𝜂)
− 𝑔𝑛+1 (𝜂1) 𝜕𝐿1𝜕𝜂𝑛+1 (𝜂) ≤ −𝑄1 (𝜂)

(𝑖𝑖𝑖)  𝜕𝐿1𝜕𝜂𝑛+1 (𝜂)
 ≤ 𝛾 𝜂

(23)

where 𝜂 = (𝜂1, 𝜂2, . . . , 𝜂𝑛+1).‖.‖ denotes the Euclid norm of
R𝑛+1.
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Assumption 10 (see [2, 41]). The functions |𝑔𝑖(𝜂1)| ≤ 𝜑𝑖𝜂𝑖 for
some positive constants 𝜑𝑖 for all 𝑖 = 1, 2, . . . , 𝑛 + 1. For any(𝑑, 𝑧2, 𝜔2) belonging to the domain of interest and ∀𝑑 ∈ R𝑛,
the following inequality holds:

𝜌𝑎 ≜  𝜁 (𝑑, 𝑡) − 𝜁0 (𝑑)𝜁0 (𝑑)
 < 𝜃3𝜑𝑛+1𝛾 (24)

Remark 11. Assumption 10 implies that the nominal model𝜁0(.) is close to 𝜁(.). The functions 𝑔𝑖(.), 𝑖 = 1, 2, . . . , 𝑛 + 1,
should be chosen appropriately to make the zero balance of
the subsequent system asymptotically stable [40]:

𝜙 ̇𝜂𝑖 = 𝑘𝑖+1𝜂𝑖+1 − 𝑔𝑖 (𝜂1) , 𝑖 = 1, 2, . . . , 𝑛 − 1.𝜙 ̇𝜂𝑛 = 𝜂𝑛+1 − 𝑔𝑛 (𝜂1)𝜙 ̇𝜂𝑛+1 = −𝑔𝑛+1 (𝜂1)
(25)

Two useful lemmas will be presented in the following section.

Lemma 12 (see [2, 42]). Consider the system

̇𝑑𝑖 = 𝑘𝑖+1𝑑𝑖+1, 𝑖 = 1, 2, . . . , 𝑛 − 1̇𝑑𝑛 = 𝜔2𝑛𝑜𝑚 (𝑑) (26)

Let ℎ1, ℎ2, . . . , ℎ𝑛 > 0 so that the polynomial 𝜃𝑛 +ℎ𝑛𝜃𝑛−1 + ⋅ ⋅ ⋅ +ℎ2𝜃+ℎ1 is Hurwitz stable.Then there exists𝜙 ∈ (0, 1) such that,
for any ] ∈ (1 − 𝜙, 1), the origin of (26) is a globally finite-time
stable equilibrium under the feedback

𝜔2𝑛𝑜𝑚 (𝑑) = −ℎ1sgn (𝑑1) 𝑑1]1 − ⋅ ⋅ ⋅− ℎ𝑛sgn (𝑑𝑛) 𝑑𝑛]𝑛 , (27)

where ]𝑛+1 = 1, ]𝑛 = ], ]𝑖−1 = ]𝑖]𝑖+1/(2]𝑖+1 − ]𝑖), 𝑖 =2, 3, . . . , 𝑛.
Lemma 13 (see [2, 43]). If the continuously differentiable,
nonnegative function 𝐿(𝑗) satisfies

�̇� (𝑗) + V𝐿 (𝑗) + 𝑏𝐿𝑤 (𝑗) ≤ 0, (28)

where V, 𝑏 > 0, 0 < 𝑤 < 1, then 𝑗 will converge to 𝑗 = 0 in
finite time.

3. Control Design and Stability Analysis

We design the active disturbance rejection controllers to
achieve finite stabilization for a class of systems (3) by
integrating extended state observer and adaptive sliding
mode controller. The analysis is as follows.

Step 1. According to Lemma 13, we can design a controller to
achieve the finite-time sliding mode stabilization of system
(2). The control signal is designed as (10).

Step 2. Design the active disturbance rejection control to
achieve finite-time stabilization for a class of systems (3)

by combining extended state observer with adaptive sliding
mode controller.

The sliding surface is selected as [2, 44]

𝑠 = 𝑑𝑛 (𝑡) − 𝑑𝑛 (0) − ∫𝑡
0
𝜔2𝑛𝑜𝑚 (𝑑 (𝛽)) 𝑑𝛽. (29)

Once the ideal sliding mode 𝑠 = 0 is established, (29) can be
rewritten as

𝑑𝑛 (𝑡) = 𝑑𝑛 (0) − ∫𝑡
0
𝜔2𝑛𝑜𝑚 (𝑑 (𝛽)) 𝑑𝛽. (30)

Differentiating (30) yields (26), and this implies that system
(13) will converge to the origin from any initial condition
along the sliding surface 𝑠 = 0 in finite time.

