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How to e�ectively deal with missing values in incomplete information systems (IISs) according to the research target is still a key
issue for investigating IISs. If the missing values in IISs are not handled properly, they will destroy the internal connection of data
and reduce the e�ciency of data usage. In this paper, in order to establish e�ective methods for �lling missing values, we propose a
new information system, namely, a fuzzy set-valued information system (FSvIS). By means of the similarity measures of fuzzy sets,
we obtain several binary relations in FSvISs, and we investigate the relationship among them. is is a foundation for the
researches on FSvISs in terms of rough set approach.en, we provide an algorithm to �ll the missing values in IISs with fuzzy set
values. In fact, this algorithm can transform an IIS into an FSvIS. Furthermore, we also construct an algorithm to �ll the missing
values in IISs with set values (or real values). e e�ectiveness of these algorithms is analyzed. e results showed that the
proposed algorithms achieve higher correct rate than traditional algorithms, and they have good stability. Finally, we discuss the
importance of these algorithms for investigating IISs from the viewpoint of rough set theory.

1. Introduction

e classical rough model [1] can be used to deal with
complete information systems. In practice, the lack of some
data in IISs [2–9] is inevitable. For example, because the data
collection process may be imperfect, human or objective
conditions result in data loss or unavailability. For data
mining, these missing data may have a very important
impact on �nal decision. erefore, how to infer unknown
information from known information has important theo-
retical and practical signi�cance.

Kryszkiewicz [10] de�ned tolerance relation in IISs to
investigate IISs by using rough set approach. is tolerance
relation assumed that the missing attribute values in IISs
could be represented by a set of all possible values of the
corresponding attributes from an optimistic perspective.
Based on Kryszkiewicz’s research, Leung and Li [11] pre-
sented a method for obtaining the relative reduction in IISs.
Subsequently, Stefanowski and Tsoukias [9] established a
new rough set model based on the other relations in IISs.

Authors [8, 11–17] gave di�erent methods to induce binary
relations from IISs, and studied IISs by means of rough set
theory. ey had two main ways to treat the missing values.
One was to delete the missing values, and the other was to
take the missing values as generic values.

Based on the probability theory, Yuan et al. [18] �lled the
missing values in IISs by obtaining the sample that is the
closest to the missing data sample in terms of Euclidean
distance and correlation. Chen and Shao [19] used the
Jackknife variance estimate to investigate the missing values.
In addition, there are other methods to handle missing
values in IISs. Wang et al. [20] addressed the missing values
in IISs by means of the Hop�eld neural network approach.
Salama et al. [21] proposed a topology method to retrieve
missing values in IISs. Clearly, these methods of �lling
missing values were founded through the other theories,
such as, neural network and topology. In this paper, we
establish a new method to �ll missing values by means of
rough set theory. Next, we state the motivation of giving this
method. We know that the indiscernibility relation is a basic
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concept in rough set theory. Given a complete information
system, we can establish an indiscernibility relation. Two
objects are viewed as indiscernible if they have the same
values for each attribute. -erefore, we think that if two
objects possess more the same values of attributes, then they
have the higher degree of indiscernibility. Based on the
observation, we provide a method to fill missing values. By
using this method, we can convert the missing values into
fuzzy set values by evaluating the relationship between the
attribute values of different objects, and then we can
transform fuzzy set values into set values or real values
according to the principle of maximum membership degree
in fuzzy set theory. It is worth noting that, in order to
construct this method, we established a new information
system, namely, the fuzzy set-valued information system
(FSvIS) which plays an important role in the method.

-e rest of this paper is organized as follows. In Section
2, some basic concepts and notations of rough sets and fuzzy
sets are given. In Section 3, we propose the fuzzy set-valued
information system (FSvIS), and we induce some binary
relations from FSvISs. Furthermore, we investigate the
connections between these binary relations. In Section 4, we
provide two methods of filling missing values. One is to fill
missing values with fuzzy set values, and the other is to fill
missing values with set values (or real values). In Section 5,
we perform several experiments to analyze the effectiveness
of the proposed methods. In Section 6, we apply the pro-
posed methods of filling missing values to investigate IISs.
Section 7 concludes this paper.

2. Basic Concepts and Properties

In this section, we review some basic concepts and notations
in rough sets and fuzzy sets.

2.1. Basic Concepts for Rough Sets. In this subsection, we
review some basic concepts related to general binary re-
lations and information systems [22–24].

Definition 1 (see [23]). A general binary relation on a
nonempty set U is a subset of U × U. R is called

(1) Reflexive, if for any x ∈ U, (x, x) ∈ R

(2) Symmetric, if for any x, y ∈ U, (x, y) ∈ R implies
(y, x) ∈ R

(3) Transitive, if for any x, y, z ∈ U, (x, y) ∈ R and
(y, z) ∈ R imply (x, z) ∈ R

Generally, if R satisfies reflexive and symmetric, it is
called a similarity relation; if R satisfies reflexive, symmetric,
and transitive, then it is called an equivalence relation.

Let R be a general binary relation on U, for x ∈ U, and
the successor neighbourhood R(x) of x with respect to R is
defined by

R(x) � y ∈ U | (x, y) ∈ R . (1)

A triple (U,Att, V) is called an information system,
where U is a finite nonempty set of objects called the uni-
verse, Att is a finite nonempty set of attributes, and

V � ∪ a∈AttVa, where Va called the domain of a is a non-
empty set of values of attribute a ∈ Att. If there exist x ∈ U

and a ∈ Att such that the value a(x) of x under a is a
missing value (a null of unknown value), denoted as “∗,” that
is, ∃a ∈ Att, ∗ ∈ Va, then the information system is called
an incomplete information system (IIS).

In order to investigate the IIS by using rough set ap-
proach, Kryszkiewic [13] presented a way to induce a re-
lation in the IIS (U,Att, V) as follows for B ⊆ Att:

TB � (x, y) ∈ U × U | a(x) � a(y)∨ a(x) � ∗∨ a(y)

� ∗,∀a ∈ B}.

(2)

It is easy to check that TB is reflexive and symmetric, that
is to say, TB is a similarity relation on U.

In this paper, we call (U, R) a generalized approximation
space, where R is a binary relation on a finite nonempty setU.

Definition 2 (see [1]). Given a generalized approximation
space (U, R) and X⊆ U, the lower approximation and upper
approximation of X are defined as follows:

apr
R
(X) � x ∈ U | R(x)⊆X{ },

aprR(X) � x ∈ U | R(x)∩X≠∅{ }.
(3)

In [23], Wang et al. constructed an uncertainty measure
in generalized approximation spaces, which is defined as
follows:

Definition 3. Let (U, R) be a generalized approximation
space. -e entropy of R is defined as follows:

H(R) � −
1

|U|

x∈U

log
|R(x)|

|U|
. (4)

Proposition 1 (see [23]). Let R1 and R2 be binary relations
on U. If R1 ⊆R2, then H(R1)≥H(R2).

