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In this paper, we consider the e�ect of constant rate harvesting on the dynamics of a single-species model with a delay weak kernel.
By a simple transformation, the single-species model is transformed into a two-dimensional system.�e existence and the stability
of possible equilibria under di�erent conditions are carried out by analysing the two-dimensional system. We show that there
exists a critical harvesting value such that the population goes extinct in �nite time if the constant rate harvesting u is greater than
the critical value, and there exists a degenerate critical point or a saddle-node bifurcation when the constant rate harvesting u
equals the critical value. When the constant rate harvesting u is less than the critical value, su�cient conditions about the existence
of the Hopf bifurcation are derived by topological normal form for the Hopf bifurcation and calculating the �rst Lyapunov
coe�cient.�e key results obtained in the present paper are illustrated using numerical simulations.�ese results indicate that it is
important to select the appropriate constant rate harvesting u.

1. Introduction

Ecological population dynamics is an important research
�eld of mathematical biology.�e single-speciesmodel is the
cornerstone of research formathematical biology. As early as
1798, Malthus [1] put forward the famous Malthus pop-
ulation model, that is,

dN(t)
dt

� rN(t), (1)

whereN(t) represents the unit density of population at time
t, and r> 0 is the intrinsic rate of growth for population.
Considering the carrying capacity of the environment,
Verhulst [2] improved the Malthus population model to
logistic equation in 1838:

dN(t)
dt

� rN(t) 1 −
N(t)
K

( ), (2)

where K is the maximum carrying capacity of the envi-
ronment. Logistic equation successfully predicted the total
population of the world and was widely used to study the

dynamical behavior of single species. Especially because of
its simple form, clear biological meaning of model param-
eters, and clear dynamic behavior, it has very important
applications in many �elds such as ecology [3], biological
resource management [4], life science [5], cell and molecular
biology [6], biostatistics [7, 8], stock market [9], and
medicine [10–12]. Other continuous single-species models
include Gompertz model, Food-limit model, Allee model,
Rosenzweig model, and Beverton–Holt model (see [13] and
references therein).

Time-delay phenomenon is an important factor a�ecting
the stability of systems. Many scholars in the �eld of
mathematical biology solved biological problems by
studying this phenomenon, for example, discrete delay [14],
delay dependent parameters [15], distributed delays [16],
variable delays [17], and stochastic model with delays
[18–22]. �e logistic growth model with discrete delay τ
(Hutchinson [23]) is governed by

dN(t)
dt

� rN(t) 1 −
N(t − τ)

K
( ). (3)
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In 1934, in order to solve the problem that Verhulst’s
logistic equation could not be applied due to population
disappearance, Volterra [24] established a more accurate
model than the former model:

dN(t)

dt
� N(t) 1 −

1
K

􏽚
t

− ∞
G(t − s)N(s)ds􏼠 􏼡, (4)

where G(t), called the delay kernel, is a weighting factor
which says howmuch emphasis should be given to the size of
the population at earlier times to determine the present
effect on resource availability. +e delay kernel is usually
normalized so that 􏽒

∞
0 G(u)du � 1. Two special cases,

G(u) � αe
− αu

,

G(u) � α2ue
− αu

,
(5)

are called weak delay kernel and strong delay kernel, re-
spectively. Let G(u) � αe− αu, Volterra’s model [25] follows
the form

dN(t)

dt
� rN(t) 1 −

1
K

􏽚
t

− ∞
αe

− α(t− s)
N(s)ds􏼠 􏼡. (6)

In 1977, Cushing [25] proposed the following single-
species model with weak delay kernel:
dx(t)

dt
� rx(t) 1 − ax(t) − ω􏽚

t

− ∞
αe

− α(t− s)
x(s)ds􏼠 􏼡, (7)

and detailed qualitative results of this model were obtained.
+e study concerning population dynamics with har-

vesting is a subject of mathematical bioeconomics.+e study
on mathematical models of bioeconomics for resource
management can be found in [4, 26–34]. Renewable re-
sources, which are vital to human survival, are increasingly
being overexploited. In the light of the reduction of resource
stocks and the deterioration of the environment, the ex-
ploitation and management of renewable resources has
become a major issue concerned nowadays. In order to
protect the natural environment which human beings de-
pend on, the development and utilization of renewable
resources must be moderate. +e maximum sustained yield
(MSY) with theminimum effort is what we want.+eMSY is
the largest harvest rate that can be sustained indefinitely. If
the harvest rate of a population is more than its MSY, the
population will go extinct. So the determination of the MSY
is very important. Generally, harvesting strategies include
constant harvesting, linear harvesting, time-dependent
harvesting, impulsive harvesting, and seasonal harvesting.
Which harvesting strategy can be used to achieve the best
economic benefits under the premise of ensuring the sus-
tainable development of species and ecological environ-
ment? It is a question we need to answer. Harvesting models
are introduced by Kot [3] and Murray [35]. A model with a
constant rate harvesting Y0 was studied by Brauer and
Sanchez [36]. +e model is

dN(t)

dt
� rN(t) 1 −

N(t)

K
􏼠 􏼡 − Y0. (8)

Ludwig et al. [37] considered the following equation with
harvesting function p(N) on the budworm population
dynamics:

dN(t)

dt
� rBN(t) 1 −

N(t)

KB

􏼠 􏼡 − p(N(t)). (9)

Population models with different harvesting strategies
have been studied by scholars, for example, impulsive
harvesting [38–44], constant rate harvesting [45–48], opti-
mal harvesting strategy [49], linear harvesting [50, 51], and
nonlinear harvesting [52, 53].