Define an odd continuous and differentiable function𝜋 (𝛽, 𝜇, 𝜏)
= {{{

sgn (𝛽) 𝛽𝜇 , 𝛽 ≥ 𝜏(𝜇 − 1) 𝜏𝜇−2sgn (𝛽) 𝑜2 + (2 − 𝜇) 𝜏𝜇−1𝛽, 𝛽 < 𝜏
(31)

where 0 < 𝜇 < 1, 𝜏 is a sufficiently small positive constant.
The ADRC law is designed for system (13):

𝜓2𝑛𝑜𝑚 = − 1𝜁 (𝑑, 𝑡) (𝑑𝑛+1 − �̂�2𝑛𝑜𝑚 (𝑑) + 𝑚1𝑠 + 𝑛0𝜍max𝑠
+ 𝑚2𝜋 (𝑠, 𝑙, 𝜏𝑛+1)) (32)

where

�̂�2𝑛𝑜𝑚 (𝑑) = −ℎ1𝜋 (𝑑1, 𝑐1, 𝜏1) − ⋅ ⋅ ⋅ − ℎ𝑛𝜋 (𝑑𝑛, 𝑐𝑛, 𝜏𝑛) ,
𝑠 = 𝑑𝑛 (𝑡) − 𝑑𝑛 (0) − ∫𝑡

0
�̂�2𝑛𝑜𝑚 (𝑑 (𝛽)) 𝑑𝛽, (33)

where 𝜏𝑖, 1 ≤ 𝑖 ≤ 𝑛+1 are sufficiently small positive constants,
and 0 < 𝑙 < 1, 𝑚1, 𝑚2, 𝑛0 > 0. Define the estimation of the
upper bound of √𝜅21 + 𝜅22 as 𝜍max. 𝜅1 and 𝜅2 will be specified
latter. The updating law of 𝜍max iṡ̂𝜍max = 𝑚3𝑛0 (𝑠2 − 𝜍max) , (34)

where𝑚3 > 0.
Theorem 14. Consider the closed-loop system (13) formed of
the nonlinear extended observer (16) and active disturbance
rejection control law (18) and (32). Suppose Assumptions 3–10
are satisfied, for any 𝑑(0) ∈ R𝑛, 𝜂(0) ∈ R𝑛 [2, 45]

(i) ‖𝜂‖ → 0 and |𝑑𝑖(𝑡) − 𝑑𝑖(𝑡)| → 0 as 𝜙 → 0,
uniformly in 𝑡 ∈ (0,∞);

(ii) there exists 𝜙0 > 0 such that, for any 𝜙 ∈ (0, 𝜙0),
there exists 𝜙-dependent 𝑇𝜙 such that 𝑑 = 0, ∀𝑡 ∈ [𝑇𝜙,∞).
Proof. Associating (13), (16), and (15), we can compute the
derivative of the extended state 𝑑𝑛+1 with respect to 𝑡 in the
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time interval [0, 𝑡1]. The derivative of the extended state 𝑑𝑛+1
is shown as

𝑚 = 𝑛−1∑
𝑖=1

𝑘𝑖+1𝑑𝑖+1 (𝜕𝑓2𝜕𝑑𝑖 + 𝜓2 𝜕𝜁2𝜕𝑑𝑖 − 𝜓2 𝜕𝜁0𝜕𝑑𝑖)+ (𝑓2 (𝑑, 𝑧2, 𝜔2) + 𝜁 (𝑑, 𝑡) 𝜓2)
⋅ ( 𝜕𝑓2𝜕𝑑𝑛 + 𝜓2 𝜕𝜁2𝜕𝑑𝑛 − 𝜓2 𝜕𝜁0𝜕𝑑𝑛)
+ 𝑓20 (𝑑, 𝑧2, 𝜔2) 𝜕𝑓2𝜕𝑧2 + 𝑓20 (𝑑, 𝑧2, 𝜔2) 𝜓2 𝜕𝜁2𝜕𝑧2
+ �̇�2 𝜕𝑓2𝜕𝜔2 + �̇�2𝜓2 𝜕𝜁2𝜕𝜔2 + (𝜁2 (𝑑, 𝑡) − 𝜁0 (𝑑)) �̇�2,

(35)

where

�̇�2 = −𝑠𝑎𝑡𝜙 (𝜓2𝑛𝑜𝑚𝑊 )( 1𝜁 (𝑑, 𝑡) ( ̇̂𝑑𝑛+1
+ 𝑛∑
𝑖=1

ℎ𝑖 ̇̂𝑑𝑖 𝑑𝜋 (𝑑𝑖, 𝑐𝑖, 𝜏𝑖)𝑑𝑑𝑖 + 𝑚1 ̇̂𝑠 + 𝑚2 ̇𝑠 𝑑𝜋 (𝑠, 𝑐𝑛, 𝜏𝑛)𝑑𝑠
+ 𝑛0 ̇̂𝜍max𝑠 + 𝑛0𝜍max ̇𝑠) − ∑𝑛𝑖=1 ̇̂𝑑𝑖 (𝜕𝜁0/𝜕𝑑𝑖)𝜁20 (𝑑) (𝑑𝑛+1
− �̂�2𝑛𝑜𝑚 (𝑑) + 𝑚1𝑠 + 𝑚2𝜋 (𝑠, 𝑙, 𝜏𝑛+1) + 𝑛0𝜍max𝑠))

(36)

̇̂𝑠 = ̇̂𝑑𝑛 − �̂�2𝑛𝑜𝑚 (𝑑) (37)

