
Research Article
Subgame Perfect Equilibrium in the Rubinstein Bargaining
Game with Loss Aversion

Zhongwei Feng and Chunqiao Tan

School of Business, Central South University, Changsha 410083, China

Correspondence should be addressed to Chunqiao Tan; chunqiaot@sina.com

Received 9 November 2018; Accepted 11 February 2019; Published 26 March 2019

Academic Editor: Ludovico Minati

Copyright © 2019 Zhongwei Feng and Chunqiao Tan. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Rubinstein bargaining game is extended to incorporate loss aversion, where the initial reference points are not zero. Under the
assumption that the highest rejected proposal of the opponent last periods is regarded as the associated reference point, we
investigate the effect of loss aversion and initial reference points on subgame perfect equilibrium. Firstly, a subgame perfect
equilibrium is constructed. And its uniqueness is shown. Furthermore, we analyze this equilibrium with respect to initial reference
points, loss aversion coefficients, and discount factor. It is shown that one benefits from his opponent’s loss aversion coefficient and
his own initial reference point and is hurt by loss aversion coefficient of himself and the opponent’s initial reference point.Moreover,
it is found that, for a player who has a higher level of loss aversion than the other, although this player has a higher initial reference
point than the opponent, this player can(not) obtain a high share of the pie if the level of loss aversion of this player is sufficiently
low (high). Finally, a relation with asymmetric Nash bargaining is established, where player’s bargaining power is negatively related
to his own loss aversion and the initial reference point of the other and positively related to loss aversion of the opponent and his
own initial reference point.

1. Introduction

A large number of experimental literature pieces on bar-
gaining explore the nature of agreements and disagreements
and the dynamics of bargaining. There are two critical
conclusions: firstly, in real bargaining problem, bargaining is
a gradual process and the agreements can be reached after
many periods. Secondly, there is a strictly positive probability
of disagreement. For the classical bargaining problem of
dividing a pie, whose size is one unit, between two bargainers,
Rubinstein [1] assumed that preferences of bargainers are
time dependent. In many bargaining situations, however, the
assumption may be violated and the share finally obtained by
a bargainer may depend on the history of alternating offers
made so far. In particular, the phenomenon of loss aversion
in bargaining problems is pointed out by Driesen et al. [2] as
follows: a share of 𝑥% is evaluated less if a share of 𝑦% with𝑦 > 𝑥 has been within reach at an earlier stage of the game.

Kahneman and Tversky [3] first proposed loss aver-
sion. As the most striking result of the investigation of

reference-dependent utility functions, loss aversion is applied
to lots of applications with fixed reference point [4, 5]. For
the situation of loss aversion where the reference points are
fixed, we can regard it as a special case of risk aversion.
Roth [6] investigated the impact of risk aversion on the
classical Rubinstein alternating offers bargainingmodel in the
context of full rationality of bargainers. However, in many
applications, it is likely that a loss depends on history of the
bargaining. That is, the reference points are endogenous [7].
Shalev [8] considered objective discount and loss aversion
and obtained the unique subgame perfect equilibrium (SPE)
of the Rubinstein bargaining with the transformed discount
factors. Compte and Jehiel [9] assumed that a new bargaining
phase begins at a fixed cost if a breakdown of the bargaining
occurs. In each new bargaining phase, the reference points
can be adjusted and the highest offer received over the process
of bargaining and the first mover is chosen from the two
agents at random with probability 1/2. Li [10] assumed that
a player would rather reject any share that is less than the
highest offer in the past and found a unique subgame perfect
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equilibrium. Schwartz and Wen [11] assumed that a proposal
of a bargainer made to the other cannot be less than a
proposal made to that player. Hyndman [12] assumed that
a bargainer with reference dependent preferences prefers his
current reference point to impasse to consuming below their
current reference points. Closer to this paper is Driesen et
al. [2]; they investigated the impact of loss aversion on the
Rubinstein bargaining game based on the assumption that the
initial reference points are zero and one’s reference point in
the process of bargaining is regarded as the highest rejected
offer of his opponent last rounds of bargaining. Although it
is reasonable that the reference points at the beginning of
bargaining are zero in a lot of instances, it may be essential
that the reference points at the beginning of bargaining
are not zero in others. For example, a player may transfer
his expectations derived from previous opponents when he
enters into a new bargaining situation with another player.
Thus, how to investigate the impact of loss aversion and the
initial reference points on the classical Rubinstein bargaining
game is a valuable topic and also the objective of this paper.

We adopt the model of loss aversion proposed by Shalev
[13]. In Shalev’s model, a player’s preference is modeled by
the following elements: basic utility function of decision-
maker, loss aversion coefficient, and reference point. The
outcomes that are less than some reference point are regarded
as losses. And the corresponding values of utilities are scaled
down by loss aversion parameter. A number of applications
are consistent with Shalev’s model of loss version. The basic
assumption of Shalev’s model is that the loss aversion coef-
ficient is regarded as a constant parameter, which makes the
model be easily used.The loss aversion coefficient is constant
in the following two different aspects: first, for the utility of
an outcome that is less than the reference outcome, it can
be obtained from the basic utility by subtracting a disutility,
which is obtained from the size of the loss multiplied by a
parameter — loss aversion coefficient. Second, the parameter
is constant across different reference points; that is, the loss
aversion coefficient does not depend on reference point [14].

In this paper, we extend the analysis of the Rubinstein
bargaining game to incorporate loss aversion and reference
dependence, where the initial reference points are not zero.
We assume that a bargainer’s reference point in the bargaining
process is equal to the highest rejected offer of his opponent
that is higher than his own initial reference point, since it can
be regarded as the share that could have been obtained so far.
A simplemodification of the Rubinstein bargaining game can
be transformed into a newbargaining gamewith loss aversion
and reference dependence through changed reference points,
which depends on the history of bargaining. In our model,
subgames depend not only on the initial reference points,
but also on the impact the history of bargaining has on
preferences, which leads to much more complications to
analyzing the characterization of SPE. On the other hand, for
Rubinstein bargaining game with loss aversion and reference
dependence, where the initial reference points are not zero
and the discount factor is regarded as the probability of
entering a new phase of bargaining after rejecting a proposal
of a player, we construct the unique subgame perfect equi-
librium (SPE), and its features are shown. Finally, we analyze

the impact of loss aversion coefficients and the discounting
factor (or the probability of continuation) on subgame perfect
equilibrium.

The remainder of the present paper is organized as fol-
lows. After preliminaries in Section 2, we define the SPE in the
Rubinstein bargaining model with loss aversion, construct
a SPE, and concern uniqueness of the SPE in Section 3. In
Section 4, we discuss convergence of the subgame perfect
equilibrium for the probability of continuation. In Section 5,
conclusion is given.

2. Preliminaries

2.1. Rubinstein Bargaining Model. Player 1 and player 2 have
to reach an agreement on how to divide one unit of a pie.The
set of all possible partitions is denoted by

𝑍 š {(𝑧1, 𝑧2) ∈ 𝑅2 | 𝑧1 + 𝑧2 = 1, 𝑧1, 𝑧2 ≥ 0} . (1)

Bargaining occurs at times 𝑡 ∈ 𝑇 = {1, 2, . . .}. For simplicity,
the set of oddmoments is denoted by𝑇𝑜𝑑𝑑 fl {1, 3, . . . . . .} and
the set of even moments is denoted by 𝑇𝑒V𝑒𝑛 fl {2, 4, . . . . . .}.
At oddmoments, player 1 offers (𝑧1, 𝑧2) ∈ 𝑍 and this proposal
is accepted (𝑌) or rejected (𝑁) by player 2. At even moments,
for players 1 and 2, their roles are reversed. We assume that
the history of bargaining is common knowledge; that is, one
knows all previous offers at any moment 𝑡 ∈ 𝑇, including
his own and those of his opponent. If players accept the
proposal (𝑧1, 𝑧2), then player 𝑖 (𝑖 = 1, 2) obtains 𝑧𝑖 and the
bargaining ends. If a proposal offered by player 𝑖 is rejected by
his opponent, then the bargaining continues to a new phase
with probability 0 < 𝛿 < 1 and ends in probability 1 − 𝛿.
For the latter case, it means that the bargaining game ends in
disagreement; that is, players obtain the shares (𝑟01 , 𝑟02), where𝑟01 and 𝑟02 represent the initial reference points of players.

For each odd moment, a strategy 𝑓 played by player 1
specifies a proposal in 𝑍 that depends on the history of the
bargaining so far; on the other hand, for each evenmoment, a
decision𝑌 orN ismade, where this decision not only depends
on the proposal at the current phase but also on the history
of bargaining. Similarly, player 2 plays a strategy 𝑔, with the
roles for moments 𝑡 ∈ 𝑇odd and 𝑡 ∈ 𝑇even are reversed.

At time 𝑡 ∈ 𝑇, the history of the bargaining is denoted
by ℎ𝑡, which is defined as a vector of proposals of bargainers.
Specifically, ℎ𝑡 fl (𝑧1, 𝑧2, . . . , 𝑧𝑡), where 𝑧𝑠 ∈ 𝑍 for all 𝑠 ≤ 𝑡.
Furthermore, at time 𝑡 ∈ 𝑇, all possible histories ℎ𝑡 are
denoted by𝐻𝑡 in the bargaining game. That is,𝐻𝑡 fl ∏𝑡𝑠=1𝑍,
let𝐻0 fl (ℎ0), where ℎ0 is an empty history.

Let 𝐹 be strategy set of player 1, denoted by sequences of
functions (𝑓𝑡)𝑡∈𝑇 where for 𝑡 = 1: 𝑓𝑡 ∈ 𝑍, for 𝑡 > 1 and𝑡 ∈ 𝑇𝑜𝑑𝑑: 𝑓𝑡:𝐻𝑡-1 󳨀→ 𝑍, and for 𝑡 ∈ 𝑇𝑒V𝑒𝑛: 𝑓𝑡:𝐻𝑡 󳨀→ {𝑌,𝑁},
and let G be strategies of player 2, denoted by sequences of
functions (𝑔𝑡)𝑡∈𝑇 where for 𝑡 ∈ 𝑇𝑜𝑑𝑑: 𝑔𝑡: 𝐻𝑡 󳨀→ {𝑌,𝑁}
and for 𝑡 ∈ 𝑇𝑒V𝑒𝑛: 𝑔𝑡: 𝐻𝑡-1 󳨀→ 𝑍. An agreement path is
denoted by (ℎ𝑡, 𝑎), which is a history ℎ𝑡 ∈ 𝐻𝑡 ending in
agreement at time 𝑡. All time 𝑡 agreement paths are denoted
by 𝐴𝑡 fl {(ℎ𝑡, 𝑎) | ℎ𝑡 ∈ 𝐻𝑡}. The set A fl ⋃𝑡∈𝑇𝐴𝑡 contains
all histories that end in agreement. Similarly, a disagreement
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path is denoted as (ℎ𝑡, 𝑑), which means that a history ℎ𝑡 ∈ 𝐻𝑡
ends in disagreement at time 𝑡. 𝐷𝑡 fl {(ℎ𝑡, 𝑑) | ℎ𝑡 ∈ 𝐻𝑡}
contains all time 𝑡 disagreement paths.𝐷 fl ⋃𝑡∈𝑇𝐷𝑡 contains
all histories ending in disagreement. All objects of (ℎ𝑡, 𝑐)
are denoted by the set 𝐶𝑡; that is, histories do not end at
moment t. On the other hand, we define𝐻∞ fl {(𝑧1, 𝑧2, . . .) |𝑧𝑡 ∈ 𝑍 for all 𝑡 ∈ 𝑇}. The elements of 𝐻∞ are defined as
infinite paths. Therefore, the set that contains all paths of the
bargaining game can be denoted by𝐻 fl 𝐻∞ ∪ 𝐴 ∪ 𝐷. Note
that a set of paths in 𝐻 is determined by a strategy profile(𝑓, 𝑔) ∈ 𝐹 × 𝐺. In particular, if an agreement at time t is
reached when players play (𝑓, 𝑔), the set of paths associated
with (𝑓, 𝑔) not only contains 𝑡 − 1 paths in the set 𝐷 but also
contains one in the set 𝐴. If an agreement is never reached
when (𝑓, 𝑔) is played, then the set only contains paths in𝐷.

The function 𝜉𝑖 fl 𝐻\𝐻∞ 󳨀→ [𝑟0𝑖 , 1] is introduced,which
is used to specify the share that player 𝑖 (𝑖 = 1, 2) obtains
for each finite path in 𝐻. Specifically, for all ℎ𝑡 ∈ 𝐻𝑡, ℎ𝑡 =(𝑧1, 𝑧2, . . . , 𝑧𝑡), we have that 𝜉𝑖(ℎ𝑡, 𝑎) fl 𝑧𝑡𝑖 and 𝜉𝑖(ℎ𝑡, 𝑑) fl 𝑟0𝑖 ,
where 𝑟0𝑖 is the initial reference point of player 𝑖.
2.2. Loss Aversion. Kahneman and Tversky [3] first proposed
loss aversion; its central assumption is that gains are smaller
than losses. For instance, the decrease in utility of loss of
10 dollars if one has 100 dollars is larger than the increase
in utility of gain of 10 dollars if one has 90 dollars. Shalev
[13] proposed another model of loss aversion to measure this.
In Shalev’s model, loss aversion of each player 𝑖 (𝑖 = 1, 2)
is characterized by loss aversion coefficient 𝜆𝑖, where 𝜆𝑖 is
nonnegative. And let 𝑟𝑖 be a reference point of player 𝑖. The
utility function is given by the following transformation:

𝑤𝑖 (𝑧𝑖, 𝜆𝑖, 𝑟𝑖) = {{{
𝑧𝑖 if 𝑧𝑖 ≥ 𝑟𝑖
𝑧𝑖 − 𝜆𝑖 (𝑟𝑖 − 𝑧𝑖) if 𝑧𝑖 < 𝑟𝑖 (2)

or, equivalently,

𝑤𝑖 (𝑧𝑖, 𝜆𝑖, 𝑟𝑖) = (1 + 𝜆𝑖) 𝑧𝑖 − 𝜆𝑖max {𝑟𝑖, 𝑧𝑖} (3)

If the outcomes that are less than reference point are regarded
as losses, then the values of utilities are scaled down by 𝜆𝑖. If
the values of the payoffs are higher than that of the reference
point, then the payoffs are left unchanged.

In a number of applications, the reference points are
usually given exogenously, which sidesteps the important
question of the significance of the reference points. Thus,
the fact that players’ reference points are endogenous is the
motivation for this paper.

3. Equilibrium in the Rubinstein Bargaining
Game with Loss Aversion

At time 𝑡, all the proposals made to a player by his opponent
so far, possibly including the proposal at time 𝑡, specify all the
shares that this player could have obtained up to the current
time 𝑡.Thus, themaximum of those shares can be regarded as
the reference point of this player, since themaximumof those
shares represents what this player could have obtained: shares

below this reference point represent losses and their utilities
are evaluated by (3).

For real bargaining problems, a player may transfer
his expectations derived from previous opponents when he
enters into a new bargaining situation with another player.
For such situations, it is more appropriate that the initial
reference points of players are not equal to zero. However, if
player 𝑖 starts the bargaining by offering an equal split (1/2,
1/2) to his opponent, there is a risk that — if breakdown
occurs and a new bargaining phrase starts — the reference
point of his opponent switches to a new value that it is larger
than the initial value 1/2 [9]. Thus, let 𝑟01 and 𝑟02 be the initial
reference points of players 1 and 2, where 𝑟01 , 𝑟02 ∈ (0, 1/2).
At any moment 𝑡 ≥ 1, the reference point of player 1 is𝑟𝑡1 = max{𝑟01 , 𝑧𝑠1 | 𝑠 = 2, 4, . . . . . . ≤ 𝑡} and the reference
point of player 2 is 𝑟𝑡2 = max{𝑟02 , 𝑧𝑠2 | 𝑠 = 1, 3, . . . . . . ≤𝑡}, if 𝑧1, 𝑧2, . . . , 𝑧𝑡 ∈ 𝑍 are the offers made up to time t.
Thus, the Rubinstein bargaining game that is extended to
incorporate loss aversion and reference dependence is not
history independent anymore.

For player 𝑖, the utility functions for agreement
paths and disagreement paths are defined as𝑢𝑖(ℎ𝑡, 𝑎) = 𝑤𝑖(𝜉𝑖(ℎ𝑡, 𝑎), 𝑟𝑖(ℎ𝑡), 𝜆𝑖, 𝑟0𝑖 ) and 𝑢𝑖(ℎ𝑡, 𝑑) =𝑤𝑖(𝜉𝑖(ℎ𝑡, 𝑑), 𝑟𝑖(ℎ𝑡), 𝜆𝑖, 𝑟0𝑖 ), respectively. In 𝐻∞, the utility
evaluation of player 𝑖 is defined as 𝑢𝑖 = −𝜆𝑖 for all ℎ ∈ 𝐻∞,
which means that the utility of perpetual disagreement is−𝜆𝑖.