Volterra’s model [24] and Cushing’s model [25] can
sufficiently describe the deterministic dynamical behaviors.
However, it is inevitable for us to encounter some questions
for resource management. Hence, the models do not ef-
fectively predict population behaviors in reality. Due to the
size of the population at earlier times to determine the
present effect on resource availability, motivated by the
above work, introducing a constant rate harvesting u into the
Volterra’s model [24], we consider a single-species model
with a delay weak kernel and a constant rate harvesting:

dx(t)

dt
� rx(t) 1 −

1
K

􏽚
t

− ∞
αe

− α(t− s)
x(s)ds􏼠 􏼡 − u, (10)

where x(t) represents the unit density of the species at time
t, r> 0 represents the intrinsic growth rate of the species
(reflecting the characteristics of the species itself ), K> 0 is
carrying capacity, αe− α(t− s) is a common weak kernel
function, and u stands for constant rate harvesting, here α
and u are positive constants.

Let y(t) � 􏽒
t

− ∞ αe− α(t− s)x(s)ds, we have the following
system:

dx(t)

dt
� rx(t) 1 −

1
K

y(t)􏼒 􏼓 − u,

dy(t)

dt
� αx(t) − αy(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

+e purpose of this paper is to study the effect of
constant rate harvesting u in system (11). +e present paper
is built up as follows. In Section 2, we give a simple analysis
of system (11) and some lemmas and a definition are given.
In Section 3, the existence of degenerate critical point and
saddle-node bifurcation of system (11) is analysed. +e
stability of the equilibria and the existence of Hopf bi-
furcation of system (11) are discussed in Section 4. In order
to illustrate the theoretical analysis, Section 5 gives some
examples and their simulations. Finally, a brief conclusion is
given in Section 6.

2. A Simple Analysis of System
and Preliminaries

In this section, a simple analysis of system (11) is performed,
and some lemmas and a definition are given.

Let the right-hand side of system (11) equal to zero, that is,
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dx(t)

dt
� rx(t) 1 −

1
K

y(t)􏼒 􏼓 − u ≔ P(x(t), y(t)) � 0,

dy(t)

dt
� αx(t) − αy(t) ≔ Q(x(t), y(t)) � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)
By the second formula of system (12) αx(t) − αy(t) � 0,

i.e., x(t) � y(t), and substituting it into the first formula, we
obtain the quadratic equation rx(t)[1 − (1/K)x(t)] − u � 0.
In this system, denote Δ as Δ � r2 − (4ur/K), which is a
discriminant of quadratic equation rx(t)[1 − (1/K)x

(t)] − u � 0. Obviously, the equation rx(t)[1 − (1/K)

x(t)] − u � 0 has two different real roots if Δ> 0, i.e.,
u< (1/4)Kr; the equation rx(t)[1 − (1/K)x(t)] − u � 0 has
two identical real roots if Δ � 0, i.e., u � (1/4)Kr; the
equation rx(t)[1 − (1/K)x(t)] − u � 0 has no real roots for
Δ< 0(u> (1/4)Kr). From the above analysis, we can find
dx(t)/dt< 0 as u> (1/4)Kr, and there is no equilibrium in
system (11) in this case.

Furthermore, we get the Jacobian matrix of system (11):

A �

zP

zx

zP

zy

zQ

zx

zQ

zy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

r 1 −
1
K

y(t)􏼒 􏼓 −
r

K
x(t)

α − α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (13)

Naturally, the determinant D of the Jacobian matrix A is
written by the following calculation:

D � det(A) �

r 1 −
1
K

y(t)􏼒 􏼓 −
r

K
x(t)

α − α

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (14)

+e trace T of the matrix A also can be obtained as
follows:

T � tr(A) �
zP

zx
+

zQ

zy
� r 1 −

1
K

y(t)􏼒 􏼓 − α. (15)

Because system (11) has no equilibrium and the pop-
ulation x(t) is reduced to extinction in finite time if
u> (1/4)Kr, we will not discuss this case. +erefore, we
analyse the stability of the equilibria and the existence of
bifurcations of system (11) under two different cases: Δ � 0
and Δ> 0.