We can know that 𝑑𝑖 = 𝑑𝑖 − 𝜂𝑖𝜙𝑛+1−𝑖, 𝑖 = 1, 2, . . . , 𝑛 + 1, from
(21). In addition, 𝑑(𝑡) and 𝑑(𝑡) are continuous in 𝑡, and 𝑑(0)
and 𝑑(0) and𝜓2 are bounded in the time interval [0, 𝑡1].Then
considering Assumptions 3–10 and substituting (36) and (37)
into (35), we can infer that the derivative of the extended state𝑑𝑛+1 with respect to 𝑡 in the time interval [0, 𝑡1] is bounded

|𝑚| ≤ 𝑊0 +𝑊1 𝜂 + 𝜌𝑎𝜑𝑛+1𝜙 𝜂 (38)

where𝑊0 and𝑊1 are independent positive constants.
Let 𝐿1(𝜂) be a positive definite, continuous differentiable

function satisfying Assumption 9. The derivative of 𝐿1(𝜂)
with respect to 𝑡 in the time interval [0, 𝑡1] satisfies

𝑑𝐿1 (𝜂)𝑑𝑡 = 1𝜙 (𝑛−1∑
𝑖=1

(𝑘𝑖+1𝜂𝑖+1 − 𝑔𝑖 (𝜂1)) 𝜕𝐿1𝜕𝜂𝑖 (𝜂)
+ (𝜂𝑛+1 − 𝑔𝑛 (𝜂1)) 𝜕𝐿1𝜕𝜂𝑛 (𝜂)
+ (𝜙𝑚 − 𝑔𝑛+1 (𝜂1)) 𝜕𝐿1𝜕𝜂𝑛+1 (𝜂)) ≤ − 1𝜙𝑄1 (𝜂) + |𝑚|
⋅  𝜕𝐿1𝜕𝜂𝑛+1 (𝜂)

 ≤ −𝜃3𝜙 𝜂2 + (𝑊0 +𝑊1 𝜂
+ 𝜌𝑎𝜑𝑛+1𝜙 𝜂) 𝛾 𝜂 ≤ − 1𝜃2𝜙 (𝜃3
− 𝜃2 (𝜌𝑎𝜑𝑛+1𝛾 + 𝜙𝑊1) 𝛾𝜃1 )𝐿1 (𝜂) + 𝑊0𝛾√𝐿1 (𝜂)√𝜃1

(39)

Considering 𝑑𝐿1(𝜂)/𝑑𝑡 = 2√𝐿1(𝜂)(𝑑√𝐿1(𝜂)/𝑑𝑡), we can get

𝑑√𝐿1 (𝜂)𝑑𝑡
≤ − 12𝜃2𝜙 (𝜃3 − 𝜃2 (𝜌𝑎𝜑𝑛+1𝛾 + 𝜙𝑊1) 𝛾𝜃1 )√𝐿1 (𝜂)
+ 𝑊0𝛾2√𝜃1

(40)

Considering (41) and Assumption 9 ∀𝜙 ∈ (0, (𝜃1𝜃3 −𝜃2𝜌𝑎𝜑𝑛+1𝛾)/𝜃2𝑊1𝛾), the following inequality holds:
𝜂 ≤ √𝐿1 (𝜂)√𝜃1 (41)

This together with (20) yields

Δ 𝑖 (𝑡) ≤ 𝜙𝑛+1−𝑖 𝜂 ( 𝑡𝜙) ≤ 𝜙𝑛+1−𝑖 ×(√𝐿1 (𝜂 (0))√𝜃1
− 𝑊0𝛾𝜃2𝜙𝜃1𝜃3 − 𝜃2𝜌𝑎𝜑𝑛+1𝛾 − 𝜃2𝜙𝑊1𝛾)
× 𝑒−(1/2𝜃2𝜙)[𝜃3−(𝜃2(𝜌𝑎𝜑𝑛+1𝛾−𝜙𝑊1𝛾)/𝜃1)](𝑡/𝜙) + 𝜙𝑛+1−𝑖
× 𝑊0𝛾𝜃2𝜙𝜃1𝜃3 − 𝜃2𝜌𝑎𝜑𝑛+1𝛾 − 𝜃2𝜙𝑊1𝛾

(42)

The right hand side of the inequality (41) converges to 0 in
the time interval (0, 𝑡1] as 𝜙 → 0, and there exists an 𝜙∗ > 0
such that, for any 𝜙 ∈ (0, 𝜙∗), there exists an 𝜙-independent
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𝑡0 ∈ (0, 𝑡1) such that |Δ 𝑖| = |𝑑𝑖(𝜙, 𝑡) − 𝑑𝑖(𝜙, 𝑡)| → 0, 𝑖 =1, 2, . . . , 𝑛 + 1, 𝑡 ∈ [𝑡0, 𝑡1] as 𝜙 → 0. What is more, the
control will be out of saturation after the transient period of

the nonlinear extended observer by appropriately selecting
the bound𝑊.

Let 𝜅1 and 𝜅2 be defined as

𝜅1 = {{{{{{{
1𝑛0𝑠 (𝜁2𝜓2 + 𝑓2 − 𝜔2𝑛𝑜𝑚 + 𝑚1𝑠 + 𝑚2sgn (𝑠) |𝑠|𝑙 + 𝑛0𝜍max𝑠) , |𝑠| ≥ 11𝑛0 (𝜁2𝜓2 + 𝑓2 − 𝜔2𝑛𝑜𝑚 + 𝑚1𝑠 + 𝑚2sgn (𝑠) |𝑠|𝑙 + 𝑛0𝜍maxsgn (𝑠) + 𝑚1sgn (𝑠)) , |𝑠| < 1

𝜅2 = 𝑠2 − 𝑠2
(43)

It can be concluded that both 𝜅1 and 𝜅2 are bounded in the
time interval [0, 𝑡1]. Thus, √𝜅21 + 𝜅22 is bounded in the time
interval [0, 𝑡1].

