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�is paper is concerned with master-slave synchronization of chaotic Φ6 Du�ng oscillators by using linear state error feedback
control. Compared with some existing methods and results, this paper estimates the bound of the �rst trajectory (variable) of the
controlled slave system and uses this bound to derive synchronization criteria for two chaotic Φ6 Du�ng oscillators. �e ef-
fectiveness of synchronization criteria is illustrated by three simulation examples.

1. Introduction

Synchronization of chaotic systems has received consider-
able attention due to its theoretical importance and practical
applications in secure communication and signal processing
(see for example, [1–31] and references therein).

As is well known, some models for damped and driven
oscillators, such as sti�ening springs, beam bulking, and
superconducting Josephson parametric ampli�ers, can be
described as Φ6 Du�ng oscillators which have been widely
used in mechanical and electrical systems [1, 9–11, 32–36].
With proper parameters, Du�ng oscillators have exhibited
chaotic behaviors. For chaotic Φ6 Du�ng oscillators, Njah
[10, 11] used the active control to achieve master-slave
synchronization, in which the active control removed all
nonlinear terms of the error system. For chaotic Φ4 Du�ng
oscillators which is the special case ofΦ6 Du�ng oscillators,
synchronization criteria were derived by the active control in
[32–34, 37] and [35] in which the linear error system and
synchronization criteria were derived. It should be pointed
out that chaoticΦ6 Du�ng oscillators are nonlinear systems
in which the nonlinear terms play a key role in the gen-
eration of chaotic attractors. �us, how to use the nonlinear
properties of the error system and how to use linear state
error feedback control to derive synchronization criteria for

chaotic Φ6 Du�ng oscillators is one motivation of this
paper.

�e bounds of trajectories of the master system and slave
system have been widely used to derive the synchronization
criteria for chaotic systems (see for example, [36, 38–40]).
But it was di�cult to estimate the bounds of slave systems.
�erefore, how to derive the bound of some (not all) tra-
jectories of the controlled slave system before the master
system and the slave system achieve synchronization and
how to use the derived bound to achieve synchronization
criteria for the chaotic Φ6 Du�ng oscillators is another
motivation of this paper.

In this paper, we will construct a master-slave syn-
chronization scheme for chaotic Φ6 Du�ng oscillators by
using linear state error feedback control. We will use the
linear state error feedback control to derive the bound of the
�rst trajectory of the slave system before the master system
and the slave system achieve synchronization and use this
bound to obtain synchronization criteria. Moreover, we will
use three examples to illustrate the e�ectiveness of our
synchronization criteria.

�e rest of this paper is as follows. In Section 2, the
related problems and concepts will be introduced. In Section
3, the synchronization results for chaotic Φ6 Du�ng os-
cillators will be given. As applications, the synchronization
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results for classic Φ4 Duffing oscillators and parametrically
excited Φ4 Duffing oscillators will be provided in Section 4.
In Section 5, three simulation results will be given. Con-
clusions and future works will be presented in Section 6.

2. Problem Statement

,e mathematical model of Φ6 Duffing oscillator is

€x(t) � − c _x(t) − dx(t) − lx
3
(t) − ax

5
(t) + q cosωt, (1)

where x(t) is the displacement of rotation angle; _x(t) �

dx(t)/dt; €x(t) � d2(x(t))/dt2; a, c, d, l, q, and ω are con-
stants; q cosωt is the excitation; c _x(t) is the linear damping
term; dx(t) + lx3(t) is a nonlinear force; and the initial
condition is x(0) � x0 and _x(0) � x0′. ,e potential of (1) is
W6(x) � (1/2)dx2(t) + (1/4)lx4(t) + (1/6)ax6(t), which is
the reason why system (1) is called Φ6 Duffing oscillator.

Remark 1. If a � 0, system (1) reduces to the following Φ4
Duffing oscillator:

€x(t) � − c _x(t) − dx(t) − lx
3
(t) + q cosωt, (2)

with the potential W4(x) � (1/2)dx2(t) + (1/4)lx4(t).