2.2. Basic Concepts for Fuzzy Sets. In this section, we in-
troduce some basic concepts and measures about fuzzy sets.

A fuzzy subset A of a nonempty set U is a map from U to
[0, 1] [25]. -e collection of all fuzzy subsets of U is denoted
as F(U). Similarity measure is an important concept in
fuzzy set theory, and it is defined as follows:

Definition 4 (see [26]). A function S : F(U) × F(U)⟶
[0, 1] is called a similarity measure onF(U), if S satisfies the
following properties:

(1) S(U,∅) � 0 and S(A, A) � 1 for all A ∈F(U)

(2) S(A, B) � S(B, A) for all A, B ∈F(U)

(3) For all A, B, C ∈F(U), A⊆B⊆C, then S(A, C)≤
S(B, C) and S(A, C)≤ S(A, B)

Particularly, a similarity measure S is called a strictly
similarity measure if it also satisfies

(4) S(A, B) � 1 if and only if A � B, for all A, B ∈ F(U)
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Let U � x1, x2, . . . xn  and A, B ∈ F(U). -e most
popular similarity measures include:

(1) Hamming similarity measure [27]:

SH(A, B) � 1 −
1
n



n

i�1
A xi(  − B xi( 


. (5)

(2) Euclidean similarity measure [27]:

SE(A, B) � 1 −
1
�
n

√ 

n

i�1
A xi(  − B xi( ( 

2⎡⎣ ⎤⎦
1/2

. (6)

(3) Max-min similarity measure [28]:

SN(A, B) �


n
i�1 A xi( ∧B xi( ( 


n
i�1 A xi( ∨B xi( ( 

. (7)

Remark 1. In this paper, we always assume that


n
i�1(A(xi)∨B(xi))≠ 0.

3. Fuzzy Set-Valued Information
Systems (FSvISs)

In this section, we replace the real number in the real-valued
information systemwith fuzzy set and propose amore general
information system, that is, the fuzzy set-valued information
system. It can be seen as a generalization of the probabilistic
set-valued information system defined by Huang et al. [29].

Definition 5. A fuzzy set-valued information system (FSvIS)
is a triple (U,Att,F(V)), whereU is a nonempty set, Att is a
set of attributes, and V is the basic set of attribute values. In
addition, for all a ∈ Att and x ∈ U, the value a(x) of x under
a is a fuzzy subset of V, that is, a(x) ∈F(V).

In some cases, if the attribute values are uncertain or
missing, then it is reasonable to describe them with fuzzy set
values. For example, in IISs, we may fill the missing values
with fuzzy set values. In this paper, we will investigate IISs by
means of FSvISs.

Example 1. Table 1 gives a FSvIS (U,Att,F(V)), where U �

x1, x2, x3, x4, x5}, Att � a1, a2, a3 , and V � − 1, 0, 1{ }. In
Table 1, a1(x1) � (0.23/− 1) + (0.42/0) + (0.76/1) represents
the value of the object x1 under attribute a1. (a1(x1))(− 1) �

0.23 is the grade of membership of − 1 in a1(x1).

3.1. 1e Similarity Relations in FSvISs. -e rough set ap-
proach is applied for rule extractions and attribute re-
ductions in information systems. -e key problem is how to
construct binary relations from information systems. Next,
we will establish some similarity relations in FSvISs. -en,
we establish the relationships between them.

It is well known that, in fuzzy set theory, similarity
measure is an important concept to evaluate the similarity
degree between fuzzy sets.

Let (U,Att,F(V)) be a FSvIS, S be a similarity measure
and λ ∈ [0, 1]. -ere is a common method to construct
binary relation in terms of similarity measure as follows:

R
Sλ

B � (x, y) ∈ U × U | S(a(x), a(y))≥ λ, ∀a ∈ B , (8)

where ∅≠B⊆Att. Clearly, RSλ

B is a binary relation on U. -e
successor neighbourhood of x ∈ U can be computed as follows:

R
Sλ

B (x) � y ∈ U | S(a(x), a(y))≥ λ, ∀a ∈ B . (9)

In the following section, we limit B≠∅.
By (1) of Definition 4, RSλ

B is reflexive. In addition, the
symmetry of RSλ

B is clear. -erefore, the following result is
obvious.

Proposition 2. Let (U,Att,F(V)) be a FSvIS, S be a sim-
ilarity measure, B⊆Att, and λ ∈ [0, 1]. 1en, the binary
relation RSλ

B is reflexive and symmetric.
Proposition 2 shows that RSλ

B is a similarity relation.

Remark 2. By equations (5)–(8), we can obtain three sim-
ilarity relations: R

SλH
B , R

SλE
B , and R

SλN
B .

Proposition 3. Let (U,Att,F(V)) be a FSvIS, S be a sim-
ilarity measure, B⊆Att, and λ ∈ [0, 1]. 1e following state-
ments hold:

(1) If ∅≠C⊆B, then RSλ

B ⊆RSλ

C

(2) If 0≤ λ1 ≤ λ2 ≤ 1, then RSλ2
B ⊆RSλ1

B

Proof

(1) We only need to prove that ∀x ∈ U, RSλ

B (x)⊆RSλ

C (x).
∀y ∈ RSλ

B (x), by equation (9), we have that ∀a ∈ B,
S(a(x), a(y))≥ λ. By C⊆B, it is clear that ∀a ∈ C,
S(a(x), a(y))≥ λ. It follows from equation (7) that
y ∈ RSλ

C (x). Hence, RSλ

B (x)⊆RSλ

C (x). Consequently,
RSλ

B ⊆RSλ

C .
(2) We only need to prove that ∀x ∈ U, RSλ2

B (x)⊆
RSλ1

B (x). ∀y ∈ RSλ2
B (x), by equation (9), we have that

∀a ∈ B, S(a(x), a(y))≥ λ2. By λ1 ≤ λ2, it is clear
that ∀a ∈ B, S(a(x), a(y))≥ λ1. It follows from
equation (8) that y ∈ RSλ1

B (x). Hence, RSλ2
B (x)⊆RSλ1

B

(x). Consequently, RSλ2
B ⊆RSλ1

B .

In the following, we establish the relationships among
R

SλH
B ,RSλE

B , and R
SλN
B . Firstly, we provide the connections among

the similarity measures given by equations (5)–(7). □

Proposition 4. Let U be a nonempty set. 1e following
statements hold:

(1) ∀A1, A2 ∈F(U), SN(A1, A2)≤ SH(A1, A2)

(2) ∀A1, A2 ∈F(U), SE(A1, A2)≤ SH(A1, A2)

Proof

(1) We may assume that U � x1, x2, . . . , xn . Let
A1, A2 ∈ F(U). It is easy to verify that
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n

i�1
A1 xi( ∨A2 xi( (  − 

n

i�1
A1 xi( ∧A2 xi( ( 

� 
n

i�1
A1 xi( ∨A2 xi( (  − A1 xi( ∧A2 xi( (  

� 
n

i�1
A1 xi(  − A2 xi( 


,

(10)

that is,



n

i�1
A1 xi( ∨A2 xi( (  − 

n

i�1
A1 xi( ∧A2 xi( ( 

� 

n

i�1
A1 xi(  − A2 xi( 


.

(11)

In addition, it is clear that

1
n



n

i�1
A1 xi( ∨A2 xi( ( ≤ 1. (12)

-erefore, by equations (11) and (12), we have that



n

i�1
A1 xi(  − A2 xi( 


⎡⎣ ⎤⎦

1
n



n

i�1
A1 xi( ∨A2 xi( ( ⎡⎣ ⎤⎦

≤ 
n

i�1
A1 xi(  − A2 xi( 




� 

n

i�1
A1 xi( ∨A2 xi( (  − 

n

i�1
A1 xi( ∧A2 xi( ( .