In the reaching phase (𝑠 ̸= 0), we consider the time
derivative of the sliding variable in the time interval [𝑡0, 𝑡1]. In
the case |𝑠| ≥ 1, associating with (13) and (43), we can deduce
that ̇𝑠 = ̇𝑑𝑛 − 𝜔2𝑛𝑜𝑚 = 𝑓2 + 𝜁2𝜓2 − 𝜔2𝑛𝑜𝑚= 𝑛0𝑠𝜅1 − 𝑚1𝑠 − 𝑚2sgn (𝑠) |𝑠| − 𝑛0𝜍max𝑠 (44)

In the case |𝑠| < 1, associating (13) with (43), we can get

̇𝑠 = 𝑓2 + 𝜁2𝜓2 − 𝜔2𝑛𝑜𝑚= 𝑛0𝑠𝜅1 − 𝑚1𝑠 − 𝑚2sgn (𝑠) |𝑠| − 𝑛0𝜍maxsgn (𝑠)− 𝑚1sgn (𝑠)
(45)

Let 𝜍max = 𝜍max − 𝜍max. Consider the following Lyapunov
function:

𝐿2 = 12𝑠2 + 2 12𝑚3 𝜍2max, (46)

and differentiate 𝐿2 with respect to 𝑡 in the time interval[𝑡0, 𝑡1]. In the case |𝑠| ≥ 1, associating with (34), (43), and
(44), we can get𝑑𝐿2𝑑𝑡 = 𝑠 ̇𝑠 + 1𝑚3 ̇̂𝜍max

= −𝑚1𝑠2 − 𝑚2 |𝑠|𝑙+1 + 𝑛0 (𝜅1 − 𝜍max) 𝑠2+ 𝑛0𝜍max (𝜍max − 𝜅2) − 𝑛0𝜍2max.
(47)

Since 𝜅1, 𝜅2 ≤ 𝜍max and

(𝜅max − 𝜅2) 𝜍max ≤ 12𝜍2max + 12 (𝜍max − 𝜅2)2
≤ 12𝜍2max + 2𝜍max

2, (48)

inequality (46) can be simplified as𝑑𝐿2𝑑𝑡 ≤ −𝑚1𝑠2 − 𝑛02 𝜍2max + 2𝑛0𝜍max
2. (49)

In the case |𝑠| < 1, associating with (34), (43), and (45), we
can get

𝑑𝐿2𝑑𝑡 = 𝑠 ̇𝑠 − 1𝑚3 𝜍max
̇̂𝜍max

= 𝑛0𝜅1𝑠 − 𝑚1𝑠2 − 𝑚2 |𝑠|𝑙+1 − 𝑛0𝜍max |𝑠| − 𝑚1 |𝑠|− 𝑛0𝜍max𝑠2 − 𝑛0𝜍max𝜅2 + 𝑛0𝜍max𝜍max.
(50)

Considering (47) and

𝜅1𝑠 − 𝜍max |𝑠| − 𝜍max𝑠2 ≤ 𝜍max |𝑠| − 𝜍max |𝑠| − 𝜍max𝑠2
≤ 14𝜍2max + (|𝑠| − 𝑠2)2 ≤ 14𝜍2max + 116 , (51)

inequality (50) can be simplified as

𝑑𝐿2𝑑𝑡 ≤ −𝑚1𝑠2 − 𝑛04 𝜍2max + 2𝑛0𝜍max
2 + 116𝑛0. (52)

According to the boundedness theorem, both 𝑠 and 𝜍max are
bounded in the time interval [𝑡0, 𝑡1]. Assume |𝜍max| ≤ 𝑎.

In order to show the finite-time stability, we consider the
Lyapunov function

𝐿3 = 12𝑠2 (53)

and differentiate 𝐿3 with respect to 𝑡 in the time interval[𝑡0, 𝑡1].
In the case |𝑠| ≥ 1, associating with (44) and (45), we can

get

𝑑𝐿3𝑑𝑡 = 𝑠 ̇𝑠 = 𝑛0𝜅1𝑠2 − 𝑚1𝑠2 − 𝑚2 |𝑠|𝑙+1 − 𝑛0𝜍max𝑠2
≤ −2 (𝑚1 − 𝑛0𝜍max) 𝐿3 − 2(𝑙+1)/2𝑚2𝐿3(𝑙+1)/2. (54)

In the case |𝑠| < 1, associating with (42) and (46), we can get

𝑑𝐿3𝑑𝑡 = 𝑛0𝜅1𝑠2 − 𝑚1𝑠2 − 𝑚2 |𝑠|𝑙+1 − 𝑛0𝜍max |𝑠| − 𝑚1 |𝑠|
≤ −2 (𝑚1 − 𝑛0𝜍max) 𝐿3 − 2(𝑙+1)/2𝑚2𝐿3(𝑙+1)/2+ |𝑠| (𝑛0𝜍max (1 − |𝑠|) − 𝑚1) .