Before the main results are given, some lemmas and a
definition are introduced.

Lemma 1 (see [54]). Given the rank of the matrix A is equal
to 1 (i.e., rank(A) � 1) and the trace of the matrix A is equal
to 0 (that is T � tr(A) � 0) in system as follows:

dx

dt
� f(t, x). (16)

System (16) can be transformed into the following
system by a one-to-one transformation in a neighborhood of
the origin O:

dx

dt
� y,

dy

dt
� Q2(x, y),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where Q2(x, y) is analytic, with terms of order no less than 2.
Suppose

Q2(x, y) � alx
l
(1 + h(x)) + bnx

n
y(1 + g(x)) + y

2
f(x, y),

(18)

where h(x), g(x), and f(x, y) are analytic, h(0) � g(0) � 0,

l≥ 2, al ≠ 0, n is a natural number, and O is the lth critical
point.

If l � 2m + 1 is an odd number, let Δl � b2n + 4(m + 1)al,
then the following holds:

(1) If al > 0, then the critical point O is a saddle, its index
I(O) � − 1

(2) If (i) al < 0, bn ≠ 0, n is an even number, n<m, or (ii)
al < 0, bn ≠ 0, n is an even number, n � m, Δl ≥ 0, then
the critical point O is a node, its index I(O) � +1

(3) If (i) al < 0, bn ≠ 0, n is an odd number, n<m, or (ii)
al < 0, bn ≠ 0, n is an odd number, n � m, Δl ≥ 0, then
O is a critical point with an elliptic domain, its index
I(O) � +1

(4) If (i) al < 0, bn � 0, or al < 0, bn ≠ 0, and n>m, or (ii)
al < 0, bn ≠ 0, n � m, Δl < 0, then the critical pointO is
a center or focal, its index I(O) � +1

If l � 2m is an even number, then the following holds:

(1) If bn � 0 or bn ≠ 0 and n≥m, then O is a degenerate
critical point, its index I(O) � 0

(2) If bn ≠ 0, 1≤ n<m, then the critical point O is a
saddle-node, its index I(O) � 0

Lemma 2 (see [54]). Assume that the rank of matrix A is
equal to 1, i.e., rank(A) � 1 and the trace of matrix A satisfies
tr(A) � T≠ 0 in system (16), system (16) can be transformed
into

dx

dt
� P2(x, y) � P(x, y),

dy

dt
� y + Q2(x, y) � Q(x, y),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where P2 and Q2 are analytic functions of order no less than 2.
So Q � 0 ensures the existence of G(x) (or the existence of
G(y)). If G(x) � alx

l + · · ·, l≥ 2 (al ≠ 0), then the following
properties are satisfied:

(1) If l is an odd number and al > 0, then O is a node, the
index I(O) � +1

(2) If l is an odd number and al < 0, then O is a saddle
point, its index I(O) � − 1

(3) If l is an even number, then O is a saddle-node, the
index I(O) � 0
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Lemma 3 (see [55]). Assuming that c � 0, we stand a
function φ(x, 0) for

φ(x, 0) �
1
2

B(x, x) +
1
6

C(x, x, x) + O ‖x‖
4

􏼐 􏼑. (20)

In this formula, B(δ, η) and C(δ, η, ζ) are symmetric
multilinear vector functions. We have

Bi(δ, η) � 􏽘
2

j,k�1

z2φi(ξ, 0)

zξjzξk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ξ�0

δjηk, i � 1, 2, (21)

Ci(δ, η, ζ) � 􏽘
2

j,k,l�1

z3φi(ξ, 0)

zξjzξkzξl

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ξ�0

δjηkζ l, i � 1, 2. (22)

Moreover, the Taylor coefficients gkl of the equation

B(zq + zq, zq + zq) � z
2
B(q, q) + 2zzB(q, q) + z

2
B(q, q),

(23)

can be denoted by the following equations:

g20 � 〈p, B(q, q)〉,

g11 � 〈p, B(q, q)〉,

g02 � 〈p, B(q, q)〉,

g21 � 〈p, C(q, q, q)〉,

(24)

where the vector q is the conjugate vector of q and the vector
z is the conjugate vector of z.

Definition 1 (see [55]). +e first Lyapunov coefficient de-
notes as l1(β), and when β � 0, the following statement is
completely true:

l1(0) �
1

2ω2
0

Re ig20g11 + ωg21( 􏼁, (25)

where the value of l1(0) depends on the normalization of the
eigenvectors p and q. +e most important thing in bi-
furcation analysis is that the sign of l1(0) does not change
under 〈p, q〉 � 1.