Let 𝑈𝑖 : 𝐹 × 𝐺 󳨀→ 𝑅 be the expected utility function
and the strategy profile (𝑓, 𝑔) ∈ 𝐹 × 𝐺 be played from the
moment 𝑡 ∈ 𝑇, where 𝑡 is the moment up until the history is
known. Then (𝑓 | ℎ𝑡, 𝑔 | ℎ𝑡) is played at moment 𝑡 + 1 and𝑈𝑖(𝑓 | ℎ𝑡, 𝑔 | ℎ𝑡) is defined as the expected utility of player 𝑖
at time 𝑡 if (𝑓, 𝑔) ∈ 𝐹 × 𝐺 is played.

Definition 1. The strategy profile (𝑓, 𝑔) is called a SPE if, for
every 𝑡 ∈ 𝑇 and every ℎ𝑡 ∈ 𝐻𝑡, it satisfies the following two
conditions:

𝑈1 (𝑓 | ℎ𝑡, 𝑔 | ℎ𝑡) ≥ 𝑈1 (𝑓 | ℎ𝑡, 𝑔 | ℎ𝑡) ∀𝑓 (4)

and

𝑈2 (𝑓 | ℎ𝑡, 𝑔 | ℎ𝑡) ≥ 𝑈2 (𝑓 | ℎ𝑡, 𝑔 | ℎ𝑡) ∀𝑔. (5)

3.1. Constructing Equilibrium. In this subsection, we con-
struct a SPE for the Rubinstein bargaining game with loss
aversion and reference dependence, where the initial refer-
ence points are not zero. Players’ strategies in the SPE are
stationaryMarkov strategies: both proposals and decisions of
acceptance or rejection depend only on the initial reference
points and the current reference points.The SPE in this paper
still satisfy the following two characteristics that share with
SPE in the classical bargaining game proposed by Rubinstein:
(i) every proposal in equilibrium is immediately accepted;
and (ii) for the decision of acceptance or rejection, players
are always indifferent in equilibrium. In our model, a SPE is
constructed based on the assumption that a player’s proposal
should make the other one indifferent between this proposal
and his own proposal in the next phrase.
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Figure 1: The partition𝑋1,I, . . . . . . , 𝑋3,III, 𝑋4, where𝑋4 represents the set of the initial reference points.

At 𝑡 ∈ 𝑇𝑜𝑑𝑑, player 1 offers 𝑥 ∈ 𝑍. We assume that player 2
offers𝑦 ∈ 𝑍 atmoment 𝑡+1 and this proposal will be accepted
by his opponent if the proposal 𝑥 is rejected. Let 𝑟02 be the
initial reference point of player 2 and let 𝑟2 be a reference point
of player 2 at time 𝑡 − 1. If 𝑥 is accepted by player 2, then we
have

(1 + 𝜆2) (𝑥2 − 𝑟02) − 𝜆2max {𝑟2 − 𝑟02 , 𝑥2 − 𝑟02}
≥ 𝛿 ((1 + 𝜆2) (𝑦2 − 𝑟02)
− 𝜆2max {𝑦2 − 𝑟02 ,max {𝑟2 − 𝑟02 , 𝑥2 − 𝑟02}}) − (1
− 𝛿) 𝜆2max {𝑟2 − 𝑟02 , 𝑥2 − 𝑟02}

(6)

which means that player 2 should estimate the proposal 𝑥 at
moment 𝑡 at least as high as the proposal of himself 𝑦 at the
time 𝑡 + 1 after rejecting 𝑥. Similarly, we can give another
inequality at even moments as follows:

(1 + 𝜆1) (𝑦1 − 𝑟01) − 𝜆1max {𝑟1 − 𝑟01 , 𝑦1 − 𝑟01}
≥ 𝛿 ((1 + 𝜆1) (𝑥1 − 𝑟01)
− 𝜆1max {𝑥1 − 𝑟01 ,max {𝑟1 − 𝑟01 , 𝑦1 − 𝑟01}}) − (1
− 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑦1 − 𝑟01}

(7)

The equilibrium can be constructed by assuming the
inequalities (6) and (7) to be equalities. Let 𝜇𝑖 = 1+ 𝜆𝑖 (1 − 𝛿)

for 𝑖 = 1, 2. It follows from (6)with equality thatwe can obtain
the following three cases:

(I) 𝑟2 > 𝑦2 > 𝑥2 : 𝛿(𝑦2 − 𝑟02) = (𝑥2 − 𝑟02).
(II) 𝑦2 ≥ 𝑟2 > 𝑥2 : 𝛿(𝑦2−𝑟02) = (1+𝜆2)(𝑥2−𝑟02)−𝛿𝜆2(𝑟2−𝑟02).
(III) 𝑦2 > 𝑥2 ≥ 𝑟2 : 𝛿(𝑦2 − 𝑟02) = 𝜇2(𝑥2 − 𝑟02).
Similarly, we can obtain the following three cases from (7)

with equality
(1) 𝑟1 > 𝑥1 > 𝑦1 : 𝛿(𝑥1 − 𝑟01) = (𝑦1 − 𝑟01).
(2) 𝑥1 ≥ 𝑟1 > 𝑦1 : 𝛿(𝑥1 −𝑟01) = (1+𝜆1)(𝑦1 −𝑟01) −𝛿𝜆1(𝑟1 −𝑟01).
(3) 𝑥1 > 𝑦1 ≥ 𝑟1 : 𝛿(𝑥1 − 𝑟01) = 𝜇1(𝑦1 − 𝑟01).
For reference points of players, we can obtain a partition

of [𝑟0𝑖 , 1] (𝑖 = 1, 2) of all possible pairs (𝑟1, 𝑟2) into nine sets
by combining these equations (see Figure 1). In Figure 1, these
sets are denoted by 𝑋1,I, . . . , 𝑋3,III, 𝑋4, where 𝑋4 represents
the set of the initial reference points.

Therefore, the nine sets are formally described. All asso-
ciated equilibrium proposals are given as follows.

A Region 1, I

𝑋1,I = {(𝑟1, 𝑟2) , 𝑟𝑖 ∈ [𝑟0𝑖 , 1] | 𝑟1 > 11 + 𝛿 +
𝛿𝑟011 + 𝛿

− 𝑟021 + 𝛿 , 𝑟2 > 11 + 𝛿 −
𝑟011 + 𝛿 +

𝛿𝑟021 + 𝛿}
(8)
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The equilibrium proposals in𝑋1,I are shown as follows:

𝑥1,I
= ( 11 + 𝛿 +

𝛿𝑟011 + 𝛿 −
𝑟021 + 𝛿 , 𝛿1 + 𝛿 −

𝛿𝑟011 + 𝛿 +
𝑟021 + 𝛿) ;

𝑦1,I
= ( 𝛿1 + 𝛿 +

𝑟011 + 𝛿 −
𝛿𝑟021 + 𝛿 , 11 + 𝛿 −

𝑟011 + 𝛿 +
𝛿𝑟021 + 𝛿)

(9)

B Region 1, III

𝑋1,III = {(𝑟1, 𝑟2) , 𝑟𝑖 ∈ [𝑟0𝑖 , 1] | 𝑟1 > 1 + 𝜆21 + 𝜆2 + 𝛿
+ 𝛿𝑟011 + 𝜆2 + 𝛿 −

(1 + 𝜆2) 𝑟021 + 𝜆2 + 𝛿 , 𝑟2 ≤
𝛿1 + 𝜆2 + 𝛿

− 𝛿𝑟011 + 𝜆2 + 𝛿 +
(1 + 𝜆2) 𝑟021 + 𝜆2 + 𝛿 }

(10)

The equilibrium proposals in𝑋1,III are shown as follows:

𝑥1,III = ( 1 + 𝜆21 + 𝜆2 + 𝛿 +
𝛿𝑟011 + 𝜆2 + 𝛿

− (1 + 𝜆2) 𝑟021 + 𝜆2 + 𝛿 ,
𝛿1 + 𝜆2 + 𝛿 −

𝛿𝑟011 + 𝜆2 + 𝛿
+ (1 + 𝜆2) 𝑟021 + 𝜆2 + 𝛿 ) ;

𝑦1,III = (𝛿 (1 + 𝜆2)1 + 𝜆2 + 𝛿 +
𝜇2𝑟011 + 𝜆2 + 𝛿

− 𝛿 (1 + 𝜆2) 𝑟021 + 𝜆2 + 𝛿 ,
1 + 𝜆2 (1 − 𝛿)1 + 𝜆2 + 𝛿 − 𝜇2𝑟011 + 𝜆2 + 𝛿

+ 𝛿 (1 + 𝜆2) 𝑟021 + 𝜆2 + 𝛿 )

(11)

C Region 3, I

𝑋3,I = {(𝑟1, 𝑟2) , 𝑟𝑖 ∈ [𝑟0𝑖 , 1] | 𝑟1 ≤ 𝛿1 + 𝜆1 + 𝛿
+ (1 + 𝜆1) 𝑟011 + 𝜆1 + 𝛿 −

𝛿𝑟021 + 𝜆1 + 𝛿 , 𝑟2 >
1 + 𝜆11 + 𝜆1 + 𝛿

− (1 + 𝜆1) 𝑟011 + 𝜆1 + 𝛿 +
𝛿𝑟021 + 𝜆1 + 𝛿}

(12)

The equilibrium proposals in𝑋3,I are shown as follows:

𝑥3,I = (1 + 𝜆1 (1 − 𝛿)1 + 𝜆1 + 𝛿 + 𝛿 (1 + 𝜆1) 𝑟011 + 𝜆1 + 𝛿
− (1 + 𝜆1 (1 − 𝛿)) 𝑟021 + 𝜆1 + 𝛿 , 𝛿 (1 + 𝜆1)1 + 𝜆1 + 𝛿 −

𝛿 (1 + 𝜆1) 𝑟011 + 𝜆1 + 𝛿
+ (1 + 𝜆1 (1 − 𝛿)) 𝑟021 + 𝜆1 + 𝛿 ) ;

𝑦3,I = ( 𝛿1 + 𝜆1 + 𝛿 +
(1 + 𝜆1) 𝑟011 + 𝜆1 + 𝛿

− 𝛿𝑟021 + 𝜆1 + 𝛿 ,
1 + 𝜆11 + 𝜆1 + 𝛿 −

(1 + 𝜆1) 𝑟011 + 𝜆1 + 𝛿
+ 𝛿𝑟021 + 𝜆1 + 𝛿)

(13)

D Region 3, III

𝑋3,III = {(𝑟1, 𝑟2) , 𝑟𝑖 ∈ [𝑟0𝑖 , 1] | 𝑟1 ≤ 𝛿 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2
+ 𝜇2𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 − 𝛿𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 , 𝑟2 ≤

𝛿 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2
− 𝛿𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 +

𝜇1𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 }

(14)

The equilibrium proposals in𝑋3,III are shown as follows:

𝑥3,III = (𝜇1 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 +
𝛿𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2

− 𝜇1𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 ,
𝛿 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 −

𝛿𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2
+ 𝜇1𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 ) ;

𝑦3,III = (𝛿 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 +
𝜇2𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2

− 𝛿𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 ,
𝜇2 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 −

𝜇2𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2
+ 𝛿𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 )

(15)
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E Region 1, II

𝑋1,II = {(𝑟1, 𝑟2) , 𝑟𝑖 ∈ [𝑟0𝑖 , 1] | 𝑟1
> (𝜇2 − 𝛿) + 𝛿𝜆2 (1 − 𝑟2)1 + 𝜆2 − 𝛿2 + 𝛿 (1 − 𝛿) 𝑟011 + 𝜆2 − 𝛿2
− (1 + 𝜆2) (1 − 𝛿) 𝑟021 + 𝜆2 − 𝛿2 , 𝛿1 + 𝜆2 + 𝛿 −

𝛿𝑟011 + 𝜆2 + 𝛿
+ (1 + 𝜆2) 𝑟021 + 𝜆2 + 𝛿 < 𝑟2 ≤

11 + 𝛿 −
𝑟011 + 𝛿 +

𝛿𝑟021 + 𝛿} .

(16)

The equilibrium proposals in𝑋1,II are shown as follows:

𝑥1,II = ((𝜇2 − 𝛿) + 𝛿𝜆2 (1 − 𝑟2)1 + 𝜆2 − 𝛿2 + 𝛿 (1 − 𝛿) 𝑟011 + 𝜆2 − 𝛿2
− (1 + 𝜆2) (1 − 𝛿) 𝑟021 + 𝜆2 − 𝛿2 , 𝛿 (1 − 𝛿) + 𝛿𝜆2𝑟21 + 𝜆2 − 𝛿2
− 𝛿 (1 − 𝛿) 𝑟011 + 𝜆2 − 𝛿2 +

(1 + 𝜆2) (1 − 𝛿) 𝑟021 + 𝜆2 − 𝛿2 ) ;

𝑦1,II = (𝛿 (𝜇2 − 𝛿) + 𝛿2𝜆2 (1 − 𝑟2)1 + 𝜆2 − 𝛿2
+ (1 + 𝜆2) (1 − 𝛿) 𝑟011 + 𝜆2 − 𝛿2
− 𝛿 (1 + 𝜆2) (1 − 𝛿) 𝑟021 + 𝜆2 − 𝛿2 , (𝜇2 − 𝛿) + 𝛿2𝜆2𝑟21 + 𝜆2 − 𝛿2
− (1 + 𝜆2) (1 − 𝛿) 𝑟011 + 𝜆2 − 𝛿2 + 𝛿 (1 + 𝜆2) (1 − 𝛿) 𝑟021 + 𝜆2 − 𝛿2 )

(17)

F Region 3, II

𝑋3,II = {(𝑟1, 𝑟2) , 𝑟𝑖 ∈ [𝑟0𝑖 , 1] | 𝑟1
≤ 𝛿 (𝜇2 − 𝛿 + 𝜆2𝛿 (1 − 𝑟2))𝜇1 (1 + 𝜆2) − 𝛿2 + (1 + 𝜆2) (𝜇1 − 𝛿) 𝑟01𝜇1 (1 + 𝜆2) − 𝛿2
− 𝛿 (𝜇2 − 𝛿) 𝑟02𝜇1 (1 + 𝜆2) − 𝛿2 ,

𝛿 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 −
𝛿𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2

+ 𝜇1𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 < 𝑟2 < 1 + 𝜆11 + 𝜆1 + 𝛿 −
(1 + 𝜆1) 𝑟011 + 𝜆1 + 𝛿

+ 𝛿𝑟021 + 𝜆1 + 𝛿} .

(18)

The equilibrium proposals in𝑋3,II are shown as follows:

𝑥3,II = (𝜇1 (𝜇2 − 𝛿 + 𝜆2𝛿 (1 − 𝑟2))𝜇1 (1 + 𝜆2) − 𝛿2
+ 𝛿 (𝜇1 − 𝛿) 𝑟01𝜇1 (1 + 𝜆2) − 𝛿2
− 𝜇1 (𝜇2 − 𝛿) 𝑟02𝜇1 (1 + 𝜆2) − 𝛿2 ,

𝛿 (𝜇1 − 𝛿 + 𝜆2𝑟2𝜇1)𝜇1 (1 + 𝜆2) − 𝛿2
− 𝛿 (𝜇1 − 𝛿) 𝑟01𝜇1 (1 + 𝜆2) − 𝛿2 +

𝜇1 (𝜇2 − 𝛿) 𝑟02𝜇1 (1 + 𝜆2) − 𝛿2)

𝑦3,II = (𝛿 (𝜇2 − 𝛿 + 𝜆2𝛿 (1 − 𝑟2))𝜇1 (1 + 𝜆2) − 𝛿2
+ (1 + 𝜆2) (𝜇1 − 𝛿) 𝑟01𝜇1 (1 + 𝜆2) − 𝛿2
− 𝛿 (𝜇2 − 𝛿) 𝑟02𝜇1 (1 + 𝜆2) − 𝛿2 ,

(1 + 𝜆2) (𝜇1 − 𝛿) + 𝜆2𝛿2𝑟2𝜇1 (1 + 𝜆2) − 𝛿2
− (1 + 𝜆2) (𝜇1 − 𝛿) 𝑟01𝜇1 (1 + 𝜆2) − 𝛿2 + 𝛿 (𝜇2 − 𝛿) 𝑟02𝜇1 (1 + 𝜆2) − 𝛿2)

(19)

G Region 2, I

𝑋2,I = {(𝑟1, 𝑟2) , 𝑟𝑖 ∈ [𝑟0𝑖 , 1] | 𝛿1 + 𝜆1 + 𝛿
+ (1 + 𝜆1) 𝑟011 + 𝜆1 + 𝛿 −

𝛿𝑟021 + 𝜆1 + 𝛿 < 𝑟1 ≤
11 + 𝛿 +

𝛿𝑟011 + 𝛿
− 𝑟021 + 𝛿 , 𝑟2 >

(𝜇1 − 𝛿) + 𝛿𝜆1 (1 − 𝑟1)1 + 𝜆1 − 𝛿2
− (1 − 𝛿) (1 + 𝜆1) 𝑟011 + 𝜆1 − 𝛿2 − 𝛿 (1 − 𝛿) 𝑟021 + 𝜆1 − 𝛿2} .