Let y1(t) � x(t) and y2(t) � _y1(t). ,e non-
autonomous system (1) can be written as the following
dimensionless system:

_y1(t) � y2(t),

_y2(t) � − dy1(t) − cy2(t) + g y1(t)( 􏼁 + p(t),
􏼨 (3)

where

p(t) � q cosωt,

g y1(t)( 􏼁 � − ly
3
1(t) − ay

5
1(t).

(4)

,e initial condition of system (3) is given by
y1(0) � y10, y2(0) � y20.

Let y(t) �
y1(t)

y2(t)
􏼠 􏼡 ∈ R2. Write the system described

by (3) as
_y(t) � Ay(t) + φ(y(t)) + r(t), (5)

where

A �
0 1

− d − c
􏼠 􏼡,

r(t) �
0

p(t)
􏼠 􏼡,

φ(y(t)) �
0

g y1(t)( 􏼁
􏼠 􏼡.

(6)

Let z(t) �
z1(t)

z2(t)
􏼠 􏼡 ∈ R2. We can construct the fol-

lowing synchronization scheme for the system described

by (5):

M : _y(t) � Ay(t) + φ(y(t)) + r(t), (7)

S : _z(t) � Az(t) + φ(z(t)) + r(t) + u(t), (8)

C : u(t) � K(y(t) − z(t)), (9)

with the master system described byM and the slave system

described by S, where u(t) �
u1(t)

u2(t)
􏼠 􏼡 ∈ R2 is the con-

troller and K �
k1 1
k2 k3

􏼠 􏼡 in which k1 > 0, k2, and k3 are

gains which can be determined later. ,e initial condition of
system (8) is given by z1(0) � z10 and z2(0) � z20.

Defining a signal e(t) � y(t) − z(t) �
e1(t)

e2(t)
􏼠 􏼡 ∈ R2,

one can obtain the error system

_e1(t) � − k1e1(t),

_e2(t) � − k2 + d( 􏼁e1(t) − k3 + c( 􏼁e2(t) + g y1(t)( 􏼁

− g z1(t)( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩

(10)

In view of differential mean theorem, one can have

g y1(t)( 􏼁 − g z1(t)( 􏼁 � g′(ξ(t)) y1(t) − z1(t)( 􏼁, (11)

where

g′(ξ(t)) �
dg(ρ)

dρ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ρ�ξ(t)

� − 3lξ2(t) + 5aξ4(t)􏼐 􏼑, (12)

for ξ(t) ∈ (min y1(t), z1(t)􏼈 􏼉, max y1(t), z1(t)􏼈 􏼉), which
results in

_e(t) � 􏽢K(t)e(t), (13)

where

􏽢K(t) �
− k1 0

− k2 + d( 􏼁 + g′(ξ(t)) − k3 + c( 􏼁
􏼠 􏼡. (14)

,e initial condition of system (10) is
e1(0) � y10 − z10, e2(0) � y20 − z20.

Notice that the master system described by (7) is chaotic.
,us, there exist two scales m1 > 0 and m2 > 0 for any y10 and
y20 in the attracting area such that

yi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤mi, i � 1, 2, ∀t> 0. (15)

From the first equation of system described by (10), we
have

e1(t) � y10 − z10􏼐 􏼑exp − k1t( 􏼁, (16)

which indicates that

z1(t) � y1(t) − y10 − z10􏼐 􏼑exp − k1t( 􏼁. (17)

From the equation described by (17), we have
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z1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ y1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + y10 − z10

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤m1 + y10 − z10

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ∀t> 0, k1 > 0.
(18)

From inequalities (15) and (18) and equation (11), there
exists a scale λ> 0 such that

g′(ξ(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ λ, (19)

where

λ � (3|l| + 5|a|σ)σ,

σ � max ζ2(t)􏽮 􏽯,

∀ζ(t) ∈ min y1(t), z1(t)􏼈 􏼉, max y1(t), z1(t)􏼈 􏼉( 􏼁.