Lemma 4 (see [55]). Suppose a two-dimensional system,
dx

dt
� f(x, c), (26)

with smooth f, has for all sufficiently small |c| the equilibrium
x � 0 with eigenvalues,

λ1,2(c) � μ(c) ± iω(c), (27)

where μ(0) � 0,ω(0) � ω0 > 0. Let the following conditions be
satisfied:

(1) l1(0)≠ 0, where l1 is the first Lyapunov coefficient
(2) μ′(0)≠ 0

Aen, there are invertible coordinate and parameter
changes and a time reparameterization transforming into

d
dτ

y1

y2

⎛⎝ ⎞⎠ �

β − 1

1 β
⎛⎝ ⎞⎠

y1

y2

⎛⎝ ⎞⎠ ± y
2
1 + y

2
2􏼐 􏼑

y1

y2

⎛⎝ ⎞⎠ + O ‖y‖
4

􏼐 􏼑.

(28)

Lemma 5 (see [55]). Any generic two-dimensional, one-
parameter system (topological normal form for the Hopf
bifurcation):

dx

dt
� f(x, c), (29)

having at c � 0 the equilibrium x � 0 with eigenvalues,

λ1,2(0) � ± iω0, ω0 > 0, (30)

is locally topologically equivalent near the origin to one of the
following normal forms:

dy1

dt

dy2

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

β − 1

1 β
⎛⎝ ⎞⎠

y1

y2

⎛⎝ ⎞⎠ ± y
2
1 + y

2
2􏼐 􏼑

y1

y2

⎛⎝ ⎞⎠. (31)

3. Degenerate Critical Point and Saddle-
Node Bifurcation

In this section, we investigate the properties of the equi-
librium under Δ � 0, i.e., u � (1/4)Kr. System (11) has two
different cases for the discriminant Δ � 0. One case is linear
equations of system (11) with one zero eigenvalue and one
nonzero eigenvalue, and the other case is linear equations of
system (11) with two zero eigenvalues.

If u � (1/4)Kr, the solution of the equation (12) is

x
∗
1 � y
∗
1 �

K

2
. (32)

So system (11) has a unique equilibrium E1(x∗1 , y∗1 )

� (K/2, K/2). Substituting x∗1 � y∗1 � K/2 into (13) and (14),
A∗1 and D∗1 are as follows:

A
∗
1 �

r

2
−

r

2

α − α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

D
∗
1 �

r

2
−

r

2

α − α

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0.

(33)

Consequently,

det λI − A
∗
1( 􏼁 � λI − A

∗
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

λ −
r

2
r

2

− α λ + α

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� λ2 + α −
r

2
􏼒 􏼓λ,

(34)
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where I denotes the identity matrix. Calculating
|λI − A∗1 | � 0, one can obtain the eigenvalues of matrix A∗1 :
λ1 � 0 and λ2 � (r/2) − α.

Denote X1 and Y1 as X1 � x(t) − (K/2) and
Y1 � y(t) − (K/2), system (11) can be transformed into

dX1

dt
�

r

2
X1 − Y1( 􏼁 −

r

K
X1Y1,

dY1

dt
� α X1 − Y1( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(35)

Theorem 1. If u � (1/4)Kr and α � (r/2), then the unique
equilibrium E1(K/2, K/2) of system (11) is a degenerate
critical point and system (11) will not admit any closed orbits.
If u � (1/4)Kr and α≠ r/2, then the unique equilibrium
E1(K/2, K/2) of system (11) is a saddle-node and system (11)
will not also admit any closed orbits.

Proof. It is easy to obtain that λ1 � λ2 � 0 if u � (1/4)Kr and
α � r/2; in the other word, the linear equations of system
(11) has two zero eigenvalues.

In this case, substituting α � r/2 into system (35), we get
dX1

dt
�

r

2
X1 − Y1( 􏼁 −

r

K
X1Y1,

dY1

dt
�

r

2
X1 − Y1( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(36)

Let

s

v

⎛⎝ ⎞⎠ �

0
2
r

1 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X1

Y1

⎛⎝ ⎞⎠, (37)

that is, s � (2/r)Y1 and v � X1 − Y1.
Take the derivatives of s and v, respectively, and the

following system can be obtained:
ds

dt
� v,

dv

dt
� −

r3

4K
s
2

−
r2

2K
sv.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(38)

Since O is an isolated equilibrium of system (38), it is
assumed

dv

dt
� −

r3

4K
s
2

−
r2

2K
sv � als

l
(1 + h(s)) + bns

n
v(1 + g(s))

+ v
2
f(s, v),

(39)

where h(s), g(s), and f(s, v) are analytic, h(0) � g(0) � 0.
By Lemma 1, Q2(s, v) � als

l + bnsnv. On account of l � 2 �

2m is an even number, b1 � − r2/2K≠ 0 and 1 � n � m, we
can obtain that the equilibrium E1(K/2, K/2) is a degenerate
critical point by Lemma 1. It is a degenerate critical point

whose index is not one, so it has no closed orbits if system
(11) has a unique equilibrium.

If u � (1/4)Kr and α≠ r/2 in system (11), then the linear
equations of system (11) has one zero eigenvalue and one
nonzero eigenvalue.