(20)

The equilibrium proposals in𝑋2,I are shown as follows:

𝑥2,I = ((𝜇1 − 𝛿) + 𝛿2𝜆1𝑟11 + 𝜆1 − 𝛿2 + 𝛿 (1 − 𝛿) (1 + 𝜆1) 𝑟011 + 𝜆1 − 𝛿2
− (1 + 𝜆1) (1 − 𝛿) 𝑟021 + 𝜆1 − 𝛿2 , 𝛿 (𝜇1 − 𝛿) + 𝛿2𝜆1 (1 − 𝑟1)1 + 𝜆1 − 𝛿2
− 𝛿 (1 − 𝛿) (1 + 𝜆1) 𝑟011 + 𝜆1 − 𝛿2 + (1 + 𝜆1) (1 − 𝛿) 𝑟021 + 𝜆1 − 𝛿2 ) ;

𝑦2,I = (𝛿 (1 − 𝛿) + 𝛿𝜆1𝑟11 + 𝜆1 − 𝛿2 + (1 − 𝛿) (1 + 𝜆1) 𝑟011 + 𝜆1 − 𝛿2
− 𝛿 (1 − 𝛿) 𝑟021 + 𝜆1 − 𝛿2 ,

(𝜇1 − 𝛿) + 𝛿𝜆1 (1 − 𝑟1)1 + 𝜆1 − 𝛿2
− (1 − 𝛿) (1 + 𝜆1) 𝑟011 + 𝜆1 − 𝛿2 + 𝛿 (1 − 𝛿) 𝑟021 + 𝜆1 − 𝛿2) .

(21)
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H Region 2, III

𝑋2,III = {(𝑟1, 𝑟2) , 𝑟𝑖 ∈ [𝑟0𝑖 , 1] | 𝛿 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2
+ 𝜇2𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 − 𝛿𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 < 𝑟1 ≤ 1 + 𝜆21 + 𝜆2 + 𝛿
+ 𝛿𝑟011 + 𝜆2 + 𝛿 −

(1 + 𝜆2) 𝑟021 + 𝜆2 + 𝛿 , 𝑟2
≤ 𝛿 (𝜇1 − 𝛿 + 𝜆1𝛿 (1 − 𝑟1))𝜇2 (1 + 𝜆1) − 𝛿2 − 𝛿 (𝜇1 − 𝛿) 𝑟01𝜇2 (1 + 𝜆1) − 𝛿2
+ (𝜇2 − 𝛿) (1 + 𝜆1) 𝑟02𝜇2 (1 + 𝜆1) − 𝛿2 } .

(22)

The equilibrium proposals in𝑋2,III are shown as follows:

𝑥2,III = ((𝜇2 − 𝛿) (1 + 𝜆1) + 𝛿2𝜆1𝑟1𝜇2 (1 + 𝜆1) − 𝛿2
+ 𝛿 (𝜇1 − 𝛿) 𝑟01𝜇2 (1 + 𝜆1) − 𝛿2
− (𝜇2 − 𝛿) (1 + 𝜆1) 𝑟02𝜇2 (1 + 𝜆1) − 𝛿2 ,

𝛿 (𝜇1 − 𝛿 + 𝜆1𝛿 (1 − 𝑟1))𝜇2 (1 + 𝜆1) − 𝛿2
− 𝛿 (𝜇1 − 𝛿) 𝑟01𝜇2 (1 + 𝜆1) − 𝛿2 +

(𝜇2 − 𝛿) (1 + 𝜆1) 𝑟02𝜇2 (1 + 𝜆1) − 𝛿2 ) ;

𝑦2,III = (𝛿 (𝜇2 − 𝛿 + 𝜆1𝑟1𝜇2)𝜇2 (1 + 𝜆1) − 𝛿2 + 𝜇2 (𝜇1 − 𝛿) 𝑟01𝜇2 (1 + 𝜆1) − 𝛿2
− 𝛿 (𝜇2 − 𝛿) 𝑟02𝜇2 (1 + 𝜆1) − 𝛿2 ,

𝜇2 (𝜇1 − 𝛿 + 𝜆1𝛿 (1 − 𝑟1))𝜇2 (1 + 𝜆1) − 𝛿2
− 𝜇2 (𝜇1 − 𝛿) 𝑟01𝜇2 (1 + 𝜆1) − 𝛿2 +

𝛿 (𝜇2 − 𝛿) 𝑟02𝜇2 (1 + 𝜆1) − 𝛿2)

(23)

0 Region 2, II

For the set 𝑋2,II, its boundaries are described by the
neighboring sets’ boundaries. The equilibrium proposals in𝑋2,II are shown as follows:

𝑥2,II = ((1 + 𝜆1) (𝜇2 − 𝛿 + 𝛿𝜆2 (1 − 𝑟2)) + 𝛿2𝜆1𝑟1(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
+ 𝛿 (1 − 𝛿) (1 + 𝜆1) 𝑟01(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
− (1 − 𝛿) (1 + 𝜆1) (1 + 𝜆2) 𝑟02(1 + 𝜆1) (1 + 𝜆2) − 𝛿2 ,

𝛿 (𝜇1 − 𝛿 + 𝜆1𝛿 (1 − 𝑟1) + 𝜆2 (1 + 𝜆1) 𝑟2)(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
− 𝛿 (1 − 𝛿) (1 + 𝜆1) 𝑟01(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
+ (1 − 𝛿) (1 + 𝜆1) (1 + 𝜆2) 𝑟02(1 + 𝜆1) (1 + 𝜆2) − 𝛿2 ) ;

𝑦2,II = (𝛿 (𝜇2 − 𝛿 + 𝜆2𝛿 (1 − 𝑟2) + 𝜆1 (1 + 𝜆2) 𝑟1)(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
+ (1 − 𝛿) (1 + 𝜆1) (1 + 𝜆2) 𝑟01(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
− 𝛿 (1 − 𝛿) (1 + 𝜆2) 𝑟02(1 + 𝜆1) (1 + 𝜆2) − 𝛿2 ,
(1 + 𝜆2) (𝜇1 − 𝛿 + 𝜆1𝛿 (1 − 𝑟1)) + 𝛿2𝜆2𝑟2(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
− (1 − 𝛿) (1 + 𝜆1) (1 + 𝜆2) 𝑟01(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
+ 𝛿 (1 − 𝛿) (1 + 𝜆2) 𝑟02(1 + 𝜆1) (1 + 𝜆2) − 𝛿2) .

(24)

In the set𝑋1,I, the equilibrium proposals are independent
of loss aversion coefficients. If 𝑟01 = 𝑟02 = 0, we can obtain
the classical Rubinstein equilibrium proposals 𝑥 = (1/(1 +𝛿), 𝛿/(1 + 𝛿)); 𝑦 = (𝛿/(1 + 𝛿), 1/(1 + 𝛿)). Moreover, if 𝑟01 =𝑟02 = 0, we can obtain the equilibrium proposals of Driesen et
al. [2] in the sets𝑋1,I, . . . , 𝑋3,III, respectively.

The equilibrium proposals in the sets 𝑋1,III, 𝑋3,I, and𝑋3,III depend on the initial reference points but not on r1
and r2. The equilibrium proposals in the sets 𝑋1,II and 𝑋3,II
depend on the initial reference points and the referent points
r2 but not on the referent points 𝑟1. In the sets 𝑋2,I and𝑋2,III, the associated equilibrium proposals depend on the
initial reference points and player 1’s referent points r1 but
not on player 2’s referent points r2. In the set 𝑋2,II, the
associated equilibrium proposals not only depend on the
initial reference points but also the referent points r1 and r2.

3.2. Subgame Perfect Equilibrium and Its Uniqueness. To find
a SPE, the strategies 𝑓 and 𝑔, which are the strategies of
players 1 and 2, are defined according to the sets 𝑋𝜔 and
the proposals 𝑥𝜔 and 𝑦𝜔, where 𝜔 ∈ {1, I, . . . , 3, III}. At any
time 𝑡 ∈ 𝑇𝑜𝑑𝑑, for player 1, take the (unique) 𝑋𝜔 containing
reference point (r1, r2) for any (r1, r2) with 𝑟1 ≥ 𝑟01 , 𝑟2 ≥ 𝑟02 :
then the corresponding proposal 𝑥𝜔 is made by player 1. At
any time 𝑡 ∈ 𝑇𝑒V𝑒𝑛 and for any (𝑟1, 𝑟2) with 𝑟1 ≥ 𝑟01 , 𝑟2 ≥ 𝑟02 ,
take again the relevant set 𝑋𝜔: then a proposal 𝑧 is accepted
by player 1 if and only if 𝑧1 ≥ 𝑦𝜔1 . Similarly, the strategy 𝑔 for
player 2 can be defined.
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�eorem 2. The strategy profile (𝑓, 𝑔) is a SPE; the outcome
of the game is

𝑥3,III = (𝜇1 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 +
𝛿𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2

− 𝜇1𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 ,
𝛿 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 −

𝛿𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2
+ 𝜇1𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 ) .

(25)

Proof. See Appendix A.

Obviously, the outcome in Theorem 2 depends on the
initial reference points of players but not on the reference
points r1 and r2. It is interesting to note that it is a SPE
introduced by Driesen et al. [2] if 𝑟01 = 𝑟02 = 0; i.e., (𝜇1(𝜇2 −𝛿)/(𝜇1𝜇2 −𝛿2), 𝛿(𝜇1 −𝛿)/(𝜇1𝜇2 −𝛿2)) is the SPE in Driesen et
al.’s [2] result, which is independent of the reference points.

For the situation where players have the same level of
loss aversion, i.e., 𝜆 fl 𝜆1 = 𝜆2 > 0, another interesting
observation is that there exist the following cases.

(i) The initial reference points are equal but not zero, i.e.,𝑟 fl 𝑟01 = 𝑟02 > 0. In this case, the outcome is

((𝜇 − (𝜇 − 𝛿) 𝑟)(𝜇 + 𝛿) , (𝛿 + (𝜇 − 𝛿) 𝑟)(𝜇 + 𝛿) ) ,
where 𝜇 fl 𝜇1 = 𝜇2.

(26)

Since 𝜇 − 𝛿 = (1 + 𝜆)(1 − 𝛿) > 0, we have 𝛿/(𝜇 + 𝛿) +(𝜇 − 𝛿)𝑟/(𝜇 + 𝛿) > 𝛿/(𝜇 + 𝛿), and 𝛿/(𝜇 + 𝛿) is player 2’s share
in Driesen et al.’s [2] outcome.Thus, player 2 (the player who
does not start proposing) benefits from the initial reference
points.

Similarly, since 𝜇/(𝜇+𝛿)−(𝜇−𝛿)𝑟/(𝜇+𝛿) < 𝜇/(𝜇+𝛿), and𝜇/(𝜇 + 𝛿) is payoff of player 1 in Driesen et al.’s [2] outcome,
player 1 suffers loss because of existing initial reference points.

(ii) The initial reference points of players are not equal;
there exist the following three different cases.

If 𝛿𝑟01 = 𝜇𝑟02 , then the outcome of the game is (𝜇/(𝜇 +𝛿), 𝛿/(𝜇 + 𝛿)), which is the outcome of Driesen et al.’s [2]
game.This implies that players do not benefit from the initial
reference points compared to Driesen et al.’s [2] case.

If 𝛿𝑟01 < 𝜇𝑟02 , then the outcome is ((𝜇 + 𝛿𝑟01 − 𝜇𝑟02)/(𝜇 +𝛿), (𝛿−𝛿𝑟01 +𝜇𝑟02)/(𝜇+𝛿)), which means that 𝜇/(𝜇+𝛿) > (𝜇+𝛿𝑟01−𝜇𝑟02)/(𝜇+𝛿); (𝛿−𝛿𝑟01+𝜇𝑟02)/(𝜇+𝛿) > 𝛿/(𝜇+𝛿). Compared
to Driesen et al.’s [2] case, player 1, who starts proposing, has
a disadvantage and player 2, who does not start proposing,
has an advantage. In other words, player 2 (the player who
does not start proposing) benefits from the initial reference
points and player 1, who starts proposing, suffers loss because
of existing initial reference points.

If 𝛿𝑟01 > 𝜇𝑟02 , then 𝜇/(𝜇 + 𝛿) < (𝜇 + 𝛿𝑟01 − 𝜇𝑟02)/(𝜇 + 𝛿)
and (𝛿 − 𝛿𝑟01 + 𝜇𝑟02)/(𝜇 + 𝛿) < 𝛿/(𝜇 + 𝛿). Player 1, who starts
proposing, has an advantage and player 2, who does not start
proposing, has a disadvantage compared to Driesen et al.’s [2]
case. In other words, player 1, who starts proposing, benefits

from his own initial reference points and player 2 (the player
who does not start proposing) suffers loss because of existing
initial reference points.

Finally, it is important to note that proposals can never
be below the reference points on the equilibrium path. For
example, if a proposal of player 1 would be below his own
reference points, then player 1 has made a higher proposal
last phases and so he would improve his payoff by accepting
the higher proposal.

Now, we show that the subgame perfect equilibrium is
unique. For the strategy profile (𝑓, 𝑔), it satisfies the following
three conditions:

(I)The strategies𝑓 and𝑔 are stationaryMarkov strategies.
At each time 𝑡 ∈ 𝑇𝑜𝑑𝑑, the proposal prescribed by 𝑓 does not
depend on time but on the reference points at time t and the
initial reference point, and at each time 𝑡 ∈ 𝑇𝑒V𝑒𝑛, the 𝑌/𝑁
decision prescribed by f depends on the proposal of player 2,
the reference points at time t, and the initial reference point.
Similarly, the strategy 𝑔 for player 2 can be described.

(II) Immediate acceptance: According to 𝑓, player 1
makes any proposal that is accepted by his opponent accord-
ing to 𝑔, and conversely.

(III) Indifference between acceptance and rejection: For
a proposal made by player 1, his opponent is indifferent
between accepting this proposal or rejecting it according to
the strategy profile (𝑓, 𝑔), and conversely.

An interesting observation is that above three conditions
are satisfied by the SPE in the Rubinstein bargaining.

�eorem 3. The pair of strategy (𝑓, 𝑔) is the unique SPE,
which satisfies the conditions: (I), (II), and (III).

Proof. See Appendix B.

The condition (I) implies that the equilibrium strategies
are history-dependent despite the impact this play has on
reference points of the two players. Nevertheless, it does
not mean that bargainers are limited to stationary Markov
strategies. In fact, the condition (II) must be satisfied by
any SPE in some subgames; i.e., the reference points in
these subgames are higher than the (equilibrium) payoff.
Condition (III) requires for a proposal made by a player that
his opponent is indifferent between accepting or rejecting this
proposal.

4. Analysis of the Equilibrium

Here, we discuss the impact of loss aversion coefficients on
the SPE (𝑓, 𝑔) and investigate the SPE (𝑓, 𝑔) with respect
to the discount factor (or the probability of continuation
of game) 𝛿. Then, we analyze what happens when 𝛿 tends
to 1 and discuss what happens for different continuation
probabilities. Finally, we investigate what happens when the
time lapse between proposals goes to zero.

Since the set 𝑋3,III is the relevant set at the beginning of
bargaining game,we focus on this set. In fact, the comparative
statics results are similar in subgames. For the strategy profile
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𝑥3,III = (𝜇1 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 +
𝛿𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2

− 𝜇1𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 ,
𝛿 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 −

𝛿𝑟01 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2
+ 𝜇1𝑟02 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2 ) ,

(27)

we restrict ourselves to the analysis of player 1, since what
player 1 gains is what his opponent losses. By differentiating
with respect to 𝜆1 and 𝜆2, we have

𝑑𝑥3,III
1𝑑𝜆1 = −

𝛿2 (1 − 𝛿)2 (1 + 𝜆2) (1 − 𝑟01 − 𝑟02)
(𝜇1𝜇2 − 𝛿2)2 < 0,

𝑑𝑥3,III
1𝑑𝜆2 =

𝛿𝜇1 (1 − 𝛿)2 (1 + 𝜆1) (1 − 𝑟01 − 𝑟02)
(𝜇1𝜇2 − 𝛿2)2 > 0.

(28)

Thus, a player is hurt by loss aversion of himself and
benefits from his opponent’s at given initial reference points.

Example 4. Consider that players 1 and 2 with loss aversion
bargain over a pie, whose size is one. The outcomes of the
bargaining are shown in Theorem 1. Let 𝛿 = 0.6, 𝑟01 = 0.1,
and 𝑟02 = 0.2. Figures 2 and 3 show player 1’s equilibrium
payoff with respect to loss aversion coefficients 𝜆1 and 𝜆2,
respectively.