(13)

-us,



n

i�1
A1 xi( ∧A2 xi( ( ≤ 

n

i�1
A1 xi( ∨A2 xi( ( 

− 
n

i�1
A1 xi(  − A2 xi( 


⎡⎣ ⎤⎦

1
n



n

i�1
A1 xi( ∨A2 xi( ( ⎡⎣ ⎤⎦.

(14)

By Remark 1, 
n
i�1(A1(xi)∨A2(xi))≠ 0. -erefore,


n
i�1 A1 xi( ∧A2 xi( ( 


n
i�1 A1 xi( ∨A2 xi( ( 

≤ 1 −
1
n


n

i�1 A1 xi(  − A2 xi( 


.

(15)

By equations (5) and (7), we conclude that SN(A1,

A2)≤ SH(A1, A2).
(2) Let A1, A2 ∈ F(U). Next, we will use mathematical

induction to prove SE(A1, A2)≤ SH(A1, A2). If n � 1,
it is clear that SE(A1, A2) � SH(A1, A2), which im-
plies that SE(A1, A2)≤ SH(A1, A2) is true.
Assume that SE(A1, A2)≤ SH(A1, A2) is true when
n � k. By equations (5) and (6), we have that

1 −
1
�
k

√ 

k

i�1
A1 xi(  − A2 xi( ( 

2⎡⎣ ⎤⎦

1/2

≤ 1 −
1
k



k

i�1
A1 xi(  − A2 xi( 


,

(16)

where U � x1, x2, . . . , xk . -is implies that



k

i�1
A1 xi(  − A2 xi( 


⎡⎣ ⎤⎦

2

≤ k · 
k

i�1
A1 xi(  − A2 xi( ( 

2
.

(17)

Next, we shall prove that the conclusion is true when
n � k + 1. By equation (5) and (6), we only need to
prove that

1
k + 1



k+1

i�1
A1 xi(  − A2 xi( 




≤
1

�����
k + 1

√ 

k+1

i�1
A1 xi(  − A2 xi( ( 

2⎡⎣ ⎤⎦

1/2

,

(18)

that is,



k+1

i�1
A1 xi(  − A2 xi( 


⎡⎣ ⎤⎦

2

≤(k +1) 
k+1

i�1
A1 xi(  − A2 xi( ( 

2
.

(19)

For simplicity, we write Mi � |A1(xi) − A2(xi)|.
Hence, we only need to prove that



k+1

i�1
Mi

⎡⎣ ⎤⎦

2

≤ (k + 1) 
k+1

i�1
M

2
i . (20)

In addition, equation (17) can be written by



k

i�1
Mi

⎡⎣ ⎤⎦

2

≤ k · 

k

i�1
M

2
i . (21)

Table 1: A fuzzy set-valued information system.

Objects a1 a2 a3

x1 (0.23/− 1) + (0.42/0) + (0.38/1) (0.45/− 1) + (0.22/0) + (0.15/1) (0.32/− 1) + (0.21/0) + (0.58/1)

x2 (0.15/− 1) + (0.23/0) + (0.76/1) (0.15/− 1) + (0.26/0) + (0.89/1) (0.28/0) + (0.85/1)

x3 (0.25/− 1) + (0.43/0) + (0.36/1) (0.43/− 1) + (0.26/0) + (0.12/1) (0.33/− 1) + (0.22/0) + (0.57/1)

x4 (0.21/− 1) + (0.41/0) + (0.35/1) (0.14/− 1) + (0.25/0) + (0.87/1) (0.34/− 1) + (0.20/0) + (0.59/1)

x5 (0.37/− 1) + (0.86/0) (0.42/− 1) + (0.24/0) + (0.13/1) (0.73/− 1) + (0.15/0) + (0.23/1)
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By equation (21), it is clear that



k+1

i�1
Mi

⎡⎣ ⎤⎦

2

� 
k

i�1
Mi + Mk+1⎡⎣ ⎤⎦

2

� 
k

i�1
Mi

⎡⎣ ⎤⎦

2

+ 2Mk+1 

k

i�1
Mi

⎡⎣ ⎤⎦ + M
2
k+1

≤ k · 
k

i�1
M

2
i + 2Mk+1 

k

i�1
Mi

⎡⎣ ⎤⎦ + M
2
k+1

� k · 
k

i�1
M

2
i + 

k

i�1
2Mk+1Mi  + M

2
k+1

≤ k · 

k

i�1
M

2
i + 

k

i�1
M

2
k+1 + M

2
i  + M

2
k+1

� k · 
k

i�1
M

2
i + kM

2
k+1 + 

k

i�1
M

2
i + M

2
k+1

� k · 
k+1

i�1
M

2
i + 

k+1

i�1
M

2
i � (k + 1) 

k+1

i�1
M

2
i .

(22)

-is completes the proof. □

According to Proposition 4 and equation (8), the fol-
lowing result is obvious.

Theorem 1. Let (U,Att,F(V)) be a FSvIS, B⊆Att and
λ ∈ [0, 1]. 1en, the following statements hold:

(1) R
SλN
B ⊆R

SλH
B

(2) R
SλE
B ⊆R

SλH
B

3.2. 1e Uncertainty Measures of FSvISs. In Section 3.1, we
establish three similarity relations in FSvISs. If we use the
rough set approach to investigate FSvISs, we usually need to
choose reasonable similarity relations according to the actual
condition. -erefore, in this section, we discuss the un-
certainty measures of these similarity relations so as to
provide evidence for the choice of similarity relations.

Proposition 5. Let (U,Att,F(V)) be a FSvIS, B⊆Att and
λ ∈ [0, 1]. 1e following statements hold:

(1) ∀X⊆U, apr
R

Sλ
N

B

(X)⊇ apr
R

Sλ
H

B

(X) and apr
R

Sλ
E

B

(X)⊇

apr
R

Sλ
H

B

(X)

(2) ∀X⊆U, apr
R

Sλ
N

B

(X)⊆ apr
R

Sλ
H

B

(X) and apr
R

Sλ
E

B

(X)⊆

apr
R

Sλ
H

B

(X)

Proof. It is straightforward from-eorem1andDefinition 2. □

Proposition 6. Let (U,Att,F(V)) be a FSvIS, B⊆Att and
λ ∈ [0, 1]. 1e following statements hold:

(1) H(R
SλN
B )≥H(R

SλH
B )

(2) H(R
SλE
B )≥H(R

SλH
B )

Proof. It is straightforward from -eorem 1 and Propo-
sition 1. □

4. Algorithms of Filling Missing Values in IISs

We know that complete information systems can be in-
vestigated by the rough set approach. In general, in order to
discuss an IIS by means of rough set theory, we need to fill
missing values in the IIS. -at is to say, we first need to
transform the IIS into a complete information system. In this
section, we provide some methods to fill missing values in
IISs. Note that data are often divided into two types: discrete
data and continuous data. Next, we study the issue of filling
missing data under two cases.

4.1. Algorithm of Filling Missing Values in IISs of Discrete
Data. Clearly, the missing values possess the property of
uncertainty; therefore, it is reasonable to use fuzzy set values
(or set values) to fill missing values in IISs. In this section, we
provide two schemes, namely, replacing the missing values
with fuzzy set values and replacing the missing values with
set values.