Let

w

v

⎛⎝ ⎞⎠ �

4α
r(2α − r)

−
2

2α − r

1 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X1

Y1

⎛⎝ ⎞⎠, (40)

and take the derivatives of w and v, system (35) is replaced by
dw

dt
� −

αr2

K(2α − r)
w

2
+
2αr(2α + r)

K(2α − r)2
wv −

8α2r
K(2α − r)3

v
2
,

dv

dt
� −

r3

4K
w

2
+

r

2
− α􏼒 􏼓v +

r2(2α + r)

2K(2α − r)
wv −

2αr2

K(2α − r)2
v
2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(41)

We know that dv/dt � 0 can ensure the existence of
G(w) by Lemma 2. Let dv/dt � 0, we have

v �
2

r − 2α
r3

4K
w

2
−

r2(2α + r)

2K(2α − r)
wv −

2αr2

K(2α − r)2
v
2

􏼢 􏼣.

(42)

Substituting equation (42) to
dw

dt
� −

αr2

K(2α − r)
w

2
+
2αr(2α + r)

K(2α − r)2
wv −

8α2r
K(2α − r)3

v
2
,

(43)

we have
dw

dt
� −

αr2

K(2α − r)
w

2
+ O(3). (44)

Because l � 2 is an even number, we can obtain that the
equilibrium E1(K/2, K/2) is a saddle-node by Lemma 2.
Because the unique equilibrium point E1(K/2, K/2) is a
saddle-node whose index is not one, system (11) does not
admit any closed orbits. □

4. Hopf Bifurcation

In this section, the case Δ> 0, that is u< (1/4)Kr, is dis-
cussed. If u< (1/4)Kr, system (11) has two equilibria:

E2 x
∗
2 , y
∗
2( 􏼁 �

K

2
−

K

2

������

1 −
4u

Kr

􏽲

,
K

2
−

K

2

������

1 −
4u

Kr

􏽲

􏼠 􏼡,

E3 x
∗
3 , y
∗
3( 􏼁 �

K

2
+

K

2

������

1 −
4u

Kr

􏽲

,
K

2
+

K

2

������

1 −
4u

Kr

􏽲

􏼠 􏼡.

(45)

We analyse and discuss qualitative characteristics of
these two equilibria, respectively.

Theorem 2. Ae equilibrium E2(x∗2 , y∗2 ) is a saddle point if
u< (1/4)Kr in system (11).
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Proof. +e determinant D∗2 of the linear matrix corre-
sponding to E2(x∗2 , y∗2 ) of system (11) is as follows:

D
∗
2 �

r

2
1 +

������

1 −
4u

Kr

􏽲

􏼠 􏼡 −
r

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡

α − α

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� − αr

������

1 −
4u

Kr

􏽲

,

(46)

where r> 0 and α is a positive constant, soD∗2 < 0. Obviously,
E2(x∗2 , y∗2 ) is a saddle point. □

Theorem 3. If u< (1/4)Kr in system (11), then the following
holds:

(1) If 2α> r(1 −
����������
1 − (4u/Kr)

􏽰
), then E3(x∗3 , y∗3 ) is as-

ymptotically stable
(2) If 2α< r(1 −

����������
1 − (4u/Kr)

􏽰
), then E3(x∗3 , y∗3 ) is

unstable
(3) If 2α � r(1 −

����������
1 − (4u/Kr)

􏽰
), a unique and stable

limit cycle bifurcation emerges via the Hopf bi-
furcation from the equilibrium E3(x∗3 , y∗3 ) for small
enough:

T �
r

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡 − α> 0. (47)

Proof. +e linear matrix A∗3 corresponding to the equilib-
rium E3(x∗3 , y∗3 ) of system (11) is governed by

A
∗
3 �

r

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡 −
r

2
1 +

������

1 −
4u

Kr

􏽲

􏼠 􏼡

α − α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (48)

D∗3 � αr
����������
1 − (4u/Kr)

􏽰
is the determinant of Jacobian matrix

A∗3 , where r> 0 and α is a positive constant, so D∗3 > 0.
It is easy to derive the trace T of the matrix A∗3 from the

following formula:

T �
r

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡 − α. (49)

Obviously, if T< 0, the real part Reλ of the eigenvalues of
A∗3 satisfies Reλi < 0(i � 1, 2), so E3(x∗3 , y∗3 ) is asymptotically
stable; if T> 0, the real part Reλ of the eigenvalues of A∗3
satisfies Reλi > 0(i � 1, 2), so E3(x∗3 , y∗3 ) is unstable. +is
completes the proofs of (1) and (2).