From Figure 2, it follows that player 1’s equilibrium share
is decreasing as 𝜆1. That is, player 1 is hurt by his own
loss aversion. In Figure 3, player 1’s equilibrium share is
increasing as 𝜆2; i.e., player 1 benefits from player 2’s loss
aversion.

By differentiating with respect to 𝑟01 and 𝑟02 , we have
𝑑𝑥3,III
1𝑑𝑟0
1

= 𝛿 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 ,
𝑑𝑥3,III
1𝑑𝑟0
2

= −𝜇1 (𝜇2 − 𝛿)𝜇1𝜇2 − 𝛿2
(29)

Thus, a player benefits from his initial reference point and
is hurt by the reference point of the opponent.

4.1. Convergence of the Subgame Perfect Equilibrium for
Continuation Probability. We investigate convergence of the
subgame perfect equilibrium in the following two different
aspects:

(1) Convergence of the subgame perfect equilibrium for a
common 𝛿

In this subsection, we analyze what happens to the SPE
when 𝛿 goes to 1.

lim
𝛿󳨀→1

𝑥3,III1 = (1 + 𝜆2) (1 − 𝑟02) + (1 + 𝜆1) 𝑟012 + 𝜆1 + 𝜆2 ,

lim
𝛿󳨀→1

𝑥3,III2 = (1 + 𝜆1) (1 − 𝑟01) + (1 + 𝜆2) 𝑟022 + 𝜆1 + 𝜆2 .
(30)
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Figure 2: The changes of equilibrium share of player 1 as 𝜆1.
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Figure 3: The changes of equilibrium share of player 1 as 𝜆2.

An interesting observation is that the limit equilibrium
proposals for 𝛿 tending to 1 are equal to the limit equilibrium
proposals in the result obtained by Driesen et al. [2] if the
initial reference points are equal to zero.

We can repeat this for all subgames. In the limit for 𝛿
tending to 1, the nine sets of Figure 1 and the limit equilibrium
proposals are shown in Figures 4, 5, 6, and 7 for the case
where 𝜆2 > 𝜆1.

In Figure 4, the nine sets of Figure 1 and the limit
equilibrium proposals are shown in the limit for 𝛿 tending
to 1, for the case where 𝜆2 > 𝜆1 and 𝑟 fl 𝑟01 = 𝑟02 . If𝑟 = 0, all of regions in Figure 4 are consistent with that of
Figure 3 obtained in Driesen et al. [2]. Moreover, the limit
outcome is (0.5, 0.5) in 𝑋1,I when 𝛿 󳨀→ 1. If 𝑟 ̸= 0, the
limit outcomes of player 2 in some sets are higher than that
of player 2 in Driesen et al.’s [2] outcomes. In 𝑋1,I, the limit
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Figure 5: The equilibrium partitions for 𝛿 󳨀→ 1, with 𝜆2 > 𝜆1 and 𝑟01 > 𝑟02 .

outcome is an equal share (0.5, 0.5) when 𝛿 󳨀→ 1. The limit
equilibrium outcome in 𝑋1,II and 𝑋3,II is (1 − 𝑟2, 𝑟2), while
it is (𝑟1, 1 − 𝑟1) in 𝑋2,I and 𝑋2,III, which are also the limit
equilibrium outcome in Driesen et al.’s [2] outcomes. The
limit equilibrium outcome is ((1 + 𝜆1𝑟)/(2 + 𝜆1), (1 + 𝜆1 −𝜆1𝑟)/(2 + 𝜆1)) in 𝑋3,I and the limit equilibrium outcome is((1 + 𝜆2 − 𝜆2𝑟)/(2 + 𝜆2), (1 + 𝜆2𝑟)/(2 + 𝜆2)) in𝑋1,III. The set𝑋2,II becomes the line 𝑟1 + 𝑟2 = 1 where 𝑟1 ∈ ((1 + 𝜆1𝑟)/(2 +𝜆1), (1 + 𝜆2 − 𝜆2𝑟)/(2 + 𝜆2)).

In Figure 5, the nine sets of Figure 1 and the limit
equilibrium proposals are shown in the limit for 𝛿 tending to
1, for the case where 𝜆2 > 𝜆1 and 𝑟01 > 𝑟02 . In the set of𝑋1,I, the
limit equilibrium partition is ((1 + 𝑟01 − 𝑟02)/2, (1 − 𝑟01 + 𝑟02)/2).
Since 𝑟01 > 𝑟02 , player 1 benefits from the reference points
compared to player 1’s share in Driesen et al.’s [2] outcomes.

The limit equilibrium proposal is (1−𝑟2, 𝑟2) in𝑋1,II and𝑋3,II,
while the limit equilibrium outcome is (𝑟1, 1 − 𝑟1) in 𝑋2,I
and 𝑋2,III, which are also the limit equilibrium partition in
Driesen et al.’s [2] outcomes. The limit equilibrium proposal
in 𝑋3,I is ((1 + 𝜆1𝑟01 − 𝑟02)/(2 + 𝜆1), (1 + 𝜆1 − (1 + 𝜆1)𝑟01 +𝑟02)/(2 + 𝜆1)), where player 1 benefits from his own initial
reference point compared to player 1’s share in Driesen et al.’s
[2] outcomes. And in𝑋1,III, it is ((1+𝜆2+𝑟01 −(1+𝜆2)𝑟02)/(2+𝜆2), (1−𝑟01 +(1+𝜆2)𝑟02)/(2+𝜆2)), where player 1 benefits from
his own initial reference point compared to player 1’s share
in Driesen et al.’s [2] outcome if 𝑟01 > (1 + 𝜆2)𝑟02 , and player
2 benefits from his own initial reference point compared to
player 2’s share inDriesen et al.’s [2] outcome if 𝑟01 < (1+𝜆2)𝑟02 .
The set 𝑋2,II becomes the line 𝑟1 + 𝑟2 = 1, where 𝑟1 ∈ ((1 +𝜆1𝑟01 −𝑟02)/(2+𝜆1), (1+𝜆2+𝑟01 −(1+𝜆2)𝑟02)/(2+𝜆2)). In𝑋3,III,
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Figure 6: The equilibrium partitions for 𝛿 󳨀→ 1, with 𝑟0
1
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Figure 7: The equilibrium partitions for 𝛿 󳨀→ 1, with 𝑟0
1
< 𝑟0
2
and 𝜆1(1 − 2𝑟01) + 2(𝑟02 − 𝑟01)/(1 − 2𝑟02) < 𝜆2.

the limit equilibrium partition is ((1 + 𝜆2 + (1 + 𝜆1)𝑟01 − (1 +𝜆2)𝑟02)/(2+𝜆1+𝜆2), (1+𝜆1−(1+𝜆1)𝑟01+(1+𝜆2)𝑟02)/(2+𝜆1+𝜆2)),
where player 1 benefits from the initial reference point 𝑟01
compared to player 1’s share in Driesen et al.’s [2] outcome.

In Figure 6, the nine sets of Figure 1 and the limit
equilibrium proposals are shown in the limit for 𝛿 tending
to 1, for the case where 𝑟01 < 𝑟02 and 𝜆1 < 𝜆2 < 𝜆1(1 − 2𝑟01) +2(𝑟02 − 𝑟01)/(1 − 2𝑟02). In𝑋1,I, the limit equilibrium partition is((1+𝑟01 −𝑟02)/2, (1−𝑟01 +𝑟02)/2). Since 𝑟01 < 𝑟02 , player 2 benefits
from the reference points compared to player 2’s share in
Driesen et al.’s [2] outcome. The limit equilibrium outcome
in 𝑋1,II and 𝑋3,II is (1 − 𝑟2, 𝑟2), while it is (𝑟1, 1 − 𝑟1) in 𝑋2,I

and 𝑋2,III, which are also the limit equilibrium outcome in
Driesen et al.’s outcomes [2]. The limit equilibrium partition
in 𝑋3,I is ((1 + 𝜆1𝑟01 − 𝑟02)/(2 + 𝜆1), (1 + 𝜆1 − (1 + 𝜆1)𝑟01 +𝑟02)/(2 + 𝜆1)), where player 1 benefits from his own initial
reference point compared to player 1’s share in Driesen et
al.’s [2] outcomes if 𝑟01 < 𝑟02 < 𝜆1𝑟01 . And in 𝑋1,III, it is
((1+𝜆2+𝑟01−(1+𝜆2)𝑟02)/(2+𝜆2), (1−𝑟01 +(1+𝜆2)𝑟02)/(2+𝜆2)),
where the share of player 1 is lower than that of player 1 in
Driesen et al.’s [2] outcomes, because 𝑟01 < 𝑟02 . The set 𝑋2,II
becomes the line 𝑟1+𝑟2 = 1where 𝑟1 ∈ ((1+𝜆1𝑟01−𝑟02)/(2+𝜆1),(1+𝜆2+𝑟01−(1+𝜆2)𝑟02)/(2+𝜆2)). In𝑋3,III, the limit equilibrium
partition is ((1 + 𝜆2 + (1 + 𝜆1)𝑟01 − (1 + 𝜆2)𝑟02)/(2 + 𝜆1 + 𝜆2),
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(1 + 𝜆1 − (1 + 𝜆1)𝑟01 + (1 + 𝜆2)𝑟02)/(2 + 𝜆1 + 𝜆2)). Since𝜆1 < 𝜆2 < 𝜆1(1 − 2𝑟01) + 2(𝑟02 − 𝑟01)/(1 − 2𝑟02), player 2’s share
assigned by the limit equilibrium partition is higher than that
of player 1.That is, although player 2 has a higher loss aversion
coefficient than that of player 1, player 2 can obtain a high
share of the pie since this player has a high initial reference
point.

In Figure 7, the nine sets of Figure 1 and the limit
equilibrium proposals are shown in the limit for 𝛿 tending to
1, for the case where 𝑟01 < 𝑟02 and 𝜆1(1 − 2𝑟01) + 2(𝑟02 − 𝑟01)/(1 −2𝑟02) < 𝜆2. In𝑋3,III, the limit equilibrium outcome is

((1 + 𝜆2 + (1 + 𝜆1) 𝑟01 − (1 + 𝜆2) 𝑟02)(2 + 𝜆1 + 𝜆2) ,
(1 + 𝜆1 − (1 + 𝜆1) 𝑟01 + (1 + 𝜆2) 𝑟02)(2 + 𝜆1 + 𝜆2) ) .

(31)

Since 𝜆1(1 − 2𝑟01) + 2(𝑟02 − 𝑟01)/(1 − 2𝑟02) < 𝜆2, player 2’s
share assigned by the limit equilibriumpartition is lower than
that of player 1. That is, although player 2 has a higher initial
reference point than that of player 1, player 2 cannot obtain
a high share of the pie because of higher loss aversion level
of himself. The analysis of the limit equilibrium partition in
other sets is similar to that of the limit equilibrium partition
in Figure 6.

4.2. Convergence of the Subgame Perfect Equilibrium for 𝛿1 ̸=𝛿2. Consider the situation where each player 𝑖 has his own
continuation probability 𝛿𝑖 (𝑖 = 1, 2). 𝛿𝑖 is interpreted as the
probability of the bargaining occurs at time 𝑡 + 1 if player𝑖 rejected his opponent’s proposal at time 𝑡. It follows from
inequalities (6) and (7) that

(1 + 𝜆2) (𝑥2 − 𝑟02) − 𝜆2max {𝑟2 − 𝑟02 , 𝑥2 − 𝑟02}
≥ 𝛿2 [(1 + 𝜆2) (𝑦2 − 𝑟02)
− 𝜆2max {𝑦2 − 𝑟02 ,max {𝑟2 − 𝑟02 , 𝑥2 − 𝑟02}}] − (1
− 𝛿2) 𝜆2max {𝑟2 − 𝑟02 , 𝑥2 − 𝑟02}

(32)

and

(1 + 𝜆1) (𝑦1 − 𝑟01) − 𝜆1max {𝑟1 − 𝑟01 , 𝑦1 − 𝑟01}
≥ 𝛿1 [(1 + 𝜆1) (𝑥1 − 𝑟01)
− 𝜆1max {𝑥1 − 𝑟01 ,max {𝑟1 − 𝑟01 , 𝑦1 − 𝑟01}}] − (1
− 𝛿1) 𝜆1max {𝑟1 − 𝑟01 , 𝑦1 − 𝑟01}

(33)

In particular, we can obtain the unique SPE by assuming
the inequalities (32) and (33) are equalities, which satisfies
conditions (I), (II), and (III).

We further generalize the SPE if there exists a time lapseΔ between proposals. Moreover, after the last proposal was

rejected by player 𝑖, 𝑖 = 1, 2, the waiting time for break-
down of the game is a probability distribution function. We
assume that the waiting time is exponentially distributedwith
parameter 𝛽𝑖, which is the survival rate. After a proposal was
rejected by player 𝑖, the probability that the bargaining game
continues is denoted by 𝛿Δ𝑖 , where 𝛿𝑖 = exp(−1/𝛽𝑖). Since the
reference points in 𝑋3,III are the relevant at the beginning of
bargaining game, we restrict ourselves to analyzing this case.
The outcomes are

𝑥3,III = (𝜇1 (𝜇2 − 𝛿Δ2 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2 +
𝛿Δ2 𝑟01 (𝜇1 − 𝛿Δ1 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2

− 𝜇1𝑟02 (𝜇2 − 𝛿Δ2 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2 ,
𝛿Δ2 (𝜇1 − 𝛿Δ1 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2 −

𝛿Δ2 𝑟01 (𝜇1 − 𝛿Δ1 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2
+ 𝜇1𝑟02 (𝜇2 − 𝛿Δ2 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2 )

(34)

and

𝑦3,III = (𝛿Δ1 (𝜇2 − 𝛿Δ2 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2 +
𝜇2𝑟01 (𝜇1 − 𝛿Δ1 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2

− 𝛿Δ1 𝑟02 (𝜇2 − 𝛿Δ2 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2 ,
𝜇2 (𝜇1 − 𝛿Δ1 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2 −

𝜇2𝑟01 (𝜇1 − 𝛿Δ1 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2
+ 𝛿Δ1 𝑟02 (𝜇2 − 𝛿Δ2 )𝜇1𝜇2 − 𝛿Δ1 𝛿Δ2 ) ,

(35)

where 𝜇𝑖 = 1 + 𝜆𝑖(1 − 𝛿Δ𝑖 ) for 𝑖 = 1, 2. For Δ tending to 0, we
can derive

lim
Δ󳨀→0

𝑥3,III

= ((1 + 𝜆2) (1 − 𝑟02) ln 𝛿2 + 𝑟01 (1 + 𝜆1) ln 𝛿1(1 + 𝜆1) ln 𝛿1 + (1 + 𝜆2) ln 𝛿2 ,
(1 + 𝜆1) (1 − 𝑟01) ln 𝛿1 + 𝑟02 (1 + 𝜆2) ln 𝛿2(1 + 𝜆1) ln 𝛿1 + (1 + 𝜆2) ln 𝛿2 )
= lim
Δ󳨀→0

𝑦3,III.

(36)

Note that this is an asymmetric Nash bargaining solution,
as shown byHarsanyi and Selten (1972) andKalai (1977).That
is, this is the solution to the following optimization problem

max
𝑧∈𝑍

𝑧𝛼1𝑧1−𝛼2 (37)

where 𝛼 is defined as bargaining power of player 1 and 𝛼 =((1 + 𝜆2)(1 − 𝑟02) ln 𝛿2 + 𝑟01(1 + 𝜆1) ln 𝛿1)/((1 + 𝜆1) ln 𝛿1 + (1 +𝜆2) ln 𝛿2).
It is easy to check that 𝛼 is negatively related to 𝜆1 and

positively related to 𝜆2. Obviously, 𝛼 depends on the initial
reference points of players, where 𝛼 is increasing as 𝑟01 and
decreasing as 𝑟02 .
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5. Conclusions

A player may transfer his expectations derived from previous
opponents when he enters into a new bargaining situation
with another player. That is, the initial reference points in
bargaining problems are not zero. In this paper, we investigate
the impact of loss aversion and the initial reference points in
the classical Rubinstein bargaining problem, by constructing
a SPE in Rubinstein bargaining model with loss aversion
and reference dependence and making a sensitivity analysis
about the SPE with respect to loss aversion coefficients of
bargainers. It is found that the equilibrium share of a player
is negatively related to his own loss aversion and the initial
reference point of the other and positively related to the
opponent’s loss aversion and his own initial reference point.
It is further found that the outcome converges to asymmetric
Nash bargaining if the probability of breakdown tends to
zero, where higher loss aversion of a player results in a
higher bargaining power of the opponent and a player who
has a higher initial reference point has a higher bargaining
power.

We introduce the unique SPE based on the follow-
ing three features: stationary Markov strategies, immediate
acceptance, and indifference between acceptance and rejec-
tion. It is still an open question whether the three features are
necessary conditions for uniqueness of the subgame perfect
equilibrium.