4.1.1. Filling the Missing Values with Fuzzy Set Values.
Next, we provide a method to fill missing values in IISs of
discrete data. We replace the missing values with fuzzy set
values. In fact, this method can transform IISs into FSvISs.

In the IIS given by Table 2, the value domain of a1 is
L, H, N,∗{ }, and the value of x2 under attribute a1 is the
missing value, that is, a1(x2) � ∗. We think that this missing
value may be L orH orN. We cannot determine which one is
a1(x2), but we can find a way to evaluate the degree that L
(or H or N) is a1(x2). -at is, we can replace the missing
values with fuzzy sets on L, H, N{ }. Next, we outline the
main idea of filling missing data. -e indiscernibility relation
is a basic concept in rough set theory. Given a complete
information system, we can establish an indiscernibility
relation. Two objects are viewed as indiscernible if they have
the same values for each attribute. -erefore, we think that if
two objects possess more the same values of attributes, then
they have the higher degree of indiscernibility. For example,
in Table 2, a1(x2) � ∗. x2 and x4 have the same values of five
attributes ( a2, a3, a4, a5, a6 ); x2 and x3 have the same
values of two attributes ( a2, a6 ). -us, x2 and x4 have the
higher degree of indiscernibility. -at is to say, the possi-
bility degree of a1(x2) � a1(x4) � H is more than that of
a1(x2) � a1(x3) � N. Based on this observation, we obtain
Algorithm 1.

Remark 3. In Step 2 of Algorithm 1, D(xl, xi) describes how
many attributes for xl and xi have the same value. -us, it
can be used to characterize the degree of indiscernibility of xl
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and xi. In Step 3, |tak |/|U| can be considered as probability of
the elements whose attribute values are t in U.

Example 2. In Table 3, a1(x5) � ∗. Clearly, V∗a1
� L, H, N{ }.

Step 1: Take L ∈ V∗a1
. It is easy to compute that

La1 � x1, x4, x7, x8 .

Step 2: We can compute that

D x5, x1(  � D x5, x4(  � D x5, x7(  � 0,

D x5, x8(  �
1
3
.

(23)

-us, D(x5, La1) � max 0, 1/3{ } � 1/3.
Step 3: (aF

1(x5))(L) � 1/3.

Similarly, we can compute that (aF
1(x5))(H) � 1/3 and

(aF
1(x5))(N) � 2/3. -erefore, we fill the missing value

a1(x5) with the following fuzzy set:

a
F
1 x5(  �

1/3
L

+
1/3
H

+
2/3
N

. (24)

4.1.2. Filling the Missing Values with Set Values. Based on
the discussion of Section 4.1.1, we can replace amissing value
with a fuzzy set. In fact, we can transform the fuzzy set into a
set by means of the maximum membership degree law. Let
(U,Att, V) be an IIS of discrete data. Assume that
ak(xl) � ∗, where xl ∈ U and ak ∈ Att. By Algorithm 1, we
obtain the fuzzy set aF

k (xl). -us, we can use the following
set to fill the missing value ak(xl):

a
S
k xl(  � t ∈ V

∗
ak

| a
F
k xl(  (t) � M ,

whereM � max a
F
k xl(  (t) | t ∈ V

∗
ak

 .
(25)

Example 3. In Example 2, we obtain that aF
1(x5) �

((1/3)/L) + ((1/3)/H) + ((2/3)/N). -us, the maximal
membership degree M is 2/3, that is, M � 2/3. By equation
(25), we have that aS

1(x5) � N{ }. -at is to say, we can fill the
missing value a1(x5) with the set N{ }. In Table 4, we know
that a1(x5) should beN.-is coincides with the filling values
by our algorithm.

In Table 3, a1(x9) and a2(x7) are also missing. By Al-
gorithm 1, we can obtain that

a
F
1 x9(  �

1/3
L

+
1/3
H

+
1/3
N

,

a
F
2 x7(  �

2/3
L

+
1/3
H

+
1/3
N

.

(26)

-us, we have that aS
1(x9) � L, H, N{ } and aS

2(x7) � L{ }.

4.2. Algorithm of Filling Missing Values in IISs of Continuous
Data. Similar to the discussion of Section 4.1, we investigate
the corresponding issues of IISs of continuous data in this
section.

4.2.1. Filling the Missing Values with Fuzzy Set Values.
Similar to Algorithm 1, we give Algorithm 2 to fill the
missing value in IISs of continuous data.

Example 4. In this example, we discuss the Iris in-
formation system given by Table 5 from UCI. Suppose that
a1(x5) and a2(x7) in Table 5 are missing. We obtain
Table 6. Next, we use the IIS given by Table 6 to illustrate
Algorithm 2.

In Table 6, a1(x5) � ∗. Clearly, V∗a1
� 4.3, 4.9, 5.4, 5.7,{

5.8, 6.3, 6.6}. We take the thresholds λ1 � 0.2 and λ2 �

λ3 � λ4 � 0.5.

Step 1: Take 4.3 ∈ V∗a1
. It is easy to compute that

4.3a1
λ1

� xi ∈ U | |a1(xi) − 4.3 | ≤ 0.2  � x1 .
Step 2: Since |a2(x1) − a2(x5)| � 0.5 ≤ λ2 � 0.5, |a3(x1) −

a3(x5)| � 0.3 ≤ λ3 � 0.5, and |a4(x1) − a4(x5)| � 0.2 ≤
λ4 � 0.5, it follows that aj ∈Att | |aj(x5) − aj(x1) | ≤

λj � a2,a3,a4 , and thus D(x5,x1) � 3/4. -is implies
that D(x5,4.3a1

λ1
) �max 3/4{ } � 0.75.

Step 3: (aF
1(x5))(4.3) � 0.75.

Similarly, we can compute that (aF
1(x5)(4.9)) � 0,

(aF
1(x5))(5.4) � 0.75, (aF

1(x5))(5.7) � 0.75, (aF
1(x5))

(5.8) � 0.75, (aF
1(x5))(6.3) � 0.25, and (aF

1(x5))(6.6) � 0.
-erefore, we fill the missing value a1(x5) with the following
fuzzy set:

a
F
1 x5(  �

0.75
4.3

+
0
4.9

+
0.75
5.4

+
0.75
5.7

+
0.75
5.8

+
0.25
6.3

+
0
6.6

.

(27)

4.2.2. Filling the Missing Values with Real Values. Based on
the discussion of Section 4.2.1, we can replace a missing
value with a fuzzy set. Clearly, we can transform the fuzzy set

Table 2: An IIS of discrete data.

Objects a1 a2 a3 a4 a5 a6

x1 L N N L N N
x2 ∗ H H H H H
x3 N H N N N H
x4 H H H H H H
x5 N H N N N H

Table 3: Missing dataset.

Objects a1 a2 a3

x1 L N N
x2 H L H
x3 N H N
x4 L L L
x5 ∗ H H
x6 N H H
x7 L ∗ L
x8 L H N
x9 ∗ N H
x10 H L N
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into real value by means of the maximum membership
degree law. Let (U,Att, V) be an IIS of continuous data.
Assume that ak(xl) � ∗, where xl ∈ U and ak ∈ Att. By
Algorithm 2, we obtain the fuzzy set aF

k (xl).-us, we can use
the following real value to fill the missing value ak(xl):

a
R
k xl(  �

t∈smdt

|smd|
, (28)

where smd � t ∈ V∗ak
| (aF

k (xl))(t) � M  and M �

max (aF
k (xl))(t) | t ∈ V∗ak

 .