(20)

Remark 2. Since the bounds of y1(t) and z1(t) for any t> 0
are given by (15) and (18), respectively, and g(·) and g′(·)

are defined and differentiable, the bound of |g′(ξ(t))| for
ξ(t) ∈ (min y1(t), z1(t)􏼈 􏼉, max y1(t), z1(t)􏼈 􏼉) can be esti-
mated by (19).

Remark 3. For the cascaded system described by
_ζ1(t) � ϕ1 t, ζ1(t)( 􏼁 + χ t, ζ1(t), ζ2(t)( 􏼁, (21)

_ζ2(t) � ϕ2 t, ζ2(t)( 􏼁, (22)

where ϕ1,ϕ2, and χ are smooth, the origin (0, 0) is uniformly
globally asymptotically stable if _ζ1(t) � ϕ1(t, ζ1(t)) and
_ζ2(t) � ϕ2(t, ζ2(t)) are uniformly globally asymptotically
stable and the solutions of (21) and (22) are uniformly
globally bounded (Lemma 2, [41]). ,e system described by
(10) can be regarded as a cascaded system. Although, it is
easy to obtain the conditions to ensure that _ζ1(t) � − k1e1(t)

and _ζ2(t) � − (k3 + c)e2(t) are uniformly globally asymp-
totically stable, we cannot directly claim that the solutions of
(10) are uniformly globally bounded. ,us, we cannot di-
rectly use Lemma 2 of [41] to study the stability of the error
system (10).

,e purpose of this paper is to investigate the master-
slave synchronization for the system described by (1) and to
find the controller gain K, such that the system described by
(10) is globally asymptotically stable, which indicates that the
system described by (7)–(9) synchronizes.

3. Main Results: Master-Slave
Synchronization Criteria

In this section, we give some stability criteria for the error
system described by (10), which ensures that the system
described by (7)–(9) synchronizes.

Choosing the following Lyapunov function:

V(t) � e
T
(t)Pe(t), (23)

where P �
p11 p12
p12 p22

􏼠 􏼡 ∈ R2×2 is a real positive matrix, we

state and establish the following result.

Proposition 1. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

Θ1 � − k2 + d( 􏼁p12 − p11k1 + λ p12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 0,

Θ2 � − p22 k3 + c( 􏼁< 0,

− k1 + k3 + c( 􏼁p12 − k2 + d( 􏼁p22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + λp22􏼐 􏼑
2
≤ 4Θ1Θ2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

Proof. Taking the derivative of V(t) with respect to t along
the trajectory of (10) yields

_V(t) � e
T
(t)L(t)e(t), (25)

where

L(t) � 􏽢K
T
(t)P + P 􏽢K(t) �

l11(t) l12(t)

l12(t) l22(t)
􏼠 􏼡, (26)

with

l11(t) � 2 g′(ξ(t)) − k2 − d( 􏼁p12 − p11k1( 􏼁,

l12(t) � − k1 + k3 + c( 􏼁p12 + g′(ξ(t)) − k2 − d( 􏼁p22,

l22(t) � − 2p22 k3 + c( 􏼁.

(27)

Conditions

l11(t)< 0,

l22(t)< 0,

l
2
12(t)< l11(t)l22(t),

(28)

can ensure
_V(t)< 0, ∀e1(t), e2(t)≠ 0. (29)

It follows from (19) and (27) that
l11(t)

2
� g′(ξ(t))p12 − k2 + d( 􏼁p12 − p11k1

≤ − k2 + d( 􏼁p12 − p11k1 + g′(ξ(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 p12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ − k2 + d( 􏼁p12 − p11k1 + λ p12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� Θ1,

l22(t)

2
� − p22 k3 + c( 􏼁 � Θ2,

l
2
12(t) � − k1 + k3 + c( 􏼁p12 + g′(ξ(t)) − k2 − d( 􏼁p22( 􏼁

2

≤ − k1 + k3 + c( 􏼁p12 − k2 + d( 􏼁p22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + g′(ξ(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌p22􏼐 􏼑
2

≤ − k1 + k3 + c( 􏼁p12 − k2 + d( 􏼁p22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + λp22􏼐 􏼑
2
.