Appendix

A. Proof of Theorem 2

The one-deviation property is used to prove Theorem 2.
According to this property, the sufficient condition that a
strategy profile (𝑓, 𝑔) ∈ 𝐹 × 𝐺 is a SPE is no one can improve
his own payoffs by deviating unilaterally only once.

The one-deviation property, as Hendon et al. [15] pointed
out, holds in infinite-horizon extensive-form games. These
games are continuous at infinity. In order to define the
continuity at infinity, we have the following: For any 𝜀 > 0,
there exists a number 𝑡 ∈ 𝑇 such that if, for (𝑓, 𝑔), (𝑓󸀠, 𝑔󸀠) ∈𝐹 × 𝐺, we have (𝑓𝑠, 𝑔𝑠) = (𝑓󸀠𝑠, 𝑔󸀠𝑠) for all 𝑠 ≤ 𝑡, then|𝑈𝑖(𝑓, 𝑔) − 𝑈𝑖(𝑓󸀠, 𝑔󸀠)| < 𝜀.
Lemma A.1. The bargaining game, where bargainers are
loss averse and their initial reference points are not zero, is
continuous at infinity.

Proof. Let 𝜀 > 0, and let the strategy profiles (𝑓, 𝑔), (𝑓󸀠𝑠, 𝑔󸀠𝑠) ∈𝐹 × 𝐺 satisfy (𝑓𝑠, 𝑔𝑠) = (𝑓󸀠𝑠, 𝑔󸀠𝑠) for all 𝑠 ≤ 𝑡, where 𝑡 >
max𝑖=1,2 log𝛿 𝜀/(1+𝜆𝑖). For two such strategy profiles, if player𝑖 obtains the whole pie from a strategy profile at time 𝑡 + 1,
while the other one results in perpetual disagreement, we
have the following.

For the former, player 𝑖 would obtain 𝑈𝑖 = 𝛿𝑡 + (1 −𝛿)∑𝑡𝑠=1 𝛿𝑠−1𝑢𝑖(ℎ𝑠, 𝑑). For the latter he would obtain 𝑈𝑖 = (1 −𝛿)∑∞𝑠=1 𝛿𝑠−1𝑢𝑖(ℎ𝑠, 𝑑). It follows from 𝑢𝑖(ℎ𝑡, 𝑑) ≥ −𝜆𝑖 that for
all 𝑡 ∈ 𝑇

𝑈
𝑖
= (1 − 𝛿) 𝑡∑

𝑠=1

𝛿𝑠−1𝑢𝑖 (ℎ𝑠, 𝑑)

+ (1 − 𝛿) ∞∑
𝑠=𝑡+1

𝛿𝑠−1𝑢𝑖 (ℎ𝑠, 𝑑)

≥ (1 − 𝛿) ( 𝑡∑
𝑠=1

𝛿𝑠−1𝑢𝑖 (ℎ𝑠, 𝑑) + 𝛿
𝑡 (−𝜆𝑖)(1 − 𝛿) )

= −𝛿𝑡𝜆𝑖 + (1 − 𝛿) 𝑡∑
𝑠=1

𝛿𝑠−1𝑢𝑖 (ℎ𝑠, 𝑑) .

(A.1)

It follows from this equality and 𝑈𝑖 − 𝑈𝑖 ≥ 0 that
󵄨󵄨󵄨󵄨󵄨𝑈𝑖 (𝑓, 𝑔) − 𝑈𝑖 (𝑓󸀠, 𝑔󸀠)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑈𝑖 − 𝑈𝑖
≤ 𝛿𝑡 + (1 − 𝛿) 𝑡∑

𝑠=1

𝛿𝑠−1𝑢𝑖 (ℎ𝑠, 𝑑) + 𝛿𝑡𝜆𝑖
− (1 − 𝛿) 𝑡∑

𝑠=1

𝛿𝑠−1𝑢𝑖 (ℎ𝑠, 𝑑) = 𝛿𝑡 (1 + 𝜆𝑖) < 𝜀.
(A.2)

Thus, the game is continuous at infinity.

By Lemma A.1, the one-deviation property can be used.
We define Ω = {1, 𝐼., . . . . . . , 3, 𝐼𝐼𝐼.}.

Proof of Theorem 2. The sufficient condition that the strategy
profile (𝑓, 𝑔) is a SPE is that no one can improve his share by
deviating unilaterally at one point in time.The utility of share
that player 1 obtains according to the following strategy 𝑓 is
denoted by 𝜇∗1 .

Let ℎ𝑡-1 ∈ 𝐶𝑡-1; that is, ℎ𝑡-1 is a history continuing to
time 𝑡. We assume that ℎ𝑡-1 satisfies (𝑟1(ℎ𝑡-1), 𝑟2(ℎ𝑡-1)) ∈ 𝑋𝜔
with 𝜔 ∈ Ω, and ℎ𝑡 = (ℎ𝑡−1, 𝑧) with 𝑧 ∈ 𝑍. If 𝑡 ∈ 𝑇odd
(𝑇even), then the proposal 𝑧 is made by player 1 (6). If 𝑧 is
rejected, then the bargaining continues with probability 𝛿 or
ends in disagreement with probability 1−𝛿. If the bargaining
continues to moment 𝑡 + 1, it ends in accepting the proposal
at 𝑡 + 1, since the strategy profile (𝑓, 𝑔) is prevalent.

To present that the strategy 𝑓 is the best response to the
strategy 𝑔, we distinguish the following two cases: 𝑡 ∈ 𝑇𝑜𝑑𝑑
and 𝑡 ∈ 𝑇𝑒V𝑒𝑛. For each case, the following three subcases
are considered: (𝑟1, 𝑟2) is in the set 𝑋𝜔 where we have the
following.

𝐶ase 1.𝜔 ∈ {1, I, 1, II, 1, III}, then 𝑟1 > 𝑥𝜔1 > 𝑦𝜔1 and𝑦𝜔1 −𝑟01 =𝛿(𝑥𝜔1 − 𝑟01).
𝐶ase 2. 𝜔 ∈ {2, I, 2, II, 2, III}, then 𝑥𝜔1 ≥ 𝑟1 > 𝑦𝜔1 and (1 +𝜆1)(𝑦𝜔1 − 𝑟01) = 𝛿(𝑥𝜔1 − 𝑟01) + 𝛿𝜆1(𝑟1 − 𝑟01).
𝐶ase 3. 𝜔 ∈ {3, I, 3, II, 3, III}, then 𝑥𝜔1 > 𝑦𝜔1 ≥ 𝑟1 and 𝜇1(𝑦𝜔1 −𝑟01) = 𝛿(𝑥𝜔1 − 𝑟01).
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If 𝑡 ∈ 𝑇𝑜𝑑𝑑 for Case 1, we distinguish the following cases:
(i) 𝑧1 = 𝑥𝜔1 : In the case player 1 plays 𝑓 and player 2

accepts it, we have

𝑢∗1 = 𝑢1 (ℎ𝑡, 𝑎)
= (1 + 𝜆1) (𝑥𝜔1 − 𝑟01) − 𝜆1max {𝑟1 − 𝑟01 , 𝑥𝜔1 − 𝑟01}
= (1 + 𝜆1) (𝑥𝜔1 − 𝑟01) − 𝜆1 (𝑟1 − 𝑟01) .

(A.3)

(ii) 𝑧1 < 𝑥𝜔1 : Then 𝑧2 > 𝑥𝜔2 . Thus, player 2 accepts it. The
payoff of player 1 is given as follows:

𝑢1 (ℎ𝑡, 𝑎) = (1 + 𝜆1) (𝑧1 − 𝑟01)
− 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01} .

(A.4)

If 𝑟1 > 𝑥𝜔1 > 𝑧1, then we have 𝑢1(ℎ𝑡, 𝑎) = (1 + 𝜆1)(𝑧1 − 𝑟01) −𝜆1(𝑟1 − 𝑟01). Since 𝑧1 < 𝑥𝜔1 , we have 𝑢1(ℎ𝑡, 𝑎) < 𝑢∗1 . Thus, 𝑧 is
not optimal.

(iii) 𝑧1 > 𝑥𝜔1 : Then 𝑧2 < 𝑥𝜔2 . Thus, player 2 rejects
the proposal and proposes 𝑦𝜔 when the bargaining game
continues. The payoff of player 1 is given as follows:

𝛿𝑢1 (ℎ𝑡+1, 𝑎) + (1 − 𝛿) 𝑢1 (ℎ𝑡, 𝑑)
= 𝛿 ((1 + 𝜆1) (𝑦𝜔1 − 𝑟01)
− 𝜆1max {𝑦𝜔1 − 𝑟01 , 𝑟1 − 𝑟01}) − (1 − 𝛿) 𝜆1 (𝑟1
− 𝑟01) = 𝛿 (1 + 𝜆1) (𝑦𝜔1 − 𝑟01) − 𝛿𝜆1 (𝑟1 − 𝑟01) − (1
− 𝛿) 𝜆1 (𝑟1 − 𝑟01) = 𝛿 (1 + 𝜆1) (𝑦𝜔1 − 𝑟01) − 𝜆1 (𝑟1
− 𝑟01)

(A.5)

Since 𝑥𝜔1 > 𝛿2𝑥𝜔1 = 𝛿𝑦𝜔1 , we have 𝛿𝑢1(ℎ𝑡+1, 𝑎) + (1 −𝛿)𝑢1(ℎ𝑡, 𝑑) < 𝑢∗1 . Thus, 𝑧 is not optimal.
If 𝑡 ∈ 𝑇𝑜𝑑𝑑 for Case 2, the following three cases are

distinguished:
(i) 𝑧1 = 𝑥𝜔1 : In the case player 1 plays 𝑓 and player 2

accepts it, we have

𝑢∗1 = 𝑢1 (ℎ𝑡, 𝑎)
= (1 + 𝜆1) (𝑥𝜔1 − 𝑟01) − 𝜆1max {𝑟1 − 𝑟01 , 𝑥𝜔1 − 𝑟01}
= 𝑥𝜔1 − 𝑟01

(A.6)

(ii) 𝑧1 < 𝑥𝜔1 : Then 𝑧2 > 𝑥𝜔2 . Thus, player 2 accepts it. The
payoff of player 1 is given as follows:

𝑢1 (ℎ𝑡, 𝑎) = (1 + 𝜆1) (𝑧1 − 𝑟01)
− 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01} .

(A.7)

It follows from (1 + 𝜆1)(𝑧1 − 𝑟01) − 𝜆1max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01} ≤𝑧1 − 𝑟01 < 𝑥𝜔1 − 𝑟01 = 𝑢∗1 that 𝑧 is not optimal.

(iii) 𝑧1 > 𝑥𝜔1 : Then 𝑧2 < 𝑥𝜔2 . Thus, player 2 rejects
the proposal and proposes 𝑦𝜔 when the bargaining game
continues. The payoff of player 1 is given as follows:

𝛿𝑢1 (ℎ𝑡+1, 𝑎) + (1 − 𝛿) 𝑢1 (ℎ𝑡, 𝑑)
= 𝛿 (1 + 𝜆1) (𝑦𝜔1 − 𝑟01)
− 𝛿𝜆1max {𝑦𝜔1 − 𝑟01 , 𝑟1 − 𝑟01}
− (1 − 𝛿) 𝜆1 (𝑟1 − 𝑟01)

= 𝛿 (1 + 𝜆1) (𝑦𝜔1 − 𝑟01) − 𝜆1 (𝑟1 − 𝑟01)

(A.8)

It follows from (1 + 𝜆1)(𝑦𝜔1 − 𝑟01) = 𝛿(𝑥𝜔1 − 𝑟01) + 𝛿𝜆1(𝑟1 − 𝑟01)
that 𝛿(𝑥𝜔1 − 𝑟01) = (1 + 𝜆1)(𝑦𝜔1 − 𝑟01) − 𝛿𝜆1(𝑟1 − 𝑟01). Therefore,𝑢∗1 = 𝑥𝜔1 − 𝑟01 = (1 + 𝜆1)(1/𝛿)(𝑦𝜔1 − 𝑟01) − 𝜆1(𝑟1 − 𝑟01) > (1 +𝜆1)𝛿(𝑦𝜔1 −𝑟01)−𝜆1(𝑟1−𝑟01), whichmeans that 𝑧 is not optimal.

If 𝑡 ∈ 𝑇𝑜𝑑𝑑 for Case 3, the following three cases are
distinguished:

(i) 𝑧1 = 𝑥𝜔1 : In the case player 1 plays 𝑓 and player 2
accepts it, we have

𝑢∗1 = 𝑢1 (ℎ𝑡, 𝑎)
= (1 + 𝜆1) (𝑥𝜔1 − 𝑟01) − 𝜆1max {𝑟1 − 𝑟01 , 𝑥𝜔1 − 𝑟01}
= 𝑥𝜔1 − 𝑟01

(A.9)

(ii) 𝑧1 < 𝑥𝜔1 : Then 𝑧2 > 𝑥𝜔2 . Thus, player 2 accepts it. The
payoff of player 1 is given as follows:

𝑢1 (ℎ𝑡, 𝑎) = (1 + 𝜆1) (𝑧1 − 𝑟01)
− 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01} .

(A.10)

It follows from (1 + 𝜆1)(𝑧1 − 𝑟01) − 𝜆1max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01} ≤𝑧1 − 𝑟01 < 𝑥𝜔1 − 𝑟01 = 𝑢∗1 that 𝑧 is not optimal.
(iii) 𝑧1 > 𝑥𝜔1 : Then 𝑧2 < 𝑥𝜔2 . Thus, player 2 rejects

the proposal and proposes 𝑦𝜔 when the bargaining game
continues. The payoff of player 1 is given as follows:

𝛿𝑢1 (ℎ𝑡+1, 𝑎) + (1 − 𝛿) 𝑢1 (ℎ𝑡, 𝑑)
= 𝛿 (1 + 𝜆1) (𝑦𝜔1 − 𝑟01)
− 𝛿𝜆1max {𝑦𝜔1 − 𝑟01 , 𝑟1 − 𝑟01}
− (1 − 𝛿) 𝜆1 (𝑟1 − 𝑟01)

= 𝛿 (𝑦𝜔1 − 𝑟01) − (1 − 𝛿) 𝜆1 (𝑟1 − 𝑟01)

(A.11)

Since 𝑢∗1 = 𝑥𝜔1 − 𝑟01 > 𝑦𝜔1 − 𝑟01 > 𝛿(𝑦𝜔1 − 𝑟01) > 𝛿(𝑦𝜔1 − 𝑟01) −𝜆1(1 − 𝛿)(𝑟1 − 𝑟01), 𝑧 is not optimal.
If 𝑡 ∈ 𝑇𝑒V𝑒𝑛 for Case 1, we assume that player 2 makes

some proposal 𝑧 ∈ 𝑍. If the proposal is accepted by player
1, player 1’s payoff is given by 𝑢1(ℎ𝑡, 𝑎) = (1 + 𝜆1)(𝑧1 − 𝑟01) −𝜆1max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}. If the proposal is rejected by player 1
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and the bargaining game continues, the reference point 𝑟1(ℎ𝑡)
is max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}. Player 1 proposes 𝑥𝜔 and player 2
accepts the proposal. Since 𝑟1 > 𝑥𝜔 and 𝑦𝜔1 − 𝑟01 = 𝛿(𝑥𝜔1 − 𝑟01),
we have
𝛿𝑢1 (ℎ𝑡+1, 𝑎) + (1 − 𝛿) 𝑢1 (ℎ𝑡, 𝑑)
= 𝛿 (1 + 𝜆1) (𝑥𝜔1 − 𝑟01)
− 𝛿𝜆1max {𝑥𝜔1 − 𝑟01 ,max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}}
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

= (1 + 𝜆1) (𝑦𝜔1 − 𝑟01) − 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

(A.12)

Therefore, it is optimal to accept 𝑧 if 𝑧1 ≥ 𝑦𝜔1 , or it
is optimal to reject it. In other words, it is optimal to play
strategy 𝑓.

If 𝑡 ∈ 𝑇𝑒V𝑒𝑛 for Case 2, we assume that player 2makes some
proposal 𝑧 ∈ 𝑍 with 𝑧1 < 𝑥𝜔󸀠1 , where 𝜔󸀠 ∈ {1, I, 1, II, 1, III}.
If player 1 accepts the proposal, player 1’s payoff can obtain

𝑢1 (ℎ𝑡, 𝑎) = (1 + 𝜆1) (𝑧1 − 𝑟01)
− 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

(A.13)

If player 1 rejects and the bargaining game continues, the
reference point 𝑟1(ℎ𝑡) is max{𝑟1 −𝑟01 , 𝑧1 −𝑟01}. At time 𝑡+1, we
play a new game where (max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}, 𝑟2 − 𝑟02) is the
reference point pair at 𝑡 + 1. Since (max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}, 𝑟2 −𝑟02) ∈ 𝜔, where 𝜔 ∈ {2, I, 2, II, 2, III}, we have 𝑥𝜔1 − 𝑟01 ≥
max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01} ≥ 𝑦𝜔1 − 𝑟01 , where (𝑦𝜔1 − 𝑟01) = 𝛿((𝑥𝜔1 −𝑟01) + 𝜆1max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01})/(1 + 𝜆1).