Example 5. From Example 4, we know that

a
F
1 x5(  �

0.75
4.3

+
0
4.9

+
0.75
5.4

+
0.75
5.7

+
0.75
5.8

+
0.25
6.3

+
0
6.6

.

(29)

By equation (28), we compute that

M � 0.75,

smd � 4.3, 5.4, 5.7, 5.8{ }.
(30)

-us, we obtain that aR
1 (x5) � (4.3 + 5.4 + 5.7 + 5.8)/4 �

5.3.

Remark 4. By Table 5, we know that a1(x5) should be 5.1. By
Example 5, we fill the value aR

1(x5) � 5.3 under the as-
sumption that a1(x5) and a2(x7) are missing. -e deviation
of a1(x5) and aR

1(x5) � 5.3 is within 0.2. -is indicates that
the method of filling missing value is effective.

5. Experiments and Effectiveness Analysis

In this section, we employ several experiments to show the
effectiveness of the algorithms given by Section 4. We
compare the proposed methods with a representative al-
gorithm.-e summary information of experimental datasets
is shown in Table 7. Adult dataset and Abalone dataset are
taken fromUCI (http://archive.ics.uci.edu/ml/datasets.php).

5.1. Effectiveness Analysis of the Algorithm of Filling Missing
Values in IISs of Discrete Data. In this part, we will conduct
two groups of experiments. -ey are used to compare the
effectiveness of methods of filling missing values from
different points of view. Frequency Estimator-based filling
method (Algorithm FE) [30] is a common method of filling
missing data. In this section, a comparison of the proposed
methods with Algorithm FE is given.

Let (U,Att, V) be an IIS of discrete data. Assume that ak(xl) � ∗, where xl ∈ U and ak ∈ Att. V∗ak
denotes the set Vak

− ∗{ }, that is,
V∗ak

� Vak
− ∗{ }. We shall use a fuzzy set of V∗ak

to represent the missing value ak(xl), and we denote the fuzzy set by aF
k (xl). -us,

∀t ∈ V∗ak
, we need to compute the membership degree (aF

k (xl))(t). Next, we establish the steps of filling the missing value ak(xl) as
follows:
Step 1: ∀t ∈ V∗ak

, compute tak � xi ∈ U | ak(xi) � t 

Step 2: Compute D(xl, tak ) � max[D(xl, xi) | xi ∈ tak ], where D(xl, xi) �
 aj ∈ Att | aj(xl) � aj(xi) 

/ |Att|

Step 3: Assign a value to (aF
k (xl))(t), (aF

k (xl))(t) �
D(xl, tak ), D(xl, tak )≠ 0,

|tak |/|U|, D(xl, tak ) � 0.


ALGORITHM 1: Filling the missing values in IISs of discrete data with fuzzy set values.

Table 4: Original dataset of Table 3.

Objects a1 a2 a3

x1 L N N
x2 H L H
x3 N H N
x4 L L L
x5 N H H
x6 N H H
x7 L L L
x8 L H N
x9 N N H
x10 H L N

Table 5: Original dataset of Table 6.

Objects a1 a2 a3 a4

x1 4.3 3 1.1 0.1
x2 5.8 4 1.2 0.2
x3 5.7 4.4 1.5 0.4
x4 5.4 3.9 1.3 0.4
x5 5.1 3.5 1.4 0.3
x6 5.7 3.8 1.7 0.31
x7 5.7 2.8 4.5 1.3
x8 6.3 3.3 4.7 1.6
x9 4.9 2.4 3.3 1
x10 6.6 2.9 4.6 1.3

Table 6: Missing dataset.

Objects a1 a2 a3 a4

x1 4.3 3 1.1 0.1
x2 5.8 4 1.2 0.2
x3 5.7 4.4 1.5 0.4
x4 5.4 3.9 1.3 0.4
x5 ∗ 3.5 1.4 0.3
x6 5.7 3.8 1.7 0.31
x7 5.7 ∗ 4.5 1.3
x8 6.3 3.3 4.7 1.6
x9 4.9 2.4 3.3 1
x10 6.6 2.9 4.6 1.3
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In Section 4.1, we give the method of filling the missing
values with fuzzy set values. Furthermore, we obtain the
method of filling the missing values with set values. By
combining Section 4.1.1 and Section 4.1.2, we designAlgorithm
FMvSV to fill the missing values with set values (Algorithm 3).

Next, we provide a comparative study of the effectiveness
for Algorithms FMvSV and FE. We first give a quantitative
index of the effectiveness for filling missing values as follows.

Definition 6. Given a complete information system (U,Att)
of discrete data, suppose that the values ak1

(xw1
),

ak2
(xw2

), . . . , akq
(xwq

) are missing, and the filling set values
are denoted as aS

k1
(xw1

), aS
k2

(xw2
), . . . , aS

kq
(xwq

), respectively.
-en, the correct rate of filling values is defined by

CR �


q
i�1pi

q
, (31)

where q is the number of the missing values, and

pi �
1 −

aS
ki

xwi
 



 − 1

V∗aki





, aki
xwi

  ∈ aS
ki

xwi
 ;

0, Others.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

Example 6. In Table 4, a1(x5) � N, a1(x9) � N and
a2(x7) � L. In Example 3, suppose that a1(x5), a1(x9), and
a2(x7) in Table 4 are missing. -en, we obtain that
aS
1(x5) � N{ }, aS

1(x9) � L, H, N{ } and aS
2(x7) � L{ }.-us, by

Definition 6, we can compute that

p1 � 1 −
as
1 x5( 


 − 1

V∗a1




�1 −

1 − 1
3

�1,

p2 � 1 −
as
1 x9( 


 − 1

V∗a1




�1 −

3 − 1
3

�
1
3
,

p3 � 1 −
as
2 x7( 


 − 1

V∗a2




�1 −

1 − 1
3

�1.

(33)

-erefore, the correct rate of filling values is CR �

(p1 + p2 + p3)/3 � 0.778.
In this section, we use some subsets of Adult dataset (see

Table 7) to experiment.We need to experiment with the discrete
value. We randomly select some subsets of discrete values in
Adult dataset. Table 8 gives three subsets of Adult dataset.

Experiment 1. -e effects of experiment times on correct
rates of filling values.

In this experiment, we mainly compare the efficiency of
Algorithms FMvSV and FE by the dataset AD200 in Table 8.
-e steps are as follows:

(i) 2.5% attribute values are randomly selected from
AD200 and supposed that they are missing

(ii) By means of Algorithms FMvSV and FE, we can fill
these missing values, and we can obtain the correct
rate of every algorithm

-e steps (i) and (ii) are repeated ten times, and the
corresponding results are summarized in Table 9. Similarly,
we also consider the cases of 5%, 7.5%, 10%, 12.5%, 15%,

17.5%, 20%, 22.5%, 25%, 27.5%, and 30% missing values in
AD200. -e results are shown in Figures 1 and 2.

Figures 1 and 2 show the following facts:

(i) -e correct rate of Algorithm FMvSV is 10% − 20%
higher than that of Algorithm FE.