(55)
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Choose 𝑚1 and 𝑛0 satisfying 𝑚1 > 𝑛0𝑎, and then together
with (54) and (55), we can get𝑑𝐿3𝑑𝑡 ≤ −2 (𝑚1 − 𝑛0𝜍max) 𝐿3 − 2(𝑙+1)/2𝑚2𝐿3(𝑙+1)/2. (56)

According to Lemma 13, the sliding surface 𝑠 will converge
to zero in finite time 𝑡𝑙1. Besides, on the basis of Lemma 12,𝑑𝑖 = 0, (𝑖 = 1, 2, . . . 𝑛) will be arrived in finite 𝑡𝑙2(here one
can select 𝑡1 > 𝑡𝑙2).

Next, it can be illustrated that system (13) will stay at the
origin for all 𝑡 > 𝑡𝑙2. We can get that 𝑑 = 0 in the time interval[𝑡𝑙2, 𝑡1] in the first step. Considering 𝑑 is continuous in 𝑡, 𝑑
is bounded in the time interval [0, 2𝑡1]. Then running the
analysis above, we can get 𝑑 = 0 in the time interval [𝑡𝑙2, 2𝑡1],
and then 𝑑 is bounded in the time interval [0, 3𝑡1].We can get𝑑 = 0 in the time interval [𝑡𝑙2, 3𝑡1] similarly.

Finally, it can be summarized that there exists 𝜙0 > 0 such
that, for any𝜙 ∈ (0, 𝜙0), there exists 𝜙-dependent𝑇𝜙 such that𝑑 = 0, ∀𝑡 ∈ [𝑇𝜙,∞). As a result, inequality (41) holds in the
time interval [0,∞), and consequently ‖𝜂‖ → 0 as 𝜙 → 0
uniformly in 𝑡 ∈ (0,∞).
Remark 15. We can get that the closed-loop can converge to
0 only when 𝜙 → 0 according to the analysis above [36–
44]. However, the condition 𝜙 = 0 cannot be met in practice.
What is more, reducing the value of will increase the high-
frequency oscillations. In this paper, the proposed control law
can guarantee the closed-loop converge to 0 asymptotically
and in finite time, without relying on the condition 𝜙 = 0.
Step 3. Rethink system 2 and design the 𝜓1 so that the
sliding surface 𝑠 = 0 will be reached in finite time and
the nonholonomic system in extended chained-form (2) will
converge to the origin in finite time as system (3).

Let 𝑛 = 2, 𝑥1 = 𝑥11, 𝑢1 = 𝑥21; system (2) can be rewritten
as �̇�11 = 𝑘1𝑥21�̇�21 = 𝜁1 (𝑥, 𝑡) 𝜓1 + 𝑓1 (𝑥, 𝑧1, 𝜔1)�̇�1 = 𝑓01 (𝑥, 𝑧1, 𝜔1)𝑦1 = 𝑥11

(57)

In accordance with the state estimations of the nonlinear
extended state observer (15), the output of the ESO (16), and
control input (17), the ADRC control law of the system (57)
can be designed as (17) and the control injected into the
system (57) is modified as (18).

On the basis of Lemmas 12 and 13, the sliding surface 𝑠 = 0
will be reached in finite time, and system (59) will converge
to the origin in finite time.

Associating with system (11) and (57), we can get a
conclusion that, under the condition (15), (16), and (17), the
nonholonomic system in extended chained-form (2) and (3)
will converge to the origin in finite time. Finally, we can get
a conclusion that there exists 𝜙2 > 0 such that, for any𝜙 ∈ (0, 𝜙2), there exists 𝜙-dependent 𝑇𝜙 such that 𝑥 =[𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 = 0 ∀𝑡 ∈ [𝑇𝜙,∞), and consequently ‖𝜂‖ →0 as 𝜙 → 0 uniformly in 𝑡 ∈ (0,∞).
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Figure 1: The velocity input 𝑢1 for the kinematics model.

4. Simulations

In this section, we demonstrate the effectiveness of the
proposed control strategy for the following nonholonomic
systems in extended chained-form 2 through a series of
simulations, 𝑛 = 3 for 2. The control signal 𝜓1 is designed
as (10).

The ESO is designed as

̇̂𝑥2 = 2𝑥3 + 2𝜙 (𝑥1 − 𝑥1) ,
̇̂𝑥3 = 4𝑥4 + 6𝜙2 (𝑥3 − 𝑥3) + 𝜁0𝜓2,
̇̂𝑥4 = 4𝜙3 (𝑥4 − 𝑥4) ,

(58)

In this example, we assume 𝑥(0) = [0.2, −0.6, 1]𝑇, 𝑥(0) =[0.1, −1, 1.2]𝑇, 𝑞 = 0.01, 𝑟(0) = 0, 𝐸 = 2, 𝜁20(0) = 15, and𝜍max(0) = 0. The control parameters are selected as𝑚1 = 300,𝑚2 = 1,𝑚3 = 1, 𝑛0 = 0.01, ]1 = 1/2, ]2 = 1/4, ℎ1 = 9, ℎ2 = 6,ℎ3 = 3, and𝑊 = 30.
Figures 1∼4 are the simulation results of the three steps.