At time 𝑡 + 1, player 1 makes a proposal 𝑥𝜔1 and player 2
accepts it; 𝑧 is rejected, which yields

𝛿𝑢1 (ℎ𝑡+1, 𝑎) + (1 − 𝛿) 𝑢1 (ℎ𝑡, 𝑑)
= 𝛿 (1 + 𝜆1) (𝑥𝜔1 − 𝑟01)
− 𝛿𝜆1max {𝑥𝜔1 − 𝑟01 ,max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}}
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

= (1 + 𝜆1) (𝑦𝜔1 − 𝑟01) − 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

(A.14)

If player 2 proposes 𝑧 ∈ 𝑍 with 𝑧1 > 𝑥𝜔󸀠1 , then player 1
accepts it, which yields 𝜇1(ℎ𝑡, 𝑎) = 𝑧1 − 𝑟01 and player 1 rejects
the proposal, which yields

𝛿𝑢1 (ℎ𝑡+1, 𝑎) + (1 − 𝛿) 𝑢1 (ℎ𝑡, 𝑑)
= 𝛿 (1 + 𝜆1) (𝑥𝜔󸀠1 − 𝑟01)
− 𝛿𝜆1max {𝑥𝜔󸀠1 − 𝑟01 ,max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}}
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

= (1 + 𝜆1) (𝑦𝜔󸀠1 − 𝑟01) − 𝜆1 (𝑧1 − 𝑟01)

(A.15)

Since 𝑧1 > 𝑥𝜔󸀠1 > 𝑦𝜔󸀠1 , we have 𝑢1(ℎ𝑡, 𝑎) > 𝛿𝑢1(ℎ𝑡+1, 𝑎) +(1 − 𝛿)𝑢1(ℎ𝑡, 𝑑).
In general, accepting 𝑧 is optimal if 𝑧1 ≥ 𝑦𝜔1 , or it is

optimal to reject it. In other words, it is optimal to follow 𝑓.
If 𝑡 ∈ 𝑇𝑒V𝑒𝑛 for Case 3, we assume that player 2makes some

proposal 𝑧 ∈ 𝑍 with 𝑧1 < 𝑦𝜔1 . Note that 𝑟1 < 𝑥𝜔1 . Hence, if the
proposal is rejected, the payoff of player 1 is given by

𝛿𝑢1 (ℎ𝑡+1, 𝑎) + (1 − 𝛿) 𝑢1 (ℎ𝑡, 𝑑)
= 𝛿 (1 + 𝜆1) (𝑥𝜔1 − 𝑟01)
− 𝛿𝜆1max {𝑥𝜔1 − 𝑟01 ,max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}}
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

= 𝛿 (𝑥𝜔1 − 𝑟01)
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

(A.16)

If the proposal is accepted, player 1’s payoff is 𝑢1(ℎ𝑡, 𝑎) = (1 +𝜆1)(𝑧1 − 𝑟01) − 𝜆1max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}. Since 𝜇1(𝑦𝜔1 − 𝑟01) =𝛿(𝑥𝜔1 − 𝑟01), we have
𝑢1 (ℎ𝑡, 𝑎) = (1 + 𝜆1) (𝑧1 − 𝑟01)

− 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}
= (1 + 𝜆1) (𝑧1 − 𝑟01)
− 𝛿𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

< (1 + 𝜆1) (𝑦𝜔1 − 𝑟01)
− 𝛿𝜆1max {𝑟1 − 𝑟01 , 𝑦𝜔1 − 𝑟01}
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

= (1 + 𝜆1) (𝑦𝜔1 − 𝑟01) − 𝛿𝜆1 (𝑦𝜔1 − 𝑟01)
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

= 𝑢1 (𝑦𝜔1 − 𝑟01)
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

= 𝛿 (𝑥𝜔1 − 𝑟01)
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

(A.17)

Hence, it is optimal to reject 𝑧. On the other hand, if player 2
makes a proposal 𝑧 ∈ 𝑍 with 𝑧1 ≥ 𝑦𝜔1 , then accepting yields𝑢1(ℎ𝑡, 𝑎) = (1 + 𝜆1)(𝑧1 − 𝑟01) − 𝜆1max{𝑟1 − 𝑟01 , 𝑧1 − 𝑟01} = 𝑧1.

Let 𝑧1 ≤ 𝑦𝜔󸀠1 , where 𝜔󸀠 ∈ {1, I, 1, II, 1, III}. If player 1
rejects it and the bargaining game continues, then 𝑟1(ℎ𝑡) = 𝑧1,
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and (𝑧1, 𝑟1) ∈ 𝜔󸀠󸀠, where 𝜔󸀠󸀠 ∈ {2, I, 2, II, 2, III}. Note that
then 𝑦𝜔󸀠󸀠1 ≤ 𝑧1 ≤ 𝑥𝜔󸀠󸀠1 . Thus, we have

𝛿𝑢1 (ℎ𝑡+1, 𝑎) + (1 − 𝛿) 𝑢1 (ℎ𝑡, 𝑑)
= 𝛿 (1 + 𝜆1) (𝑥𝜔󸀠󸀠1 − 𝑟01)− 𝛿𝜆1max {𝑥𝜔󸀠󸀠1 − 𝑟01 , 𝑧1 − 𝑟01}
− (1 − 𝛿) 𝜆1 (𝑧1 − 𝑟01)

= (1 + 𝜆1) (𝑦𝜔󸀠󸀠1 − 𝑟01) − 𝜆1 (𝑧1 − 𝑟01) .
(A.18)

Since 𝑦𝜔󸀠󸀠1 ≤ 𝑧1, also 𝑧1 ≥ (1 + 𝜆1)𝑦𝜔󸀠󸀠1 − 𝜆1𝑧1. If player 2
makes a proposal 𝑧 ∈ 𝑍 with 𝑥𝜔󸀠1 < 𝑧1 that is rejected, then
we have

𝛿𝑢1 (ℎ𝑡+1, 𝑎) + (1 − 𝛿) 𝑢1 (ℎ𝑡, 𝑑)
= 𝛿 (1 + 𝜆1) (𝑥𝜔󸀠1 − 𝑟01)
− 𝛿𝜆1max {𝑥𝜔󸀠1 − 𝑟01 ,max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}}
− (1 − 𝛿) 𝜆1max {𝑟1 − 𝑟01 , 𝑧1 − 𝑟01}

= 𝛿 (1 + 𝜆1) (𝑥𝜔󸀠1 − 𝑟01) − 𝜆1 (𝑧1 − 𝑟01)

(A.19)

Since 𝑥𝜔󸀠1 < 𝑧1, we have 𝛿𝑥𝜔󸀠1 < 𝑧1. Thus, we have that 𝑧1 >(1 + 𝜆1)𝛿𝑥𝜔󸀠1 − 𝜆1𝑧1; i.e., it is optimal to accept 𝑧.
Thus, when player 2 plays strategy 𝑔, player 1 cannot

improve his payoff by unilaterally deviating from 𝑓 at any
single time 𝑡. Similarly, if player 1 plays 𝑓, we can prove that
player 2 cannot improve his share by deviating unilaterally
from the strategy 𝑔 at any single time 𝑡. Lemma A.1 implies
that (𝑓, 𝑔) is an SPE.

B. Proof of Theorem 3

We assume that conditions (I)–(III) in Section 3.2 are
satisfied, which is used throughout this section.

B.1. Preliminary Lemmas. A proposal is made by player 1
and a counterproposal is made by player 2, which is defined
as a bargaining round. Bargaining rounds are indexed with𝑖 ∈ {0, 1, 2, . . . . . .}. We define (𝑟𝑖1, 𝑟𝑖2) as the reference point
pair at the beginning of round 𝑖. By (I), we have the following
definition:

𝑟𝑖+11 fl max {𝑟𝑖1, 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )} ,
𝑟𝑖+12 fl max {𝑟𝑖2, 𝑥2 (𝑟𝑖1, 𝑟𝑖2)}

(B.1)

Lemma B.1. When 𝑥(𝑟𝑖1, 𝑟𝑖2) is player 1’s SPE proposal and𝑦(𝑟𝑖1, 𝑟𝑖+12 ) player 2’s counterproposal, we have

𝑥2 (𝑟𝑖1, 𝑟𝑖2) =
{{{{{{{{{{{{{{{{{{{{{

𝛿 − 𝛿𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) + (1 − 𝛿) 𝑟02 if 𝑟𝑖2 > 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) > 𝑥2 (𝑟𝑖1, 𝑟𝑖2)
(𝛿 (1 + 𝜆2𝑟𝑖+12 ) − 𝛿𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ))(1 + 𝜆2) + (1 − 𝛿) 𝑟02 if 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖2 > 𝑥2 (𝑟𝑖1, 𝑟𝑖2)
𝛿𝜇2 −

𝛿𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )𝜇2 + (𝜇2 − 𝛿) (1 + 𝜆2) 𝑟02𝜇2 if 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) > 𝑥2 (𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2
(∗)

and

𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) =
{{{{{{{{{{{{{{{{{{{{{

𝛿 − 𝛿𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) + (1 − 𝛿) 𝑟01 if 𝑟𝑖1 > 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )
(𝛿 (1 + 𝜆1𝑟𝑖+11 ) − 𝛿𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ))(1 + 𝜆1) + (1 − 𝛿) 𝑟01 if 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖1 > 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )
𝛿𝜇1 −

𝛿𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 )𝜇1 + (𝜇1 − 𝛿) 𝑟01𝜇1 if 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1
(∗∗)

Proof. According to the two conditions (II) and (III), and the
definition of the bargainers’ utility functions, we can prove(∗) and (∗∗).

For each 𝜔 ∈ Ω, the following sets 𝑃𝜔 and 𝑄𝜔 are
introduced:

𝑃1,I fl {(𝑟𝑖1, 𝑟𝑖2) | 𝑟𝑖2 > 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) , 𝑟𝑖1
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> 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 )}
𝑃2,I fl {(𝑟𝑖1, 𝑟𝑖2) | 𝑟𝑖2 > 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) , 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 )
≥ 𝑟𝑖1 > 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )}

𝑃3,I fl {(𝑟𝑖1, 𝑟𝑖2) | 𝑟𝑖2 > 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) , 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1}
𝑃1,II fl {(𝑟𝑖1, 𝑟𝑖2) | 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖2 > 𝑥2 (𝑟𝑖1, 𝑟𝑖2) , 𝑟𝑖1
> 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 )}

𝑃2,II fl {(𝑟𝑖1, 𝑟𝑖2) | 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖2
> 𝑥2 (𝑟𝑖1, 𝑟𝑖2) , 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖1 > 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )}

𝑃3,II fl {(𝑟𝑖1, 𝑟𝑖2) | 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖2
> 𝑥2 (𝑟𝑖1, 𝑟𝑖2) , 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1}

𝑃1,III fl {(𝑟𝑖1, 𝑟𝑖2) | 𝑥2 (𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2, 𝑟𝑖1
> 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 )}

𝑃2,III fl {(𝑟𝑖1, 𝑟𝑖2) | 𝑥2 (𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2, 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖1
> 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )}

𝑃3,III fl {(𝑟𝑖1, 𝑟𝑖2) | 𝑥2 (𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2, 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1}
𝑄1,I fl {(𝑟𝑖1, 𝑟𝑖+12 ) | 𝑟𝑖1 > 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) , 𝑟𝑖+12
> 𝑦2 (𝑟𝑖+11 , 𝑟𝑖+22 )}

𝑄1,II fl {(𝑟𝑖1, 𝑟𝑖+12 ) | 𝑟𝑖1
> 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) , 𝑦2 (𝑟𝑖+11 , 𝑟𝑖+22 ) ≥ 𝑟𝑖+12
> 𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 )}

𝑄1,III fl {(𝑟𝑖1, 𝑟𝑖+12 ) | 𝑟𝑖1
> 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) , 𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖+12 }

𝑄2,I fl {(𝑟𝑖1, 𝑟𝑖+12 ) | 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖1
> 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) , 𝑟𝑖+12 > 𝑦2 (𝑟𝑖+11 , 𝑟𝑖+22 )}

𝑄2,II fl {(𝑟𝑖1, 𝑟𝑖+12 ) | 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖1
> 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) , 𝑦2 (𝑟𝑖+11 , 𝑟𝑖+22 ) ≥ 𝑟𝑖+12
> 𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 )}

𝑄2,III fl {(𝑟𝑖1, 𝑟𝑖+12 ) | 𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖1
> 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) , 𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖+12 }

𝑄3,I fl {(𝑟𝑖1, 𝑟𝑖+12 ) | 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1, 𝑟𝑖+12

> 𝑦2 (𝑟𝑖+11 , 𝑟𝑖+22 )}
𝑄3,II fl {(𝑟𝑖1, 𝑟𝑖+12 ) | 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1, 𝑦2 (𝑟𝑖+11 , 𝑟𝑖+22 )
≥ 𝑟𝑖+12 > 𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 )}

𝑄3,III fl {(𝑟𝑖1, 𝑟𝑖+12 ) | 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1, 𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 )
≥ 𝑟𝑖+12 }

(B.2)

In these sets, we can derive the following lemmas for
reference point pairs.

Lemma B.2. For all (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃𝜔, we have 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≥𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) ⇐⇒ 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≤ 𝑥𝜔2 . Similarly, for all (𝑟𝑖1, 𝑟𝑖+12 ) ∈𝑄𝜔, we have 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) ⇐⇒ 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≤ 𝑦𝜔1 .
Proof. Let 𝜔 = 1, I and (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃𝜔. It follows from the
definition of 𝑃1,I that 𝑟𝑖2 > 𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) and 𝑟𝑖1 > 𝑥1(𝑟𝑖+11 , 𝑟𝑖+12 ).
It follows from Lemma B.1 that

𝑥2 (𝑟𝑖1, 𝑟𝑖2) = 𝛿 − 𝛿𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) + (1 − 𝛿) 𝑟02
= 𝛿 − 𝛿 (𝛿 − 𝛿𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) + (1 − 𝛿) 𝑟01)
+ (1 − 𝛿) 𝑟02

= 𝛿 − 𝛿2 + 𝛿2𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) − 𝛿 (1 − 𝛿) 𝑟01
+ (1 − 𝛿) 𝑟02

(B.3)

If 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑥2(𝑟𝑖1, 𝑟𝑖2), then according to (B.3), we
have

𝑥2 (𝑟𝑖1, 𝑟𝑖2) = 𝛿 − 𝛿2 + 𝛿2𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) − 𝛿 (1 − 𝛿) 𝑟01
+ (1 − 𝛿) 𝑟02

≥ 𝛿 − 𝛿2 + 𝛿2𝑥2 (𝑟𝑖1, 𝑟𝑖2) − 𝛿 (1 − 𝛿) 𝑟01
+ (1 − 𝛿) 𝑟02 ,

(B.4)

which means that 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≥ 𝛿/(1+𝛿)−𝛿𝑟01/(1+𝛿)+𝑟02/(1+𝛿) = 𝑥1,I
2
. If 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) < 𝑥2(𝑟𝑖1, 𝑟𝑖2), then by (B.3)

𝑥2 (𝑟𝑖1, 𝑟𝑖2) = 𝛿 − 𝛿2 + 𝛿2𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) − 𝛿 (1 − 𝛿) 𝑟01
+ (1 − 𝛿) 𝑟02

< 𝛿 − 𝛿2 + 𝛿2𝑥2 (𝑟𝑖1, 𝑟𝑖2) − 𝛿 (1 − 𝛿) 𝑟01
+ (1 − 𝛿) 𝑟02 ,

(B.5)

which means that 𝑥2(𝑟𝑖1, 𝑟𝑖2) < 𝛿/(1+𝛿)−𝛿𝑟01/(1+𝛿)+𝑟02/(1+𝛿) = 𝑥1,I
2
. Thus, 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) ≤ 𝑥2(𝑟𝑖1, 𝑟𝑖2) ⇐⇒ 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≤𝑥1,I

2
.
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Similarly, let 𝜔 = 1, I and (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄𝜔. By definition
of 𝑄1,I we have 𝑟𝑖1 > 𝑥1(𝑟𝑖+11 , 𝑟𝑖+12 ) and 𝑟𝑖+12 > 𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ). It
follows from Lemma B.1 that

𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) = 𝛿 − 𝛿𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) + (1 − 𝛿) 𝑟01
= 𝛿
− 𝛿 (𝛿 − 𝛿𝑦1 (𝑟𝑖+11 , 𝑟𝑖+22 ) + (1 − 𝛿) 𝑟02)
+ (1 − 𝛿) 𝑟01

= 𝛿 − 𝛿2 + 𝛿2𝑦1 (𝑟𝑖+11 , 𝑟𝑖+22 )
− 𝛿 (1 − 𝛿) 𝑟02 + (1 − 𝛿) 𝑟01 ,

(B.6)

which implies 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) ⇐⇒ 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≤𝑦1,I
1

Similarly, we can prove the cases for 𝜔 ∈ Ω, 𝜔 ̸= 1, I.
Lemma B.3. If (𝑟𝑘1 , 𝑟𝑘2 ) ∈ 𝑃𝜔 for all 𝑘 ≥ 𝑖, then 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥𝜔2 .
Similarly, if (𝑟𝑘1 , 𝑟𝑘+12 ) ∈ 𝑄𝜔 for all 𝑘 ≥ 𝑖, then 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦𝜔1 .