(ii) -e number of missing values is given, but the missing
values in AD200 are not necessarily the same in each
experiment. -e correct rates of Algorithm FMvSV
have little change in each experiment when the number
of missing values in AD200 is a fixed value. However,
in the similar case, the correct rates of Algorithm FE
fluctuate obviously in each experiment. -is indicates
that Algorithm FMvSV does well in stability.

In Table 9, the mean value of ten correct rates related to
Algorithm FMvSV can be considered as the correct rate of
Algorithm FMvSV for 2.5% missing values.-e correct rate of
Algorithm FE for 2.5% missing values can be obtained sim-
ilarly. Furthermore, for 5%, 7.5%, 10%, 12.5%, 15%, 17.5%,

20%, 22.5%, 25%, 27.5%, and 30% missing values in AD200,
we also compute the correct rates of Algorithms FMvSV and
FE. -e results are shown in Table 10 and Figure 3.

Table 10 and Figure 3 show that the correct rates of
Algorithm FMvSV monotone decrease with the increase of

Let (U,Att, V) be an IIS of continuous data. Assume that ak(xl) � ∗, where xl ∈ U and ak ∈ Att. V∗ak
denotes the set Vak

− ∗{ }. We
shall use a fuzzy set of V∗ak

to represent the missing value ak(xl), and we denote the fuzzy set by aF
k (xl). -us, ∀t ∈ V∗ak

, and we need
to compute the membership degree (aF

k (xl))(t). Next, we establish the steps of filling the missing value ak(xl) as follows:
Step 1: ∀t ∈ V∗ak

, compute t
ak

λk
� xi ∈ U | | ak(xi) − t| ≤ λk , where λk is a threshold on ak

Step 2: Compute D(xl, t
ak

λk
) � max D(xl, xi) | xi ∈ t

ak

λk
 , where D(xl, xi) �

 aj ∈ Att | | aj(xl) − aj(xi) | ≤ λj 

/|Att|.

Step 3: Assign a value to (aF
k (xl))(t), (aF

k (xl))(t) �
D(xl, t

ak

λk
), D(xl, t

ak

λk
)≠ 0,

|t
ak

λk
|/|U|, D(xl, t

ak

λk
) � 0.

⎧⎨

⎩

ALGORITHM 2: Filling the missing values in IISs of continuous data with fuzzy set values.

Table 7: Detailed information of the datasets.

Index Dataset Data type Objects Attributes
1 Adult dataset Nominal, numeric 48842 9
2 Abalone dataset Numeric 4177 8
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missing values. However, the monotonicity of the correct
rates of Algorithm FE is not obvious. In addition, Table 10
and Figure 3 also indicate that the effect of Algorithm
FMvSV is better than that of Algorithm FE. Furthermore,
when the missing values are increased to 30%, the correct
rate of Algorithm FMvSV still achieves 64%.

Experiment 2. -e effects of data size on correct rates of
filling values.

In this experiment, we use AD200, AD400, and AD800
to discuss the effects of data size on correct rates of Al-
gorithms FMvSV and FE. For 5% − 60% missing values,
similar to the calculating method of Table 10, we can obtain

Input: An IIS (U,Att) of continuous data, where U � x1, x2, . . . , xn  and Att � a1, a2, . . . , am .
-e missing values: ak1

(xw1
), ak2

(xw2
), . . . , akq

(xwq
). -e threshold: λ1, λ2, . . . , λm.

Output: -e filling real values: aR
k1

(xw1
), aR

k2
(xw2

), . . . , aR
kq

(xwq
).

(1) for i� 1 to q do
(2) for every t in V∗aki

do
(3) Compute t

aki

λki

� x ∈ U | | aki
(x) − t|≤ λki

 

(4) for every x in t
aki

λki

do
(5) Compute D(xwi

, x) �

 al ∈ Att | | al(xwi
) − al(x)| ≤ λl 

/|Att|
(6) end
(7) Compute D(xwi

, t
aki

λki

) � max D(xwi
, x) | x ∈ t

aki

λki

 

(8) ifD(xwi
, t

aki

λki

)≠ 0 then
(9) (aF

ki
(xwi

))(t) � D(xwi
, t

aki

λki

)

(10) else
(11) (aF

ki
(xwi

))(t) � |t
aki

λki

|/|U|

(12) end if
(13) end
(14) M � max (aF

ki
(xwi

))(t) | t ∈ V∗aki

 ; smd � t ∈ V∗aki

| (aF
ki

(xwi
))(t) � M 

(15) aR
ki

(xwi
) � t∈smdt/|smd|

(16) end

ALGORITHM 4: Algorithm FMvRV: filling the missing values with real values.

Input: An IIS (U,Att, V) of discrete data, where U � x1, x2, . . . , xn  and Att � a1, a2, . . . , am 

-e missing values: ak1
(xw1

), ak2
(xw2

), . . . , akq
(xwq

)

Output: -e filling set values: aS
k1

(xw1
), aS

k2
(xw2

), . . . , aS
kq

(xwq
)

(1) for i� 1 to q do
(2) for every t in V∗aki

do
(3) Compute taki � x ∈ U | aki

(x) � t 

(4) for every x in taki do
(5) Compute D(xwi

, x) �
 a ∈ Att | a(xwi

) � a(x) 

/|Att|
(6) end
(7) Compute D(xwi

, taki ) � max D(xwi
, x) | x ∈ tak 

(8) if D(xwi
, taki )≠ 0 then

(9) (aF
ki

(xwi
))(t) � D(xwi

, taki )

(10) else
(11) (aF

ki
(xwi

))(t) � |taki |/|U|

(12) end if
(13) end
(14) M � max (aF

ki
(xwi

))(t) | t ∈ V∗aki

 

(15) aS
ki

(xwi
) � t ∈ V∗aki

| (aF
ki

(xwi
))(t) � M 

(16) end

ALGORITHM 3: Algorithm FMvSV: filling the missing values with set values.
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the correct rate of Algorithm FMvSV (or FE) in this ex-
periment. -e results are shown in Figure 4.

Figure 4 reflects the following facts:

(i) When the data size increases under the same missing
rate, the correct rate of Algorithm FMvSV remains
basically the same and is higher than that of

Algorithm FE. -erefore, for Algorithm FMvSV, we
can divide a dataset into several small datasets, and
then fill missing values to improve efficiency of it.

(ii) It is easy to see that as the data size increases, the
difference between the correct rates of Algorithms
FMvSV and FE becomes larger. -is illustrates that

Table 9: Comparison of the correct rates of Algorithms FMvSV and FE in terms of AD200 with 2.5% missing values.

Times 1 2 3 4 5 6 7 8 9 10
FMvSV 0.87 0.777 0.807 0.762 0.799 0.788 0.815 0.804 0.776 0.789
FE 0.687 0.6 0.6 0.556 0.644 0.733 0.644 0.622 0.6 0.644
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Figure 1: Comparison of the correct rates of Algorithms FMvSV and FE in terms of AD200 with 2.5% − 15% missing values. (a) 2.5%
missing values. (b) 5% missing values. (c) 7.5% missing values. (d) 10% missing values. (e) 12.5% missing values. (f ) 15% missing values.

Table 8: -e subsets of Adult dataset used in Experiments 1 and 2.