Figure 1 shows that the velocity input 𝑢1 for the kinematics
model can converge to 1 in a finite time 𝑡 ≤ 6𝑠 in Step 1
and keep it in Step 2 until it is driven to zero in the last step.
Figure 2 shows that the sliding surface 𝑠 = 0 is reached in
a finite time 𝑡 ≤ 6𝑠. Figures 3–7 show the time histories of𝑥, 𝑥 and 𝜂𝑖. These figures suggest that the system state vector𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 is well estimated by the ESO and finally
the state 𝑥 scaled ESO estimation error 𝜂𝑖 converge to zero
in finite time. In addition, Figure 8 suggests that the control
signal 𝜓2 converges to zero in a finite time 𝑡 ≤ 8𝑠.

What is more, in [46], a finite-time tracking control law
is designed for the nonholonomic mobile robot. The control
law in [46] also used the switching control method and the
simulation results are depicted in Figures 9 and 10. We can
see that the state 𝑥 converges to zero in finite time 𝑡 ≤ 10𝑠
and the tracking distance is stabilized to a constant in finite
time 𝑡 ≤ 15𝑠. From Figure 10 we can get that the controller
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Figure 9: The convergence of tracking distance 𝑑 with respect of
time.

proposed in this paper is more smooth than the controller
in [46] in switching control. We can see that the controller
proposed in this paper has faster convergence speed andmore
stable performance than that obtained in [46].

Remark 16. For your convenience review, we make Table 1 to
explain how to choose the design parameters.

Lemma 12 shows that ℎ1, ℎ2, . . . , ℎ𝑛 > 0 ensure that
the polynomial 𝜃𝑛 + ℎ𝑛𝜃𝑛−1 + ⋅ ⋅ ⋅ + ℎ2𝜃 + ℎ1 is Hurwitz
stable. Then there exists 𝜙 ∈ (0, 1) such that, for any
] ∈ (1 − 𝜙, 1), the origin of (22) is a globally finite-time
stable equilibrium under the feedback (27), where ]𝑛+1 =1, ]𝑛 = ], ]𝑖−1 = ]𝑖]𝑖+1/(2]𝑖+1 − ]𝑖), 𝑖 = 2, 3, . . . , 𝑛. In
addition, 𝑚1, 𝑚2, 𝑚3, 𝑛0 > 0 allow four terms −�̂�2𝑛𝑜𝑚(𝑑) +𝑚1𝑠 + 𝑛0𝜍max𝑠 + 𝑚2𝜋(𝑠, 𝑙, 𝜏𝑛+1) to guarantee the stability and
performance requirements of the closed-loop system. The
saturation bound 𝑊 is chosen so that the saturation is not
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Figure 10: The stability of distance error 𝑑∗ with respect of time.

invoked in the steady state of the ESO. Practically, we can
choose a group of available parameters 𝑚1 = 300, 𝑚2 = 1,𝑚3 = 1, 𝑛0 = 0.01, ]1 = 1/2, ]2 = 1/4, ℎ1 = 9, ℎ2 = 6, ℎ3 = 3,
and𝑊 = 30 in the simulation section.

Remark 17. By comparing the performance of the controller
proposed in this paper with the performance of the con-
troller proposed in [47, 48], we can know that the fixed
and predefined-time controllers have better performance for
nonholonomic systems. The fixed and predefined-time con-
trollers predetermine the time, so the operation of the con-
troller is independent of the initial value of the nonholonomic
systems. However, for the nonholonomic chained-form sys-
tems with dynamic nonlinear uncertain terms considered
in this paper, it is difficult to estimate the time in advance
due to the existence of dynamic nonlinear uncertain terms.
Achieving fixed-time control of nonholonomic chained-form
systemswith dynamic nonlinear uncertain terms is one of our
future research directions.

5. Conclusion

In this paper, finite-time switching controllers are put forward
in order to address the stabilization problem of nonholo-
nomic chained-form systems with uncertain parameters and
external perturbations. The proposed control strategy is
able to guarantee the semiglobal finite-time stabilization
of the extended nonholonomic chained-form systems. The
simulation results of the numerical example show that the
method is effective.

6. Future Research Directions and Prospects

We consider the application of the finite-time switching
controllers proposed in the theory to the anti-interference of
the robot in the source seeking work as our future research
direction. It is very practical for realistic engineering. We



Complexity 11

Table 1

Parameters Source of each parameter𝑚1, 𝑚2, 𝑚3, 𝑛0 > 0 From (28) and (29)
]𝑛+1 = 1, ]𝑛 = ], ]𝑖−1 = ]𝑖]𝑖+12]𝑖+1 − ]𝑖 , 𝑖 = 2, 3, . . . , 𝑛 From (26) and (27)

ℎ1, ℎ2, . . . ℎ𝑛 > 0 From Lemma 2𝑊 > 0 From (18) and (19)

will conduct more research and experiments in practical
application.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Natural Science Founda-
tion of China (61304004 and 61503205), the Fundamental
Research Funds for the Central Universities (2019B40114),
and the Changzhou Key Laboratory of Aerial Work Equip-
ment and Intellectual Technology (CLAI201803).

References

[1] R. M. Murray and S. S. Sastry, “Nonholonomic motion plan-
ning: steering using sinusoids,” IEEE Transactions on Automatic
Control, vol. 38, no. 5, pp. 700–716, 1993.

[2] Q. Wang, M. Ran, and C. Dong, “On finite-time stabilization
of active disturbance rejection control for uncertain nonlinear
systems,” Asian Journal of Control, vol. 20, no. 1, pp. 415–424,
2018.