Lemma B.3 shows that if the reference point pair is in 𝑃𝜔
at the current time and all future time 𝑡 ∈ 𝑇odd, then player 1
must make the proposal 𝑥𝜔. The result for 𝑄𝜔 is similar.

Proof. If (𝑟𝑘1 , 𝑟𝑘2 ) ∈ 𝑃𝜔 for all 𝑘 ≥ 𝑖, then it follows
from Lemma B.1 that either 𝑥2(𝑟𝑖1, 𝑟𝑖2) is independent of the
reference point pair (𝑟𝑖1, 𝑟𝑖2) or no proposal is ever made,
which adjusts reference point pair. Thus, we can obtain𝑥2(𝑟𝑖1, 𝑟𝑖2) as the sum of a geometric series. Let (𝑟𝑘1 , 𝑟𝑘2 ) ∈ 𝑃1,I
for all 𝑘 ≥ 𝑖. It follows from Lemma B.1 that

𝑥2 (𝑟𝑖1, 𝑟𝑖2) = 𝛿 − 𝛿2 + 𝛿2𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) − 𝛿 (1 − 𝛿) 𝑟01
+ (1 − 𝛿) 𝑟02 = 𝛿 − 𝛿2 + 𝛿2 (𝛿 − 𝛿2
+ 𝛿2𝑥2 (𝑟𝑖+21 , 𝑟𝑖+22 ) − 𝛿 (1 − 𝛿) 𝑟01 + (1 − 𝛿) 𝑟02)
− 𝛿 (1 − 𝛿) 𝑟01 + (1 − 𝛿) 𝑟02 = 𝛿 (1 − 𝛿) (1 + 𝛿2 + 𝛿4
+ . . . . . .) − 𝛿 (1 − 𝛿) (1 + 𝛿2 + 𝛿4 + . . . . . .) 𝑟01 + (1
− 𝛿) (1 + 𝛿2 + 𝛿4 + . . . . . .) 𝑟02 = 𝛿 (1 − 𝛿) 11 − 𝛿2
− 𝛿 (1 − 𝛿) 11 − 𝛿2 𝑟01 + (1 − 𝛿) 11 − 𝛿2 𝑟02 = 𝛿1 + 𝛿
− 𝛿𝑟011 + 𝛿 +

𝑟021 + 𝛿 = 𝑥1,I2

(B.7)

The proof for 𝜔 ∈ Ω, 𝜔 ̸= 1, I is analogous.

Lemma B.4. If (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃1,III, then (𝑟𝑖1, 𝑟𝑖+12 ) ∉ 𝑄1,I. If(𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃2,III, then (𝑟𝑖1, 𝑟𝑖+12 ) ∉ 𝑄2,I.
If (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,I, then (𝑟𝑖+11 , 𝑟𝑖+12 ) ∉ 𝑃1,I. If (𝑟𝑖1, 𝑟𝑖+12 ) ∈𝑄3,II, then (𝑟𝑖+11 , 𝑟𝑖+12 ) ∉ 𝑃1,II.
Lemma B.4 shows some restrictions about how reference

points change through the sets P and Q.

Proof. Let (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃1,III and assume (𝑟𝑖1, 𝑟𝑖+12 ) ∉ 𝑄1,I. Then it
follows from the definitions of𝑃1,III and𝑄1,I that𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) >𝑥2(𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2, 𝑟𝑖1 > 𝑥1(𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) and 𝑟𝑖+12 >𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ). Since 𝑟𝑖1 > 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) and 𝑟𝑖+12 >𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ), we have 𝑟𝑖+11 = 𝑟𝑖1 and 𝑟𝑖+22 = 𝑟𝑖+12 by (B.1). It
follows from (I) that𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ). Furthermore,
since 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2, (B.1) implies 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑟𝑖+12 . Thus𝑟𝑖+12 > 𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ) = 𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑟𝑖+12 , which is
a contradiction.

Similarly, we can show the proofs of the other statements.

B.2. Proof ofTheorem 3. Now, some lemmas are provedwhich
are used to proveTheorem 3.

Lemma B.5. Let 𝜔 ∈ {1, I, 1, II, 2, I, 2, II}. Then for all(𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃𝜔, we have 𝑥(𝑟𝑖1, 𝑟𝑖2) = 𝑥𝜔. Similarly, for all(𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄𝜔, we have 𝑦(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦𝜔.
Proof. Let (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃𝜔 where 𝜔 ∈ {1, I, 1, II, 2, I, 2, II}.
Then 𝑟𝑖1 > 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) and 𝑟𝑖2 > 𝑥2(𝑟𝑖1, 𝑟𝑖2). By (B.1) this implies𝑟𝑖+11 = 𝑟𝑖1 and 𝑟𝑖+12 = 𝑟𝑖2. By (I), 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ). By
Lemma B.2 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥𝜔2 . The case for 𝑄𝜔 is similar.

Lemma B.6. If (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,I, we have the following two
cases: (i) 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑦3,I1 ; (ii) 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≤ 𝑦3,I1 . Thus, we
have 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,I1 .
Proof of LemmaB.6, Part i. Let (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,I; it follows from
the definition of 𝑄3,I that

𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1,
𝑟𝑖+12 > 𝑦2 (𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) .

(B.8)

We assume that 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) < 𝑦3,I
1
; it follows from

Lemma B.2 that 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ). Since𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1, by (B.1), we have 𝑟𝑖+11 = 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ).
Hence, 𝑟𝑖+11 > 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ). We have two possibilities:

(a) 𝑟𝑖+11 > 𝑥1(𝑟𝑖+21 , 𝑟𝑖+22 ) > 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ), i.e., (𝑟𝑖+11 , 𝑟𝑖+12 ) ∈𝑃1.I.
(b) 𝑥1(𝑟𝑖+21 , 𝑟𝑖+22 ) ≥ 𝑟𝑖+11 > 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ), i.e., (𝑟𝑖+11 , 𝑟𝑖+12 ) ∈𝑃2.I.
It follows from Lemma B.4 that case (a) is ruled out.

Hence, (𝑟𝑖+11 , 𝑟𝑖+12 ) ∈ 𝑃2.I.
By Lemma B.5, 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) = 𝑥2,I2 . Since (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,I,

Lemma B.1 implies
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𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) = 𝛿𝜇1 −
𝛿𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 )𝜇1 + (𝜇1 − 𝛿) 𝑟01𝜇1

= 𝛿𝜇1 −
𝛿𝑥2,I
2𝜇1 +

(𝜇1 − 𝛿) 𝑟01𝜇1
= 𝛿 (𝑥2,I1 − 𝑟01)𝜇1 + 𝑟01 .

(B.9)

B (B.1), we have 𝑟𝑖+11 = 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ). Note that 𝑥2,I1 is a function
of 𝑟𝑖+11 and therefore of 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ). That is,

𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) = 𝛿𝜇1 × (
(𝜇1 − 𝛿) + 𝛿2𝜆1𝑟𝑖+111 + 𝜆1 − 𝛿2

+ 𝛿 (1 − 𝛿) (1 + 𝜆1) 𝑟011 + 𝜆1 − 𝛿2 − (1 − 𝛿) (1 + 𝜆1) 𝑟021 + 𝜆1 − 𝛿2

− 𝑟01) + 𝑟01 = 𝛿𝜇1 ×
(𝜇1 − 𝛿) + 𝛿2𝜆1𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )1 + 𝜆2 − 𝛿2

+ 𝛿𝜇1 ×
𝛿 (1 − 𝛿) (1 + 𝜆1) 𝑟011 + 𝜆1 − 𝛿2 + (𝜇1 − 𝛿) 𝑟01𝜇1 − 𝛿𝜇1

× (1 − 𝛿) (1 + 𝜆1) 𝑟021 + 𝜆1 − 𝛿2

(B.10)

Thus, we have 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝛿/(1 + 𝜆1 + 𝛿) + (1 + 𝜆1)𝑟01/(1 +𝜆1 + 𝛿) − 𝛿𝑟02/(1 + 𝜆1 + 𝛿) = 𝑦3,I1 . Thus, 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,I1 is
contradicting 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) < 𝑦3,I1 .

Before we prove Part ii, we have to show a similar
argument for 𝑄3,II.
Lemma B.7. If (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,II, then we have the following
two cases: (i) 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑦3,II1 ; (ii) 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≤ 𝑦3,II1 . Thus,
we have 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,II1 .

Proof of Lemma B.7, Part i. Let (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,II; it follows
from the definition of 𝑄3,II that we have 𝑥1(𝑟𝑖+11 , 𝑟𝑖+12 ) >𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1 and 𝑦2(𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖+12 > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ).

We assume that 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) < 𝑦3,II
1

. By Lemma B.2,𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ). Since 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1, we have
from (B.1) that 𝑟𝑖+11 = 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ). Hence, 𝑟𝑖+11 > 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ).
We have two possibilities:

(a) 𝑟𝑖+11 ≥ 𝑥1(𝑟𝑖+21 , 𝑟𝑖+22 ) > 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ), i.e., (𝑟𝑖+11 , 𝑟𝑖+12 ) ∈𝑃1,II.
(b) 𝑥1(𝑟𝑖+21 , 𝑟𝑖+22 ) ≥ 𝑟𝑖+11 > 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ), i.e., (𝑟𝑖+11 , 𝑟𝑖+12 ) ∈𝑃2,II.
It follows from Lemma B.4 that case (a) is ruled out.

Hence, (𝑟𝑖+11 , 𝑟𝑖+12 ) ∈ 𝑃2,II. By Lemma B.5, 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) = 𝑥2,II2 .
Since (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,II, by Lemma B.1, we have

𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) = 𝛿𝜇1 −
𝛿𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 )𝜇1 + (𝜇1 − 𝛿) 𝑟01𝜇1

= 𝛿𝜇1 −
𝛿𝑥2,II
2𝜇1 + (𝜇1 − 𝛿) 𝑟01𝜇1

= 𝛿𝜇1 (𝑥
2,II
1 − 𝑟01) + 𝑟01

(B.11)

We have 𝑟𝑖+11 = 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) by (B.1). Note that 𝑥2,II
1

is a
function of 𝑟𝑖+11 . That is,

𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) = 𝛿𝜇1
× ((𝜇2 − 𝛿) (1 + 𝜆1) + 𝛿𝜆2 (1 − 𝑟𝑖+12 ) + 𝛿2𝜆1𝑟𝑖+11(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
+ 𝛿 (1 − 𝛿) (1 + 𝜆1) 𝑟01(1 + 𝜆1) (1 + 𝜆2) − 𝛿2 −

(1 + 𝜆1) (𝜇2 − 𝛿) 𝑟02(1 + 𝜆1) (1 + 𝜆2) − 𝛿2 − 𝑟
0

1)
+ 𝑟01 = 𝛿𝜇1
× ((𝜇2 − 𝛿) (1 + 𝜆1) + 𝛿𝜆2 (1 − 𝑟𝑖+12 ) + 𝛿2𝜆1𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )(1 + 𝜆1) (1 + 𝜆2) − 𝛿2
− (1 + 𝜆1) (𝜇2 − 𝛿) 𝑟02(1 + 𝜆1) (1 + 𝜆2) − 𝛿2)

+ (1 + 𝜆1) (1 + 𝜆2) (𝜇1 − 𝛿) 𝑟01𝜇1 ((1 + 𝜆1) (1 + 𝜆2) − 𝛿2)

(B.12)

Thus, we have 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝛿(𝜇2 − 𝛿 + 𝜆2𝛿(1 − 𝑟𝑖+12 ))/(𝜇1(1 +𝜆2) − 𝛿2) + (1 + 𝜆2)(𝜇1 − 𝛿)𝑟01/(𝜇1(1 + 𝜆2) − 𝛿2) − 𝛿(𝜇2 −𝛿)𝑟02/(𝜇1(1 + 𝜆2) − 𝛿2) = 𝑦3,II1 .
This contradicts 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) < 𝑦3,II1 .

This result can be used to prove Part ii of Lemma B.6.

Proof of Lemma B.6, Part ii. Let (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,I; it follows
from the definition of 𝑄3,I that

𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1,
𝑟𝑖+12 > 𝑦2 (𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) .

(B.13)

We assume 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑦3,I
1
. By Lemma B.2,𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ). Since 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1, we have

from (B.1) that 𝑟𝑖+11 = 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ). Hence, 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑟𝑖+11 ,
which implies (𝑟𝑖+11 , 𝑟𝑖+12 ) ∈ 𝑄3,I. Then from Lemma B.1,𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑦3,II1 and 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ), we have

𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) = 𝛿 − 𝛿𝑦1 (𝑟𝑖+11 , 𝑟𝑖+22 ) + (1 − 𝛿) 𝑟02
< 𝛿 − 𝛿𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) + (1 − 𝛿) 𝑟02
< 𝛿 − 𝛿𝑦3,I1 + (1 − 𝛿) 𝑟02
= 𝛿 (𝑦3,I2 − 𝑟02) + 𝑟02 = 𝑥3,I2 ,

(B.14)
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whichmeans that 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ) by Lemma B.2.
Observe that, by (B.1), 𝑟𝑖+12 > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) implies 𝑟𝑖+12 = 𝑟𝑖+22 .
Thus, 𝑟𝑖+22 = 𝑟𝑖+12 > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ). This leaves
two possibilities.

(a) 𝑟𝑖+22 > 𝑦2(𝑟𝑖+21 , 𝑟𝑖+32 ) > 𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ), i.e., (𝑟𝑖+11 , 𝑟𝑖+22 ) ∈𝑄3.I.
(b) 𝑦2(𝑟𝑖+21 , 𝑟𝑖+32 ) ≥ 𝑟𝑖+22 > 𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ), i.e., (𝑟𝑖+11 , 𝑟𝑖+22 ) ∈𝑄3,II.
Take case (b). Then 𝑦2(𝑟𝑖+21 , 𝑟𝑖+32 ) ≥ 𝑟𝑖+22 = 𝑟𝑖+12 >𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ), which implies 𝑦1(𝑟𝑖+21 , 𝑟𝑖+32 ) < 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ). By

Lemma B.2 we have 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) < 𝑦3,II1 , which contradicts
Part i of LemmaB.7.Thus, case (a)must hold; i.e., (𝑟𝑖+11 , 𝑟𝑖+22 ) ∈𝑄3.I. Note that 𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ) < 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) < 𝑥3,I2 . Then

𝑦1 (𝑟𝑖+11 , 𝑟𝑖+22 ) = 𝛿𝜇1 −
𝛿𝜇1 𝑥2 (𝑟

𝑖+2

1 , 𝑟𝑖+22 )
+ (𝜇1 − 𝛿) 𝑟01𝜇1

> 𝛿𝜇1 −
𝛿𝜇1 𝑥
3,I
2 + (𝜇1 − 𝛿) 𝑟

0

1𝜇1
= 𝛿𝜇1 𝑥

3,I
1 + (𝜇1 − 𝛿) 𝑟

0

1𝜇1 = 𝑦3,I1 .

(B.15)

If (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3.I and 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑦3,I1 , then (𝑟𝑖+11 , 𝑟𝑖+22 ) ∈𝑄3.I and 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑦3,I
1
. Thus, for all 𝑘 ≥ 𝑖 we have(𝑟𝑘1 , 𝑟𝑘+12 ) ∈ 𝑄3.I. Then it follows from Lemma B.3 that𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,I1 , which contradicts 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑦3,I1 .