-e name of dataset -e type of datasets -e type of attribute values -e number of objects -e number of attributes
AD200 Complete Discrete 200 9
AD400 Complete Discrete 400 9
AD800 Complete Discrete 800 9
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as the data size increases, the advantage of Algorithm
FMvSV is obvious, that is, Algorithm FMvSV has an
advantage in processing big dataset and dynamically
increasing dataset.

5.2. Effectiveness Analysis of the Algorithm of Filling Missing
Values in IISs of Continuous Data. In this section, we also
conduct two groups of experiments. -ey are still used to
compare the effectiveness of algorithms of filling missing
values from different points of view. Mean-based filling
method (Algorithm MEAN) [31] is a common method of
filling missing data for an IIS of continuous data. Next, a
comparison of the proposed methods with Algorithm
MEAN is provided.

In Section 4.2, we obtain the method of filling the
missing values with real values. By combining Section 4.2.1

and Section 4.2.2, we design Algorithm FMvRV to fill the
missing values with real values (Algorithm 4).

Next, we provide a comparative study of the effectiveness
for Algorithms FMvRV andMEAN.We first give a quantitative
index of the effectiveness for filling missing values as follows.

Definition 7. Given a complete information system (U,Att)
of continuous data, suppose that the values ak1

(xw1
),

ak2
(xw2

), . . . , akq
(xwq

) are missing, and the filling set values
are denoted as aR

k1
(xw1

), aR
k2

(xw2
), . . . , aR

kq
(xwq

), respectively.
-en, the correct rate of filling values is defined by

CRC �
ki, wi( 


aki

xwi
  − aR

ki
xwi

 ≤ λki
, i � 1, 2, . . . , q 





q
,

(34)
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Figure 2: Comparison of the correct rates of Algorithms FMvSV and FE in terms of AD200 with 17.5% − 30% missing values. (a) 17.5%
missing values. (b) 20% missing values. (c) 22.5% missing values. (d) 25% missing values. (e) 27.5% missing values. (f ) 30% missing values.

Table 10: Comparison of the correct rates of Algorithms FMvSV and FE in terms of AD200 with 2.5% − 30% missing values.

Missing values (%) 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
FMvSV 0.80 0.78 0.74 0.73 0.72 0.71 0.70 0.69 0.68 0.68 0.66 0.64
FE 0.63 0.59 0.58 0.59 0.58 0.57 0.58 0.58 0.57 0.58 0.57 0.55
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where q is the number of the missing values, and λ1, λ2, . . .,
and λq are thresholds corresponding to ak1

, ak2
, . . .,

and akq
.

Example 7. From Example 5, we know that the thresholds
are λ1 � 0.2, λ2 � λ3 � λ4 � 0.5, and aR

1(x5) � 5.3. Similarly,
we can compute that aR

2 (x7) � 3.15. It is clear that |a1(x5) −

aR
1 (x5)| � |5.1 − 5.3| � 0.2≤λ1 � 0.2 and |a2(x7)− aR

2 (x7)| �

|2.8 − 3.15| � 0.35≤λ2 � 0.5. -erefore, we can calculate the
correct rate: CRC� | (1,5),(2,7){ }|/2� 2/2� 1.

In this section, we use some subsets of Abalone dataset
(see Table 8) to experiment. Table 11 gives three subsets of
Abalone dataset.

Experiment 3. -e effects of experiment times on correct
rates of filling values about continuous data.
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Figure 3: Comparison of correct rates of Algorithm FMvSV and Algorithm FE.
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Figure 4: Comparison of the correct rates of Algorithms FMvSV and FE in terms of (a) AD200, (b) AD400, and (c) AD800.
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In this experiment, we mainly compare the efficiency of
Algorithms FMvRV and MEAN by AB200 in Table 11. -e
steps are as follows:

(i) 5% attribute values are randomly selected from
AB200 and supposed that they are missing

(ii) By means of Algorithms FMvRV andMEAN, we can
fill these missing values, and we can obtain the
correct rate of every algorithm

-e steps (i) and (ii) are repeated ten times, and the
corresponding results are summarized in Table 12. Simi-
larly, we also consider the cases of 10%, 15%, 20%, 25%, and
30% missing values in AB200. -e results are shown in
Figure 5.

Figure 5 shows that Algorithm FMvRV is more stable
than Algorithm MEAN. Furthermore, the correct rate of
Algorithm FMvRV is better than that of Algorithm MEAN.
-is indicates that Algorithm FMvRV can carry out more
accurate forecast of missing values. It is meaningful to ex-
plore the correct classification of incomplete datasets.

In Table 12, the mean value of ten correct rates related to
Algorithm FMvRV can be viewed as the correct rate of
Algorithm FMvRV for 5%missing values.-e correct rate of
Algorithm MEAN for 5% missing values can be computed
similarly. Furthermore, for 10%, 15%, 20%, 25%, and 30%
missing values in AB200, we also compute the correct rates
of Algorithms FMvRV and MEAN.-e results are shown in
Figure 6.

Figure 6 shows that the correct rates of Algorithm
FMvRV monotone almost decrease with the increase of
missing values. However, the monotonicity of the correct
rates of Algorithm MEAN is not obvious. In addition,
Figure 6 also indicates that the effect of Algorithm FMvRV is
better than that of Algorithm MEAN. Furthermore, when
the missing values are increased to 30%, the correct rate of
Algorithm FMvRV is more than 85%. However, now, the
correct rate of Algorithm MEAN is less than 60%. -is
indicates that Algorithm FMvRV is more conducive to
predicting the missing values.

Experiment 4. -e effects of data size on correct rates of
filling values about continuous data.

In this experiment, we use AB200, AB400, and AB800 to
discuss the effects of data size on correct rates of Algorithms
FMvRV and MEAN. For 10% − 30% missing values, similar
to the calculating method of Table 12, we can obtain the
correct rate of Algorithm FMvRV (or MEAN) in this ex-
periment. -e results are shown in Figure 7.

Figure 7 reflects the following facts:

(i) When the data size increases, the correct rate of
Algorithm FMvRV is higher than that of Algorithm
MEAN.

(ii) When the missing values are less than 30%, the
correct rates of Algorithm FMvRV are almost

unchanged and close to 90%. Now, the data size has
little effect on the correct rates of Algorithm FMvRV.
-is illustrates that Algorithm FMvRV has obvious
advantages in processing big dataset when the
missing values are less than 30%.

6. Application of the Algorithms of Filling
Missing Values in Investigating IISs

When we apply the rough set approach to investigate an IIS,
a key step is to induce a binary relation from the IIS. For an
IIS, we can provide three ways to obtain a binary relation
from the IIS. Let (U,Att, V) be an IIS and B⊆Att. -en, the
three ways are as follows:

(1) By equation (2), we can obtain the binary relationTB.
(2) By Algorithm 1, we can fill the missing values in IISs

with fuzzy set values.-en we can also view the other
values of attributes as fuzzy set values, for example,
in Table 3 of Example 2, a1(x1) � L, we can see
a1(x1) as the fuzzy set value a1(x1) � (1/L) + (0/
H) + (0/N). Based on this discussion, we can
transform an IIS into a FSvIS. -us, according to
equation (8), we can obtain the binary relation RSλ

B .
(3) In an IIS of discrete data, if the value a(x) of x under

attribute a is not missing, we can view a(x) as a set
value a(x){ }. Based on this consideration, we can use
Algorithm FMvSV to transform an IIS into a set-
valued information system. -en, we can obtain the
following binary relation [32]:

T
sv
B � (x, y) ∈ U

2
| a(x)∩ a(y)≠∅, ∀a ∈ B . (35)

In this section, through a comparative research on these
binary relations induced from the same IIS, we further show
that our algorithms are meaningful for the studies of IISs.
We choose three datasets, i.e., Mammographic dataset,
Abalone dataset, and Car dataset, to carry out the com-
parative research. -e summary information of Mammo-
graphic dataset and Abalone dataset is shown in Table 13.
-e Car dataset is shown in Table 14 [33]. Mammographic
dataset and Abalone dataset are taken from UCI (http://
archive.ics.uci.edu/ml/datasets.php).