Denote

μ(α) �
T

2
�

r

4
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡 −
α
2

. (50)

Let

α0 �
r

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡, (51)

we have μ(α0) � 0. +e condition (2) of Lemma 4 is easy to
verify:

μ′ α0( 􏼁 � −
1
2
< 0. (52)

Moreover,

ω2 α0( 􏼁 �
r2

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡

������

1 −
4u

Kr

􏽲

> 0. (53)

To compute the first Lyapunov coefficient, denote X2
and Y2 as

X2 � x(t) −
K

2
1 +

������

1 −
4u

Kr

􏽲

􏼠 􏼡,

Y2 � y(t) −
K

2
1 +

������

1 −
4u

Kr

􏽲

􏼠 􏼡.

(54)

System (11) is converted into

dX2

dt
�

r

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡X2 −
r

2
1 +

������

1 −
4u

Kr

􏽲

􏼠 􏼡Y2

−
r

K
X2Y2,

dY2

dt
�

r

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡X2 −
r

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡Y2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)

Perform the transformation

M: ξ1 � X2 − Y2,

ξ2 � Y2.
(56)

+e transformation M transforms the system into
dξ1
dt

� − arξ2 −
r

K
ξ1ξ2 −

r

K
ξ22 ≡ F1 ξ1, ξ2( 􏼁,

dξ2
dt

�
r

2
(1 − a)ξ1 ≡ F2 ξ1, ξ2( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(57)

where a �
����������
1 − (4u/Kr)

􏽰
, 0< a< 1. +e Jacobian matrix A∗4

of system (57) at O(0, 0) is

A
∗
4 �

0 − ar

r

2
(1 − a) 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (58)

+e determinant D∗4 of the Jacobian matrix A∗4 evaluates

D
∗
4 �

0 − ar

r

2
(1 − a) 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (59)

By
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det λI − D
∗
4( 􏼁 �

λ ar

−
r

2
(1 − a) λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� λ2

+
r2

2
1 −

������

1 −
4u

Kr

􏽲

􏼠 􏼡

������

1 −
4u

Kr

􏽲

� 0,

(60)

we can calculate eigenvalues

λ1,2 � ±
�������
a(1 − a)

2

􏽲

ri. (61)

+us, it is easy to find complex vectors

q ∼

a(1 − a)

2

−
1 − a

2

�������
a(1 − a)

2

􏽲

i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

p ∼

1 − a

2

�������
a(1 − a)

2

􏽲

−
a(1 − a)

2
i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(62)

In order to accomplish the normalization 〈p, q〉 � 1
from the expressions (62), we can take, for example,

q �

a(1 − a)

2

−
1 − a

2

�������
a(1 − a)

2

􏽲

i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

p �
1

a(1 − a)2􏼐 􏼑/2􏼐 􏼑
�����������
(a(1 − a))/2

􏽰

1 − a

2

�������
a(1 − a)

2

􏽲

−
a(1 − a)

2
i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(63)

To compute B(δ, η) and C(δ, η, ζ) in Lemma 3, let
δ � (δ1, δ2)

T, η � (η1, η2)
T, and ζ � (ζ1, ζ2)

T. On the basis of
the (21) and (22), we find

B(δ, η) �

−
2r

K
δ2η2 −

r

K
δ1η2 + δ2η1( 􏼁

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (64)

C(δ, η, ζ) �
0
0

􏼠 􏼡. (65)

Substituting the value of the vector q and the conjugate
vector q of q into equations (64) and (65), we obtain

B(q, q) �

ar(1 − a)3

4K
+

ar(1 − a)2

2K

�������
a(1 − a)

2

􏽲

i

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

B(q, q) �
−

ar(1 − a)3

4K

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

C(q, q, q) �
0

0
⎛⎝ ⎞⎠.

(66)

Basing on Lemma 3, we can calculate

g20 � 􏼊p, B(q, q)􏼋 �
r(1 − a)2 + 2(1 − a)

�����������
(a(1 − a))/2

􏽰
ri

4K
,

(67)

g11 � 􏼊p, B(q, q)􏼋 � −
r(1 − a)2

4K
, (68)

g21 � 􏼊p, C(q, q, q)􏼋 � 0. (69)

Finally, the first Lyapunov coefficient is calculated; as the
following equation shows, substitute the formulas (67)–(69)
into formula (25):

l1 α0( 􏼁 �
1

2ω2 Re ig20g11 + ωg21( 􏼁 �
(1 − a)2

8aK2

�������
a(1 − a)

2

􏽲

> 0.

(70)

It is clear that the condition (1) of Lemma 4 holds as
l1(α0)> 0. +erefore, by Lemmas 4 and 5, there exists a
unique and stable limit cycle bifurcation via the Hopf bi-
furcation from the equilibrium E3(x∗3 , y∗3 ) for small enough
T � (r/2)(1 −

����������
1 − (4u/Kr)

􏽰
) − α> 0,

For simplicity, we use α as bifurcation parameter in this
section. If u is chosen as bifurcation parameter, the con-
ditions obtained can be converted. So we have the following
remark: □

Remark 1. If u< (1/4)Kr in system (11), then E2(x∗2 , y∗2 ) is a
saddle and u � αK(1 − (α/r)) is a bifurcation point. +e
following holds:

(1) E3(x∗3 , y∗3 ) is stable if u<min􏼈αK(1 − (α/r)),

(1/4)Kr􏼉

(2) E3(x∗3 , y∗3 ) is unstable if (1/4)Kr> u> αK(1− (α/r)),
a unique and stable limit cycle bifurcation emerges
near E3(x∗3 , y∗3 ) for small enough T(u0) � u0 −

αK(1 − (α/r))> 0.