(30)

From (30), one can see that inequalities (24) can guarantee
inequalities (28). ,us, it follows from inequalities (19), (24),
and (29) that the error system described by (10) is globally
asymptotically stable. ,is completes the proof. Q.E.D.
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Let P �
1 0
0 1􏼠 􏼡. One can derive the following syn-

chronization result by Proposition 1.

Proposition 2. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k1 > 0, c + k3 > 0,

2
���������
k1 c + k3( 􏼁

􏽱
− d + k2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> λ.

⎧⎪⎨

⎪⎩
(31)

If k1 � k3 � k, we have the following corollary.

Corollary 1. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k> 0, c + k> 0,

2
�������
k(c + k)

􏽰
− d + k2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> λ.

⎧⎨

⎩ (32)

If k1 � k3 � k and k2 � 0, the following result is
obtained.

Corollary 2. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k> 0, c + k> 0,

2
�������
k(c + k)

􏽰
− |d|> λ.

􏼨 (33)

In some applications, one can only measure the position
variables for a chaotic system, which means that we only use
y1(t) − z1(t) in the feedback control. In this situation, one can
obtain k3 � 0. ,e corresponding result is given as follows.

Corollary 3. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k1 > 0, c> 0,

2
���
k1c

􏽰
− d + k2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> λ.

⎧⎨

⎩ (34)

Furthermore, in the case of k2 � k3 � 0, one can have the
following result.

Corollary 4. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k1 > 0, c> 0,

2
���
k1c

􏽰
− |d|> λ.

􏼨 (35)

Remark 4. Njah [10, 11] constructed the master-slave
synchronization scheme for the Φ6 Duffing equation and
studied master-slave synchronization by the active control,

in which the active controller u(t) �
u1(t)

u2(t)
􏼠 􏼡 ∈ R2 was

u1(t) � − 􏽢ae1(t) − 􏽢be2(t),

u2(t) � − a y5
1(t) − z5

1(t)( 􏼁 − l y3
1(t) − z3

1(t)( 􏼁

− η1e1(t) − η2e2(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

where 􏽢a, 􏽢b, η1, and η2 are parameters for control inputs.
,en, one can have the error system

_e1(t) � 􏽢ae1(t) +(1 + 􏽢b)e2(t),

_e2(t) � − d − η1( 􏼁e1(t) − c − η2( 􏼁e2(t).

⎧⎨

⎩ (37)

Obviously, a linear error system described by (37) can be
perfectly derived by the control (36) in [10, 11] which re-
moved all nonlinear terms of the error system, and the
stability criterion for the linear error system described by
(37) can be easily obtained. However, the original Duffing
oscillator (1) was completely canceled. Compared with
control (36) in [10, 11], control (9) in this paper has two
advantages. ,e first advantage is that the nonlinear term
y3
1(t) − z3

1(t) of the error system described by (10) is kept
which means that the error system described by (10) is a
nonlinear system, rather than a linear error system (37) in
[10, 11]. ,e second advantage is that it is easy to estimate
the bounds for z1(t) and g′(ξ(t)) by using (18) and (19),
respectively, which are necessary for deriving the stability
criterion for the error system described by (10).

Remark 5. In this paper, we only use the bound of z1(t)

because it can be estimated by (18).

4. Applications to Master-Slave
Synchronization of Chaotic Φ4

Duffing Oscillators

4.1. Master-Slave Synchronization of Classic Φ4 Duffing
Oscillators. Now, we can study the synchronization of
classic Φ4 Duffing oscillator (2). Let y1(t) � x(t) and
y2(t) � _y1(t). One can derive the dimensionless system (3),
in which g(y1(t)) is replaced by − ly3

1(t). From (19), the
bound of g′(·) can be estimated as

g′(ξ(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽥λ, (38)

where 􏽥λ � 3|l|σ in which σ � max ζ2(t)􏽮 􏽯,

∀ζ(t) ∈ (min y1(t), z1(t)􏼈 􏼉, max y1(t), z1(t)􏼈 􏼉). One can
construct the synchronization scheme described by (7)–(9)
for the system described by (2) and derive the error system
described by (13), where g(y1(t)) is replaced by − ly3

1(t).
Employing the Lyapunov function described by (23), one
can have the following synchronization criterion for the Φ4
Duffing oscillator described by (2).