[3] Y. A. Butt, “Robust stabilization of a class of nonholonomic
systems using logical switching and integral sliding mode
control,”Alexandria Engineering Journal, vol. 57, no. 3, pp. 1591–
1596, 2018.

[4] H. Wang and Q. Zhu, “Adaptive output feedback control of
stochastic nonholonomic systems with nonlinear parameteri-
zation,” Automatica, vol. 98, pp. 247–255, 2018.

[5] F. Gao, Y. Wu, H. Li, and Y. Liu, “Finite-time stabilisation for
a class of output-constrained nonholonomic systems with its
application,” International Journal of Systems Science, vol. 49, no.
10, pp. 2155–2169, 2018.

[6] S. Shi, S. Xu, X. Yu, Y. Li, and Z. Zhang, “Finite-time tracking
control of uncertain nonholonomic systems by state and output
feedback,” International Journal of Robust and Nonlinear Con-
trol, vol. 28, no. 6, pp. 1942–1959, 2018.

[7] R. W. Brockett, Asymptotic Stability and Feedback Stabilization
in Differential Geometric Control Theory, Springer, Berlin, Ger-
many, 1983.

[8] W. Sun, “Adaptive sliding-mode tracking control for a class of
nonholonomic mechanical systems,”Mathematical Problems in
Engineering, vol. 2013, Article ID 734307, 9 pages, 2013.

[9] F. Gao and F. Yuan, “Adaptive finite-time stabilization for a
class of uncertain high order nonholonomic systems,” ISA
Transactions, vol. 54, pp. 75–82, 2015.

[10] Y. A. Butt, “Robust stabilization of a class of nonholonomic
systems using logical switching and integral sliding mode
control,”Alexandria Engineering Journal, vol. 57, no. 3, pp. 1591–
1596, 2017.

[11] C. Zhu, C. Li, K. Zhang, and H. Wei, “Fault tolerant control for
a general class of nonholonomic dynamic systems via terminal
sliding mode,” in Proceedings of the 29th Chinese Control and
Decision Conference, CCDC 2017, pp. 7378–7383, China, May
2017.

[12] J.-B. Pomet, B. Thuilot, G. Bastin, and G. Campion, “A hybrid
strategy for the feedback stabilization of nonholonomic mobile
robots,” in Proceedings of the 1992 IEEE International Conference
on Robotics and Automation, pp. 129–134, May 1992.

[13] A. Astolfi, “Discontinuous control of nonholonomic systems,”
Systems & Control Letters, vol. 27, no. 1, pp. 37–45, 1996.

[14] Y. Tian and S. Li, “Exponential stabilization of nonholonomic
dynamic systems by smooth time-varying control,”Automatica,
vol. 38, no. 7, pp. 1139–1146, 2002.

[15] T. Jiang, C. Huang, and L. Guo, “Control of uncertain nonlinear
systems based on observers and estimators,”Automatica, vol. 59,
pp. 35–47, 2015.

[16] S.Mobayen and S. Javadi, “Disturbance observer and finite-time
tracker design of disturbed third-order nonholonomic systems
using terminal sliding mode,” Journal of Vibration and Control,
vol. 23, no. 2, pp. 181–189, 2015.

[17] S. Mobayen, “Finite-time tracking control of chained-form
nonholonomic systems with external disturbances based on
recursive terminal sliding mode method,” Nonlinear Dynamics,
vol. 80, no. 1-2, pp. 669–683, 2015.

[18] H. Chen, C. Wang, Z. Liang, D. Zhang, and H. Zhang, “Robust
practical stabilization of nonholonomicmobile robots based on
visual servoing feedback with inputs saturation,” Asian Journal
of Control, vol. 16, no. 3, pp. 692–702, 2014.

[19] H. Chen, D. Shihong, X. Chen et al., “Global finite-time
stabilization for nonholonomic mobile robots based on visual
servoing,” International Journal of Advanced Robotic Systems,
2014.

[20] S. Ding, W. X. Zheng, J. Sun, and J. Wang, “Second-order
sliding-mode controller design and its implementation for buck
converters,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 5, pp. 1990–2000, 2018.

[21] M. Roozegar, M. J. Mahjoob, and M. Ayati, “Adaptive tracking
control of a nonholonomic pendulum-driven spherical robot by
using amodel-reference adaptive system,” Journal ofMechanical
Science and Technology, vol. 32, no. 2, pp. 845–853, 2018.

[22] M. Sarfraz and F.-U. Rehman, “Feedback stabilization of non-
holonomic drift-free systems using adaptive integral sliding
mode control,”Arabian Journal for Science and Engineering, vol.
42, no. 7, pp. 2787–2797, 2017.



12 Complexity

[23] F. Z. Gao, F. S. Yuan, and H. J. Yao, “Robust adaptive control
for nonholonomic systems with nonlinear parameterization,”
Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp.
3242–3250, 2010.

[24] H. Yuan and Z. Qu, “Continuous time-varying pure feedback
control for chained nonholonomic systems with exponential
convergent rate,” IFAC Proceedings Volumes, vol. 41, no. 2, pp.
15203–15208, 2008.

[25] Y.-P. Tian and K.-C. Cao, “Time-varying linear controllers for
exponential tracking of non-holonomic systems in chained
form,” International Journal of Robust and Nonlinear Control,
vol. 17, no. 7, pp. 631–647, 2007.