5. Some Examples and Their Simulations

+e main results obtained are listed in Table 1 by the
previous analysis.
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For further verification of the results obtained, we offer
an example as follows: let r � 2 and K � 8, system (11)
becomes

dx(t)

dt
� 2x(t) 1 −

1
8

y(t)􏼒 􏼓 − u,

dy(t)

dt
� αx(t) − αy(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(71)

System (71) has a unique equilibrium point x∗1 � y∗1 �

K/2 � 4 if u � 4. Let α � 1 � r/2, E1(x∗1 , y∗1 ) is a degenerate
critical point as +eorem 1 shows. By Section 3, system (11)
becomes system (38) by coordinate translation and

nonsingular linear transformation. By the numerical sim-
ulation of the transformation system (38), we confirm this
case, the vector fields can be found by Figure 1(a). Fur-
thermore, let α � 0.6≠ r/2 and E1(x∗1 , y∗1 ) is saddle-node as
+eorem 1 shows. Similarly, by the numerical simulation of
the transformation system, Figure 1(b) verifies this result.

If u< (1/4)Kr, there are two equilibria in system (11):

E2 x
∗
2 , y
∗
2( 􏼁 �

K

2
−

K

2

������

1 −
4u

Kr

􏽲

,
K

2
−

K

2

������

1 −
4u

Kr

􏽲

􏼠 􏼡,

E3 x
∗
3 , y
∗
3( 􏼁 �

K

2
+

K

2

������

1 −
4u

Kr

􏽲

,
K

2
+

K

2

������

1 −
4u

Kr

􏽲

􏼠 􏼡.

(72)
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0
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4

y

–3 3–1 0 421–2–4
x

Figure 2: +e vector fields of model (71) when u<Kr/4, here u � 2, K � 8, and r � 2.
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(b)

Figure 1:+e vector fields for the transformation system of model (71) when u � Kr/4; here u � 4, K � 8, and r � 2. (a)+e vector fields for
the transformation system of model (71) for α � 1 � r/2; (b) the vector fields for the transformation system of model (71) for α � 0.6≠ r/2.
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Let u � 2, K � 8, and r � 2, we obtain x∗2 � y∗2 ≈ 1.1716
and x∗3 � y∗3 ≈ 6.828 by performing some simple calcula-
tions. We know that E2(x∗2 , y∗2 ) is saddle point by +eorem
2, and the case is shown in Figure 2. Furthermore, by
+eorem 3, Hopf bifurcation occurs near E3(x∗3 , y∗3 ) in
system (71) with α � 0.292 holding small enough
T � (r/2)(1 −

����������
1 − (4u/Kr)

􏽰
) − α> 0; the blue part in

Figure 3(a) is the trajectory of system (71) with initial value
(7, 6.5), and it can be seen that system (71) has periodic
solution by Figure 3(a); E3(x∗3 , y∗3 ) is unstable for α � 0.25
satisfying T � (r/2)(1 −

����������
1 − (4u/Kr)

􏽰
) − α> 0, and the

trajectory of system (71) with initial value (7, 6.5) goes out
from the inside in anticlockwise direction as Figure 3(b)
shows; E3(x∗3 , y∗3 ) is stable for α � 0.4 satisfying
T � (r/2)(1 −

����������
1 − (4u/Kr)

􏽰
) − α< 0, we can find that the

trajectory of system (71) with initial value (7, 6.5) rotates
from the outside to the inside in a counterclockwise di-
rection by Figure 3(c).

+e time series and portrait phase of system (71) in
Figure 4 show that there occurs Hopf bifurcation periodic
solution near (x∗3 , y∗3 ) for small enough T � (r/2)

(1 −
����������
1 − (4u/Kr)

􏽰
) − α> 0. Figure 5 reveals the instability

6.4

6.6

6.8

7.0

7.2

y

7.56.5 76 8
x

(a)

6

6.5

7

7.5

y

75 6 8
x

(b)

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

y

6.4 6.6 6.8 7.0 7.2 7.46.2 7.6
x

(c)

Figure 3:+e vector fields of model (71) when u<Kr/4, here u � 2, K � 8, and r � 2; the blue part is the trajectory with initial value (7, 6.5).