Proposition 3. 4e error system described by (13), (15), and
(38) is globally asymptotically stable, i.e., the master system

4 Complexity



described by (7) and the slave system described by (8) achieve
synchronization if

Θ1 � − k2 + d( 􏼁p12 − p11k1 + 􏽥λ p12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 0,

Θ2 � − p22 k3 + c( 􏼁< 0,

− k1 + k3 + c( 􏼁p12 − k2 + d( 􏼁p22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽥λp22􏼐 􏼑
2
≤ 4Θ1Θ2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)

If P �
1 0
0 1􏼠 􏼡 in (23), one can obtain the following

synchronization criterion for Φ4 Duffing oscillator (2).

Proposition 4. 4e error system described by (13), (15), and
(38) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k1 > 0, c + k3 > 0,

2
���������
k1 c + k3( 􏼁

􏽱
− d + k2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 􏽥λ.

⎧⎪⎨

⎪⎩
(40)

Remark 6. Jiang [3] and Nijmeijer and Berghuis [9] studied
the tracking control for Duffing oscillators which can be
equivalent to master-slave synchronization for Duffing os-
cillators. ,e stability criteria for the error system were
derived by using the control u(t) � 􏽥Ke(t) − ς(t) [3], where

􏽥K �
0 0
k4 k5

􏼠 􏼡 and ς(t) �
0

3k6z
2
1(t)e1(t)

􏼠 􏼡 in which

k4, k5, and k6 are gains, and the control u(t) � 􏽥Ke(t) − υ(t)

[9], where 􏽥K �
0 0
k7 k8

􏼠 􏼡 and υ(t) �
0

3y1(t)z1(t)e1(t)
􏼠 􏼡

in which k7 and k8 are gains. It should be pointed out that
those controls in [3, 9] were nonlinear feedback controls.
Our control (9) u(t) � K(y(t) − z(t)) is a linear feedback
control.

Remark 7. Han et al. [32] and Njah and Vincent [37] used
the active control to derive synchronization criteria for
chaotic Φ4 Duffing oscillators, in which the active controller

u(t) �
u1(t)

u2(t)
􏼠 􏼡 ∈ R2 was

u1(t) � − z1(t) + y1(t) + �k1e1(t),

u2(t) � dz1(t) + cz2(t) + lz31(t) − dy1(t) − cy2(t)

− ly3
1(t) + �k2e2(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(41)

where �k1and �k2 are feedback gains. ,us, the error system
was

_e1(t) � − �k1e1(t),

_e2(t) � − �k2e2(t).

⎧⎨

⎩ (42)

As discussed in Remark 4, the error system described by
(42) was a linear system. Compared with the control method
in [32, 37], we keep the linear and nonlinear terms and fully

use the term − dy1(t) − cy2(t) − ly3
1(t) to derive the syn-

chronization criterion Proposition 3.

4.2. Master-Slave Synchronization of Parametrically Excited
Φ4 Duffing Oscillators. Wu et al. [36] studied the following
parametrically excited Φ4 Duffing oscillator:

_y1(t) � y2(t),

_y1(t) � (1 + μ sinωt)y1(t) − y3
1(t) − cy2(t),

􏼨 (43)

where μ and ω are constants, which can be rewritten as

_y(t) � �A(t)y(t) + �φ(y(t)), (44)

where

y(t) �
y1(t)

y2(t)
􏼠 􏼡 ∈ R2

,

�A(t) �
0 1

1 + μ sinωt − c
􏼠 􏼡,

�φ(y(t)) �
0

− y3
1(t)

􏼠 􏼡.