[26] Z. P. Jiang and J.-B. Pomet, “Global stabilization of parametric
chained-form systems by time-varying dynamic feedback,”
International Journal of Adaptive Control and Signal Processing,
vol. 10, no. 1, pp. 47–59, 1996.

[27] S. Ding, C. Qian, S. Li, and Q. Li, “Global stabilization of a class
of upper-triangular systems with unbounded or uncontrollable
linearizations,” International Journal of Robust and Nonlinear
Control, vol. 21, no. 3, pp. 271–294, 2011.

[28] S. Ding and W. X. Zheng, “Nonsingular terminal sliding mode
control of nonlinear second-order systems with input satura-
tion,” International Journal of Robust andNonlinear Control, vol.
26, no. 9, pp. 1857–1872, 2016.

[29] S. Ding and W. X. Zheng, “Robust control of multiple integra-
tors subject to input saturation and disturbance,” International
Journal of Control, vol. 88, no. 4, pp. 844–856, 2015.

[30] H. H. Pan, W. C. Sun, H. J. Gao, and J. Y. Yu, “Finite-time
stabilization for vehicle active suspension systems with hard
constraints,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 5, pp. 2663–2672, 2015.

[31] H. Pan andW. Sun, “Nonlinear output feedback finite-time con-
trol for vehicle active suspension systems,” IEEETransactions on
Industrial Informatics, 2018.

[32] F. Z. Gao, Y. L. Shang, and F. S. Yuan, “Robust adaptive finite-
time stabilization of nonlinearly parameterized nonholonomic
systems,” Acta Applicandae Mathematicae, vol. 123, no. 1, pp.
157–173, 2013.

[33] F. Z. Gao, F. S. Yuan, H. J. Yao, and X. W. Mu, “Adaptive
stabilization of high order nonholonomic systems with strong
nonlinear drifts,” Applied Mathematical Modelling: Simulation
and Computation for Engineering and Environmental Systems,
vol. 35, no. 9, pp. 4222–4233, 2011.

[34] H. Chen, B. Zhang, T. Zhao, T. Wang, and K. Li, “Finite-time
tracking control for extended nonholonomic chained-form
systems with parametric uncertainty and external disturbance,”
Journal of Vibration and Control, vol. 24, no. 1, pp. 100–109, 2018.

[35] F. Yang and C.-L. Wang, “Adaptive stabilization for uncertain
nonholonomic dynamicmobile robots based on visual servoing
feedback,” Zidonghua Xuebao/Acta Automatica Sinica, vol. 37,
no. 7, pp. 857–864, 2011.

[36] H. Chen and J. Zhang, “Global practical stabilization for non-
holonomic mobile robots with uncalibrated visual parameters
by using a switching controller,” IMA Journal of Mathematical
Control and Information, vol. 30, no. 4, pp. 543–557, 2013.

[37] J. Q. Han, “A class of extended state observers for uncertain
systems,” Control and Decision, vol. 10, no. 1, pp. 85–88, 1995
(Chinese).

[38] B.-Z. Guo and Z.-L. Zhao, “On the convergence of an extended
state observer for nonlinear systems with uncertainty,” Systems
& Control Letters, vol. 60, no. 6, pp. 420–430, 2011.

[39] B. Guo and Z. Zhao, “On convergence of the nonlinear active
disturbance rejection control forMIMOsystems,” SIAM Journal
on Control and Optimization, vol. 51, no. 2, pp. 1727–1757, 2013.

[40] L. B. Freidovich and H. K. Khalil, “Performance recovery of
feedback-linearization-based designs,” Institute of Electrical and
Electronics Engineers Transactions on Automatic Control, vol. 53,
no. 10, pp. 2324–2334, 2008.

[41] Z.-L. Zhao and B.-Z. Guo, “On active disturbance rejection con-
trol for nonlinear systems using time-varying gain,” European
Journal of Control, vol. 23, pp. 62–70, 2015.

[42] S. P. Bhat and D. S. Bernstein, “Geometric homogeneity with
applications to finite-time stability,” Mathematics of Control,
Signals, and Systems, vol. 17, no. 2, pp. 101–127, 2005.

[43] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-
time control for robotic manipulators with terminal sliding
mode,” Automatica, vol. 41, no. 11, pp. 1957–1964, 2005.

[44] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, “Sliding
mode control and observation,” International Journal of Control,
vol. 9, pp. 213–249, 2014.

[45] S. Nazrulla and H. K. Khalil, “Robust stabilization of non-
minimum phase nonlinear systems using extended high-gain
observers,” Institute of Electrical andElectronics Engineers Trans-
actions on Automatic Control, vol. 56, no. 4, pp. 802–813, 2011.

[46] H. Chen, S. Xu, L. Chu, F. Tong, and L. Chen, “Finite-time
switching control of nonholonomic mobile robots for moving
target tracking based on polar coordinates,” Complexity, vol.
2018, Article ID 7360643, 9 pages, 2018.

[47] M. Defoort, G. Demesure, Z. Uo, Z. Zuo, A. Polyakov, and
M. Djemai, “Fixed-time stabilisation and consensus of non-
holonomic systems,” IET ControlTheory & Applications, vol. 10,
no. 18, pp. 2497–2505, 2016.

[48] Z. Zhang and Y. Wu, “Fixed-time regulation control of uncer-
tain nonholonomic systems and its applications,” International
Journal of Control, vol. 90, no. 7, pp. 1327–1344, 2017.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