Firstly, we introduce a new measure to evaluate the
similarity degree between binary relations.

Definition 8. Let R1 and R2 be binary relations on a non-
empty set U. -e similarity degree of R1 and R2 is defined as

SD R1, R2(  �
R1 ∩R2




R1 ∪R2



. (36)

Example 8. For the car dataset given by Table 14, we can
obtain the binary relations TB, Tsv

B , and R
SλN
B as follows:
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Figure 5: Comparison of the correct rates of Algorithms FMvRV and MEAN in terms of AB200 with 5% − 30% missing values. (a) 5%
missing values. (b) 10% missing values. (c) 15% missing values. (d) 20% missing values. (e) 25% missing values. (f ) 30% missing values.

Table 11: -e subsets of Abalone dataset used in Experiments 3 and 4.

-e name of dataset -e type of dataset -e type of attribute value -e number of object -e number of attribute
AB200 Complete Continuous 200 8
AB400 Complete Continuous 400 8
AB800 Complete Continuous 800 8

Table 12: Comparison of the correct rates of Algorithms FMvRV and MEAN in terms of AB200 with 5% missing values.

Times 1 2 3 4 5 6 7 8 9 10
FMvRV 0.925 0.838 0.888 0.925 0.95 0.938 0.925 0.9 0.913 0.925
MEAN 0.575 0.463 0.588 0.613 0.625 0.55 0.563 0.65 0.588 0.6
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Figure 6: Comparison of correct rates of Algorithm FMvRV and Algorithm MEAN.
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Figure 7: Comparison of the correct rates of Algorithms FMvRV and MEAN in terms of (a) AB200, (b) AB400, and (c) AB800.

Table 13: Detailed information of the datasets.

Index Dataset -e type of datasets -e type of attribute values -e number of objects -e number of attributes
1 Mammographic Incomplete Discrete 961 5
2 Breast cancer Incomplete Discrete 286 10
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TB x1( � x1 ,

TB x2( � x2, x6 ,

TB x3( � x3 ,

TB x4( � x4, x5 ,

TB x5( � x4, x5, x6 ,

TB x6( � x2, x5, x6 ;

T
sv
B x1( � x1 ,

T
sv
B x2( � x2, x6 ,

T
sv
B x3( � x3 ,

T
sv
B x4( � x4, x5 ,

T
sv
B x5( � x4, x5 ,

T
sv
B x6( � x2, x6 ;

R
SλN
B x1( � x1 ,

R
SλN
B x2( � x2 ,

R
SλN
B x3( � x3 ,

R
SλN
B x4(  � x4 ,

R
SλN
B x5( � x5 ,

R
SλN
B x6( � x6 ;

(37)

where we take λ � 0.6. Similarly, for every dataset given by
Table 13, we can also compute the corresponding binary
relations TB, Tsv

B , and R
SλN
B , where we choose λ � 0.6.-en, by

Definition 8, we calculate the similarity degrees between TB,
Tsv

B , and R
SλN
B . -e result is shown in Table 15.

Table 15 reflects the following facts.
We know that the binary relation induced by a dataset

can be considered as the classification result of objects,
where the elements in a successor neighbourhood with
respect to the binary relation are a class. In this example, for
Breast cancer dataset, the similarity degrees between re-
lations are almost close to 1. -is means that missing data
have less impact on the classification of Breast cancer
datasets. -us, we may ignore these missing values in
addressing this dataset. In contrast, the relations induced by
Car dataset have low similarity degrees. -is shows that
missing values in Car dataset play an important role in the
classification of this dataset. A natural question is which
relation is better to investigate Car dataset. In Table 15,
we can see that the similarity degree between Tsv

B and TB is
higher than that between TB and R

SλN
B . Furthermore,

the similarity degree between Tsv
B and R

SλN
B is higher than that

between TB and R
SλN
B . -is indicates that Tsv

B is a good choice
to be used to investigate Car dataset. Note that Tsv

B is de-
termined by using Algorithm FMvSV. -is illustrates that
Algorithm FMvSV is important for the studies of IISs.

At the end of this section, we apply the uncertainty
measure to estimate the importance of the proposed algo-
rithm. In Example 8, we list three binary relations TB, Tsv

B ,

and R
SλN
B with respect to Car dataset. By Definition 3, we can

compute their entropies, which are shown in Table 16.
We know that entropy can measure the granularity of a

binary. Proposition 1 shows that the finer the binary relation
is, the higher the entropy of it is. Conversely, if the entropy of
the binary relation is high, then the binary relation should be
fine. -us, Table 16 indicates that Tsv

B and R
SλN
B are finer than

TB. -at is to say, Tsv
B and R

SλN
B can provide more information

for the studies of IISs. According to the above discussion, we
know that Tsv

B and R
SλN
B are obtained in terms of the proposed

algorithms. -is illustrates that the proposed algorithms are
useful for investigating IISs.

Finally, a similar discussion can also be made about
continuous dataset. We omit it here.

7. Conclusion

-is paper established the FSvIS, which is an extension of the
PSvIS. By means of the FSvIS, we constructed some algo-
rithms to fill missing values in IISs. We carried out several
experiments to analyze the effectiveness of these algorithms.
-e experiment results indicated that these algorithms are
useful to investigate the IISs. -ere are still many interesting
issues worth studying. First, we will further study the re-
lationship between FSvISs and the existing information
systems and study the application of FSvISs. Second, we can
apply uncertainty measures for fuzzy relations, which are
established by [34], to investigate the fuzzy set-valued in-
formation system which is defined by this paper. Finally, we
will conduct a more comprehensive analysis of the impact of
missing values on IISs.

Data Availability

-e data used to support the findings of this study are in-
cluded within the article.

Table 14: -e incomplete information system about car dataset.

Price Mileage Size Max-speed
x1 High Low Full Low
x2 Low ∗ Full Low
x3 ∗ ∗ Compact Low
x4 High ∗ Full High
x5 ∗ ∗ Full High
x6 Low High Full ∗

Table 15: Similarity degrees between binary relationsTB,Tsv
B , andR

SλN
B .

Dataset SD(TB, R
SλN
B ) SD(TB, Tsv

B ) SD(Tsv
B , R

SλN
B )

Car 0.5 0.83 0.6
Mammographic 0.709 0.998 0.71
Breast cancer 0.933 1 0.933

Table 16: -e entropies of TB, Tsv
B , and R

SλN
B .

Dataset H(TB) H(Tsv
B ) H(R

SλN
B )

Car 1.723 1.918 2.585
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