(45)

In [36], the master-slave scheme was constructed as
follows:

M : _y(t) � �A(t)y(t) + �φ(y(t)), (46)

S : _z(t) � �A(t)z(t) + �φ(z(t)) + u(t), (47)

C : u(t) � �K(y(t) − z(t)), (48)

where z(t) �
z1(t)

z2(t)
􏼠 􏼡 ∈ R2 and �K �

�k11
�k12

�k21
�k22

􏼠 􏼡 is a gain

matrix which can be determined. ,e initial conditions of
the master and slave system were y1(0) � y10, y2(0) � y20,
and z1(0) � z10, z2(0) � z20, respectively. ,e error system
was

_e(t) � (�A(t) + M(t) − �K)e(t), (49)

where

e(t) � y(t) − z(t) �
e1(t)

e2(t)

⎛⎝ ⎞⎠ �
y1(t) − y2(t)

z1(t) − z2(t)

⎛⎝ ⎞⎠,

M(t)e(t) � �φ(y(t)) − �φ(z(t))withM(t) �
0 0

− F(t) 0
⎛⎝ ⎞⎠,

F(t) � y
2
1(t) + z

2
1(t) + y1(t)z1(t)􏼐 􏼑.

(50)

,e initial conditions of the error system were
e1(0) � e10 � y1(0) − z1(0), e2(0) � e20 � y2(0) − z2(0).

Choosing ourmethod, one can use the control as follows:

C : u(t) � K(y(t) − z(t)), (51)

Complexity 5



where K �
k1 1
k2 k3

􏼠 􏼡 in which k1 > 0, k2, and k3 can be

determined later. From master-slave schemes (46), (47), and
(51), one can have the following error system:

_e1(t) � − k1e1(t),

_e2(t) � 1 + μ sinωt − k2􏼐 􏼑e1(t) + g y1(t)( 􏼁 − g z1(t)( 􏼁( 􏼁

− c + k3􏼐 􏼑e2(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(52)

where

g y1(t)( 􏼁 � − y
3
1(t), (53)

and the initial condition is e1(0) � e10 and e2(0) � e20. From
(19), one can obtain

g y1(t)( 􏼁 − g z1(t)( 􏼁 � − y
3
1(t) + z

3
1(t) � g′(ξ(t))

· y1(t) − z1(t)( 􏼁,

g′(ξ(t)) � − 3ξ2(t), ξ(t) ∈ min y1(t), z1(t)􏼈 􏼉,(

max y1(t), z1(t)􏼈 􏼉􏼁.

(54)

,en, the error system described by (52) can be rewritten
as

_e(t) � �K(t)e(t), (55)

where

�K(t) �
− k1 0

1 + μ sinωt − k2 + g′(ξ(t)) − c − k3

⎛⎝ ⎞⎠. (56)

It follows from (19) that there exists a scale λ> 0 such
that

g′(ξ(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ λ, (57)

where

λ � 3σ,

σ � max ζ2(t)􏽮 􏽯,
(58)

∀ζ(t) ∈ (min y1(t), z1(t)􏼈 􏼉, max y1(t), z1(t)􏼈 􏼉). By using
the similar proof of Proposition 1, one can have the syn-
chronization result for (43).

Proposition 5. 4e error system described by (52) is globally
asymptotically stable, i.e., the master system described by (46)
and the slave system described by (47) achieve synchroni-
zation if

k1 > 0, c + k3 > 0,

2
���������
k1 c + k3􏼐 􏼑

􏽱
− 1 +|μ| + k2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 􏽥λ.

⎧⎪⎨

⎪⎩
(59)

5. Simulation Study

5.1. Simulation for Chaotic Φ6 Duffing Oscillators.
Consider the chaotic Φ6 Duffing oscillator (1) with a � 0.1,
c � 0.4, d � 1.1, l � 0.4, q � 1.8, and ω � 2.1. If we choose
the initial condition of (1) as y10 � 0 and z10 � − 1, there is an
attractor which is demonstrated in Figure 1. From Figure 1,
one can obtain that the bound of |y1(t)| is 1.4, i.e., m1 � 1.4.