(a)+e vector fields of model (71) for α � 0.292 which holds T � (r/2)(1 −
����������
1 − (4u/Kr)

􏽰
) − α> 0 near T � 0; (b) the vector fields of model

(71) for α � 0.25 which holds T> 0; (c) the vector fields of model (71) for α � 0.4 which holds T< 0.
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Figure 4: +e time series and portrait phase of model (71) when u<Kr/4; here u � 2, K � 8, r � 2, and α � 0.2928. (a) +e time series of
x(t); (b) the time series of y(t); (c) the portrait phase.
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Figure 5: Continued.
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Figure 5: +e time series and portrait phase of model (71) when u<Kr/4; here u � 2, K � 8, r � 2, and α � 0.29. (a)+e time series of x(t);
(b) the time series of y(t); (c) the portrait phase.
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Figure 6: +e time series and portrait phase of model (71) when u<Kr/4; here u � 2, K � 8, r � 2, and α � 0.6. (a) +e time series of x(t);
(b) the time series of y(t); (c) the portrait phase.
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Figure 7:+e time series and portrait phase of model (71) when u<Kr/4; here α � 0.3, K � 8, r � 2, and (u) is close enough to 2.04. (a)+e
time series of x(t); (b) the time series of y(t); (c) the portrait phase.

9040 80 1005020 70300 10 60
t

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

x 
(t)

(a)

6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9

6.95

y (
t)

10 603020 50 700 80 90 10040
t

(b)

Figure 8: Continued.
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Figure 8: +e time series and portrait phase of model (71) when u<Kr/4, here α � 0.3, K � 8, r � 2 and u � 2.1. (a)+e time series of x(t);
(b) the time series of y(t); (c) the portrait phase.
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Figure 9: +e time series and portrait phase of model (71) when u<Kr/4; here α � 0.3, K � 8, r � 2, and u � 1. (a) +e time series of x(t);
(b) the time series of y(t); (c) the portrait phase.
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of (x∗3 , y∗3 ) for T � (r/2)(1 −
����������
1 − (4u/Kr)

􏽰
) − α> 0.

Figure 6 illustrates (x∗3 , y∗3 ) is stable if T � (r/2)

(1 −
����������
1 − (4u/Kr)

􏽰
) − α> 0.

By Remark 1, if u< (1/4)Kr in system (11), then u �

αK(1 − (α/r)) is a bifurcation point. Let α � 0.3, K � 8, and
r � 2, then we can obtain u � 2.04 is bifurcation point by
simple calculation. +e time series and portrait phase of
system (71) in Figure 7 shows that there occurs Hopf bi-
furcation periodic solution near (x∗3 , y∗3 ) for small enough
T(u0) � u0 − αK(1 − (α/r))> 0. +e instability of (x∗3 , y∗3 )

for T(u0) � u0 − αK(1 − (α/r))> 0. is shown in Figure 8.
Figure 9 illustrates (x∗3 , y∗3 ) is stable if T(u0) �

u0 − αK(1 − (α/r))> 0.

6. Conclusions

A single-species model with a delay weak kernel and a
constant harvesting rate is established in this paper. Sufficient
conditions of the existence and stability of equilibria in two
different cases have been analysed. We know that system (11)
is unstable when constant rate harvesting u>Kr/4, that is,
harvesting rates on population exceed the MSY, which will
reduce the population to extinction in finite time, since
dx/dt< 0. If the constant rate harvesting u is equal to the
critical value, system (11) has a unique equilibrium point
which is a degenerate critical point or a saddle-node. When
the constant rate harvesting u is less than the critical value, by
topological normal form for the Hopf bifurcation and cal-
culating the first Lyapunov coefficient, sufficient conditions
about the existence of the Hopf bifurcation are obtained.

We can see that system (11) has a stable equilibrium
when u<min􏼈αK(1 − (α/r)), (1/4)Kr􏼉 by Remark 1. +at
is, sufficiently low harvesting rates can be sustained in
perpetuity. When (1/4)Kr> u> αK(1 − α/r), system (11)
emerges a unique and stable limit cycle bifurcation near
E3(x∗3 , y∗3 ) for small enough T(u0) � u0 − αK(1− (α/r))> 0,
that is, system (11) has a stable periodic solution and
population will survive. +erefore, in order to ensure the
permanence of species, the control of sustained harvest is
very important.

Our work on system (11) reveals that the single-species
system with a constant rate harvesting is interesting and
rich in dynamics. It shows that the intensity of the harvest
has effect on the dynamics of system, including the exis-
tence and stability of equilibria and Hopf bifurcation.
Excessive harvest will lead to extinction of species, and it
has a serious impact on biodiversity. Biologically, there is
still a lot of work to be done in this area. For example, the
study about two-parameter bifurcations of equilibria is a
very meaningful work, and it would also be interesting to
study how linear rate harvesting and nonlinear rate har-
vesting in population impact on the dynamics of system
and what is the difference between constant rate harvesting
and other ways of harvesting. We will consider these issues
in our future work.
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