For the master-slave scheme (7)–(9) with (1), one can
choose the initial condition of the slave system as z10 � 0.1
and z20 � − 1.5. By virtue of (18), one can obtain
|z1(t)|≤ 1.4 + 0.1 � 1.5. It follows from (19) that
|g′(ξ(t))|≤ 5.2313 � λ. Let k2 � 0 and k1 � k3. From Cor-
ollary 2, we have

���������
k1(c + k1)

􏽰
> ((λ + d)/2), which implies

that k1 ≥ 2.97. We choose k1 � 2.98.
Figures 2–4 give the simulation results for the master

system, the slave system, and the error systemwith k1 � 2.98,
k2 � 0, and k3 � 2.98, respectively, from which one can see
that the error system (10) is globally asymptotically stable;
i.e., the master-slave synchronization scheme described by
(7)–(9) indeed achieves synchronization.

5.2. Simulation for Classic Φ4 Duffing Oscillators. For the
classic Φ4 Duffing oscillator (2), parameters c, d, l, q, andω
are the same as those defined in the abovementioned Φ6
Duffing oscillators. If we choose the initial condition of (1) as
y10 � 0 and z10 � − 1, there is an attractor which is dem-
onstrated in Figure 5. From Figure 5, we have that the bound
of |y1(t)| is 1.4, i.e., m1 � 1.4.

Consider the master-slave scheme (7)–(9) with (2),
where the initial condition of the slave system is z10 � 0.1
and z20 � 1.5. From (18), we have |z1(t)|≤ 1.4 + 0.1 � 1.5. It
follows from (38) that |g′(ξ(t))|≤ 2.7 � 􏽥λ. Let k2 � 0
and k1 � k3. From Proposition 4, we have

���������
k1(c + k1)

􏽰
>

((λ + d)/2), which implies that k1 ≥ 1.71. We choose
k1 � 1.72.

Figures 6–8 give the simulation results for the master
system, the slave system, and the error systemwith k1 � 1.72,
k2 � 0, and k3 � 1.72, respectively. It follows from
Figures 6–8 that the error system (10) is globally asymp-
totically stable; i.e., the master-slave synchronization scheme
described by (7)–(9) indeed achieves synchronization.

5.3. Simulation for Parametrically Excited Φ4 Duffing
Oscillators. Now, we study the synchronization of para-
metrically excited Φ4 Duffing oscillators (43) where c � 0.2,
μ � 0.5, and ω � 1. ,e initial conditions of master system
(46) and slave system (47) are y1(0) � 1.6, y2(0) � 0.2 and
z1(0) � 2, z2(0) � 1.4, respectively. It follows from Figure 9
that the up bound of |y1(t)| is 1.66. However, we can see that
the up bound of |z1(t)| is larger than 2 because z1(0) � 2.

It follows from (57) that |z1(t)|≤ 1.66 + 0.4 � 2.06 and
|g′(ξ(t))|≤ 3 × 2.062 � 12.7308 � λ. Let k1 � k3 and k2 � 0.
Using Proposition 5, one can have k1 � k3 > 7.01. Let
k1 � k3 � 7.1. Figure 10 illustrates that the error system
is globally asymptotically stable; i.e., the master-slave

6 Complexity
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synchronization scheme described by (46), (47), and (51)
indeed achieves synchronization.

6. Conclusion

We have constructed amaster-slave synchronization scheme
for chaotic Φ6 Duffing oscillators by using linear feedback
control. By estimating the first trajectory of the controlled
slave system and keeping the nonlinear property of the error
system, we have derived some synchronization criteria.
,en, we have used three examples to illustrate the effec-
tiveness of synchronization criteria for Duffing oscillators. In
this paper, master and slave systems are all Φ6 Duffing
oscillators. ,e synchronization between Φ6 and Φ4 Duffing
oscillators and the synchronization between Φ6 Duffing
oscillators with different parameters are our future research
interests. Moreover, how to design the time delayed feedback
control to achieve synchronization between Φ6 Duffing
oscillators with different parameters can be our future re-
search interest as well.
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