Proof of Lemma B.7, Part ii. Let (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,II. From the
definition of 𝑄3,II we have 𝑥1(𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥𝑟𝑖1 and 𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ) ≥ 𝑟𝑖+12 > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ). We assume𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑦3,II1 . By Lemma B.2, 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) < 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ).
Since 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1, by (B.1), we have 𝑟𝑖+11 = 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ).
Hence, 𝑟𝑖+11 < 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ), which implies (𝑟𝑖+11 , 𝑟𝑖+12 ) ∈ 𝑄3,II.
From Lemma B.1, 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) < 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ), 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) >𝑦3,II
1

, and that 𝑟𝑖+22 = max{𝑟𝑖+22 , 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 )} = 𝑟𝑖+12 , we have

𝑥2 (𝑟𝑖+11 , 𝑟𝑖+12 ) = 𝛿 (1 + 𝜆2𝑟
𝑖+2

2 ) − 𝛿𝑦1 (𝑟𝑖+11 , 𝑟𝑖+22 )1 + 𝜆2
+ (1 − 𝛿) 𝑟02

< 𝛿 (1 + 𝜆2𝑟𝑖+22 ) − 𝛿𝑦1 (𝑟𝑖1, 𝑟𝑖+12 )1 + 𝜆2
+ (1 − 𝛿) 𝑟02

< 𝛿 (1 + 𝜆2𝑟𝑖+22 ) − 𝛿𝑦3,II11 + 𝜆2 + (1 − 𝛿) 𝑟02

= 𝛿 (1 + 𝜆2𝑟𝑖+12 ) − 𝛿𝑦3,II11 + 𝜆2 + (1 − 𝛿) 𝑟02
= 𝑥3,II2 ,

(B.16)

whichmeans that 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ) by LemmaB.2.
Since 𝑟𝑖+22 = 𝑟𝑖+12 > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ), thus, we have 𝑟𝑖+22 >𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ). Then there are two possibilities:

(a) 𝑟𝑖+22 > 𝑦2(𝑟𝑖+21 , 𝑟𝑖+32 ) > 𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ), i.e., (𝑟𝑖+11 , 𝑟𝑖+22 ) ∈𝑄3.I.
(b) 𝑦2(𝑟𝑖+21 , 𝑟𝑖+32 ) ≥ 𝑟𝑖+22 > 𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ), i.e., (𝑟𝑖+11 , 𝑟𝑖+22 ) ∈𝑄3,II.
Take case (a); i.e., (𝑟𝑖+11 , 𝑟𝑖+22 ) ∈ 𝑄3.I. Observe that𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ) ≥ 𝑟𝑖+12 = 𝑟𝑖+22 > 𝑦2(𝑟𝑖+21 , 𝑟𝑖+32 ), and thus𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) < 𝑦1(𝑟𝑖+21 , 𝑟𝑖+32 ). Lemma B.2 now implies𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑦3,I1 , which contradicts Part i of Lemma B.6.

Thus, case (b)must hold, whichmeans that (𝑟𝑖+11 , 𝑟𝑖+22 ) ∈ 𝑄3,II.
Since 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑥3,II2 and 𝑥2(𝑟𝑖+21 , 𝑟𝑖+22 ) > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ),
we have from Lemma B.1

𝑦1 (𝑟𝑖+11 , 𝑟𝑖+22 ) = 𝛿𝜇1 −
𝛿𝜇1 𝑥2 (𝑟

𝑖+2

1 , 𝑟𝑖+22 )
+ (𝜇1 − 𝛿) 𝑟01𝜇1

> 𝛿𝜇1 −
𝛿𝜇1 𝑥
3,II
2 + (𝜇1 − 𝛿) 𝑟01𝜇1 = 𝑦3,II1 .

(B.17)

Thus, (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,II and 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑦3,II
1

implies(𝑟𝑖+11 , 𝑟𝑖+22 ) ∈ 𝑄3,II and 𝑦1(𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑦3,II1 . Then, for all 𝑘 ≥ 𝑖
we have (𝑟𝑘+11 , 𝑟𝑘+22 ) ∈ 𝑄3,II that implies 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,II1 by
Lemma B.3, which contradicts 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑦3,II1

Similar results can be obtained in 𝑃2,III and 𝑃1,III.
Lemma B.8. If (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃1,III, then 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥1,III2 .

Lemma B.9. If (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃2,III, then 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥2,III2 .

The proofs of the two lemmas are similar to that of
Lemmas B.6 and B.7, respectively.

Lemma B.10. If (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃3,III, then we have the following
two cases: (i) 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≥ 𝑥3,III2 ; (ii) 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≤ 𝑥3,III2 . Thus, we𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥3,III2 .

Proof of LemmaB.10, Part i. Let (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃3,III. It follows from
the definition of 𝑃3,III that 𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2 and𝑥1(𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1(𝑟𝑖+11 , 𝑟𝑖+12 ) ≥ 𝑟𝑖1.

We assume 𝑥2(𝑟𝑖1, 𝑟𝑖2) < 𝑥3,III
2

. Lemma B.2 implies𝑥2(𝑟𝑖1, 𝑟𝑖2) > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ). Since 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2, we have from
(B.1) that 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑟𝑖+12 . Hence, 𝑟𝑖+12 > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ). Then
there are two possibilities:

(a) 𝑟𝑖+12 > 𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ) > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ), i.e., (𝑟𝑖1, 𝑟𝑖+12 ) ∈𝑄3.I.
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(b) 𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ) ≥ 𝑟𝑖+12 > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ), i.e., (𝑟𝑖1, 𝑟𝑖+12 ) ∈𝑄3,II.
Take case (a), i.e., (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3.I. From Lemma B.6 we

have 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,I1 . It follows from Lemma B.1 that

𝑥2 (𝑟𝑖1, 𝑟𝑖2) = 𝛿𝜇2 −
𝛿𝜇2𝑦1 (𝑟

𝑖

1, 𝑟𝑖+12 )
+ (1 − 𝛿) (1 + 𝜆2)𝜇2 𝑟02

= 𝛿𝜇2 −
𝛿𝜇2𝑦
3,I
1 + (1 − 𝛿) (1 + 𝜆2) 𝑟

0

2𝜇2
= 𝛿𝜇2𝑦

3,I
2 + (1 − 𝛿) (1 + 𝜆2) 𝑟

0

2𝜇2 .

(B.18)

𝑦3,I2 = 1 + 𝜆11 + 𝜆1 + 𝛿 −
(1 + 𝜆1) 𝑟011 + 𝜆1 + 𝛿 +

𝛿𝑟021 + 𝜆1 + 𝛿
= (1 + 𝜆1) (1 − 𝛿)(1 + 𝜆1 + 𝛿) (1 − 𝛿)
− (1 + 𝜆1) (1 − 𝛿) 𝑟01(1 + 𝜆1 + 𝛿) (1 − 𝛿)
+ 𝛿 (1 − 𝛿) 𝑟02(1 + 𝜆1 + 𝛿) (1 − 𝛿)

= 1 − 𝛿 + 𝜆1 (1 − 𝛿)1 + 𝜆1 (1 − 𝛿) − 𝛿2
− (1 − 𝛿 + 𝜆1 (1 − 𝛿)) 𝑟011 + 𝜆1 (1 − 𝛿) − 𝛿2
+ 𝛿 (1 − 𝛿) 𝑟021 + 𝜆1 (1 − 𝛿) − 𝛿2

= 𝜇2𝜇2 ×
(𝜇1 − 𝛿)𝜇1 − 𝛿2 −

𝜇2𝜇2 ×
(𝜇1 − 𝛿) 𝑟01𝜇1 − 𝛿2

+ 𝜇2𝜇2 ×
𝛿 (1 − 𝛿) 𝑟02𝜇1 − 𝛿2

> 𝜇2 (𝜇1 − 𝛿)𝜇1𝜇2 − 𝛿2 −
𝜇2 (𝜇1 − 𝛿) 𝑟01𝜇1𝜇2 − 𝛿2

+ 𝛿 (𝜇1 − 𝛿) 𝑟02𝜇1𝜇2 − 𝛿2 = 𝑦3,III2
(B.19)

Thus 𝑥2(𝑟𝑖1, 𝑟𝑖2) > (𝛿/𝜇2)𝑦3,III2 + (1 − 𝛿)(1 + 𝜆2)𝑟02/𝜇2 = 𝑥3,III2 ,
which contradicts the initial 𝑥2(𝑟𝑖1, 𝑟𝑖2) < 𝑥3,III2 .

Take case (b), that is, (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,II. By Lemma B.1,𝑥2(𝑟𝑖1, 𝑟𝑖2) = (𝛿/𝜇2)𝑦3,II2 + ((1 − 𝛿)(1 + 𝜆2)/𝜇2)𝑟02 . By (B.1)𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑟𝑖+12 , and 𝑦3,II
2

is a function of 𝑟𝑖+12 .

𝑥2 (𝑟𝑖1, 𝑟𝑖2) = 𝛿𝜇2𝑦
3,II
2 + (1 − 𝛿) (1 + 𝜆2)𝜇2 𝑟02

= 𝛿𝜇2 (
(1 + 𝜆2) (𝜇1 − 𝛿) + 𝜆2𝛿2𝑟𝑖+12𝜇1 (1 + 𝜆2) − 𝛿2

− (1 + 𝜆2) (𝜇1 − 𝛿) 𝑟01𝜇1 (1 + 𝜆2) − 𝛿2 + 𝛿 (𝜇2 − 𝛿) 𝑟02𝜇1 (1 + 𝜆2) − 𝛿2)
+ (1 − 𝛿) (1 + 𝜆2)𝜇2 𝑟02
= 𝛿𝜇2 (

(1 + 𝜆2) (𝜇1 − 𝛿) + 𝜆2𝛿2𝑥2 (𝑟𝑖1, 𝑟𝑖2)𝜇1 (1 + 𝜆2) − 𝛿2
− (1 + 𝜆2) (𝜇1 − 𝛿) 𝑟01𝜇1 (1 + 𝜆2) − 𝛿2 + 𝛿 (𝜇2 − 𝛿) 𝑟02𝜇1 (1 + 𝜆2) − 𝛿2)

+ (1 − 𝛿) (1 + 𝜆2)𝜇2 𝑟02

(B.20)

Solving for 𝑥2(𝑟𝑖1, 𝑟𝑖2) yields 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝛿(𝜇1−𝛿)/(𝜇1𝜇2−𝛿2)−𝛿𝑟01(𝜇1 − 𝛿)/(𝜇1𝜇2 − 𝛿2) + 𝜇1𝑟02(𝜇2 − 𝛿)/(𝜇1𝜇2 − 𝛿2) = 𝑥3,III2 ,
which contradicts 𝑥2(𝑟𝑖1, 𝑟𝑖2) < 𝑥3,III2 .

In order to complete above proof, we need a similar result
for 𝑄3,III.
Lemma B.11. If (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,III, then we have the following
two cases: (i) 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑦3,III1 ; (ii) 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≤ 𝑦3,III1 . Thus,
we have 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,III1 .

Proof of Lemma B.11, Part i. It is similar to the proof of
Lemma B.10 Part i.

We can continue the proof of Part ii of Lemma B.10.

Proof of Lemma B.10, Part ii. Let (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑃3,III. By the
definition of 𝑃3,III we have 𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) > 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2 and𝑥1(𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1.

We assume 𝑥2(𝑟𝑖1, 𝑟𝑖2) > 𝑥3,III
2

. Lemma B.2 implies𝑥2(𝑟𝑖1, 𝑟𝑖2) < 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ). Since 𝑥2(𝑟𝑖1, 𝑟𝑖2) ≥ 𝑟𝑖2, we have from
(B.1) that 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑟𝑖+12 . Hence, 𝑟𝑖+12 < 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) which
implies (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,III. By the first part of Lemma B.11 this
implies that 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑦3,III1 . Then by Lemma B.1 and the
construction of 𝑥3,III, we have

𝑥2 (𝑟𝑖1, 𝑟𝑖2) = 𝛿𝜇2 −
𝛿𝜇2𝑦1 (𝑟

𝑖

1, 𝑟𝑖+12 )
+ (1 − 𝛿) (1 + 𝜆2)𝜇2 𝑟02

≤ 𝛿𝜇2 −
𝛿𝜇2𝑦
3,III
1 + (1 − 𝛿) (1 + 𝜆2)𝜇2 𝑟02

= 𝑥3,III2 ,

(B.21)

which contradicts 𝑥2(𝑟𝑖1, 𝑟𝑖2) > 𝑥3,III2 .
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Proof of Lemma B.11, Part ii. It is similar to the proof of
Lemma B.10, Part ii.

We can obtain the proposalsmade in the sets𝑃3,I and𝑃3,II.
Lemma B.12. If (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃3,I, then 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥3,I2 .
Proof. Let (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃3,I. It follows from the definition of 𝑃3,I
that

𝑟𝑖2 > 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) > 𝑥2 (𝑟𝑖1, 𝑟𝑖2) ,
𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1.

(B.22)

Assuming 𝑥2(𝑟𝑖1, 𝑟𝑖2) ̸= 𝑥3,I
2
, we have the following three

exhaustive cases, which are mutually exclusive.
(i) (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,I: Since (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃3,I, Lemma B.1 implies

𝑥2 (𝑟𝑖1, 𝑟𝑖2) = 𝛿 − 𝛿𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) + (1 − 𝛿) 𝑟02
= 𝛿𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) + (1 − 𝛿) 𝑟02 .

(B.23)

Then it follows from Lemma B.6 and the construction of 𝑥3,I
that 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝛿𝑦3,I2 + (1 − 𝛿)𝑟02 = 𝑥3,I2 , which contradicts𝑥2(𝑟𝑖1, 𝑟𝑖2) ̸= 𝑥3,I

2
.

(ii) (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,II: Since (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃3,I and (𝑟𝑖1, 𝑟𝑖+12 ) ∈𝑄3,II, we have
𝑦2 (𝑟𝑖+11 , 𝑟𝑖+22 ) ≥ 𝑟𝑖+12 = max {𝑟𝑖2, 𝑥2 (𝑟𝑖1, 𝑟𝑖2)} = 𝑟𝑖2

> 𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) .
(B.24)

However, by Lemma B.7 𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,II2 and this implies𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ) by Lemma B.2.
This contradicts the above.
(iii) (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,III: By Lemmas B.1 and B.11, inequality

(B.19), and the construction of 𝑥3,I, we have 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝛿 −𝛿𝑦1(𝑟𝑖1, 𝑟𝑖+12 )+(1−𝛿)𝑟02 = 𝛿𝑦3,III2 +(1−𝛿)𝑟02 < 𝛿𝑦3,I2 +(1−𝛿)𝑟02 =𝑥3,I
2
. By Lemma B.2 this implies 𝑥2(𝑟𝑖1, 𝑟𝑖2) > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ).

Since 𝑟𝑖2 > 𝑥2(𝑟𝑖1, 𝑟𝑖2) we have by (B.1) that 𝑟𝑖2 = 𝑟𝑖+12 , implying𝑟𝑖+12 > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ). This implies (𝑟𝑖1, 𝑟𝑖+12 ) ∉ 𝑄3,III, which
contradicts (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,III.

It follows that 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥3,I2 .
Lemma B.13. If (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃3,II, then 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥3,II2 .

Proof. Let (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃3,II. Then it follows from the definition
of 𝑃3,II that

𝑦2 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖2 > 𝑥2 (𝑟𝑖1, 𝑟𝑖2) ,
𝑥1 (𝑟𝑖+11 , 𝑟𝑖+12 ) > 𝑦1 (𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖1.

(B.25)

Assuming 𝑥2(𝑟𝑖1, 𝑟𝑖2) ̸= 𝑥3,II
2

, we have the following three
exhaustive cases, which are mutually exclusive.

(i) (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,I: Since 𝑟𝑖1 > 𝑥2(𝑟𝑖1, 𝑟𝑖2), we have from
(B.1) that 𝑟𝑖2 = 𝑟𝑖+12 . Hence 𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) ≥ 𝑟𝑖2 = 𝑟𝑖+12 >

𝑦2(𝑟𝑖+11 , 𝑟𝑖+12 ). However, by Lemma B.6 we have 𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) =𝑦3,I
2
, which by Lemma B.2 implies 𝑦2(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦2(𝑟𝑖+11 , 𝑟𝑖+22 ).

This contradicts the above.
(ii) (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,II: By Lemma B.7 we have 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) =𝑦3,II
1

. By Lemma B.1 and the construction of 𝑥3,II, we have𝑥2(𝑟𝑖1, 𝑟𝑖2) = (𝛿(1+𝜆2𝑟𝑖+12 )−𝛿𝑦1(𝑟𝑖1, 𝑟𝑖+12 ))/(1+𝜆2) + (1−𝛿)𝑟02 =(𝛿(1+𝜆2𝑟𝑖+12 )−𝛿𝑦3,II1 )/(1+𝜆2)+ (1−𝛿)𝑟02 = 𝛿(𝑦3,II2 +𝜆2𝑟𝑖+12 )/(1+𝜆2) + (1 − 𝛿)𝑟02 = 𝑥3,II2 , which contradicts 𝑥2(𝑟𝑖1, 𝑟𝑖2) ̸= 𝑥3,II
2

.
(iii) (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄3,III: By Lemma B.11 and the definition

of 𝑦3,III
1

this implies 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,III1 = 𝛿/𝜇1 − (𝛿/𝜇1)𝑥3,III2 +(𝜇1 − 𝛿)𝑟01/𝜇1. By Lemma B.1 we have 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦3,III1 =𝛿/𝜇1 − (𝛿/𝜇1)𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) + (𝜇1 − 𝛿)𝑟01/𝜇1.
Hence 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ) = 𝑥3,III2 . Since 𝑟𝑖2 > 𝑥2(𝑟𝑖1, 𝑟𝑖2), we have

from (B.1) that 𝑟𝑖2 = 𝑟𝑖+12 . Thus, 𝑥2(𝑟𝑖1, 𝑟𝑖2) < 𝑟𝑖2 = 𝑟𝑖+12 ≤𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ). By Lemma B.2 this implies 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥3,II2 .
Since 𝑥2(𝑟𝑖1, 𝑟𝑖2) < 𝑟𝑖2 and 𝑟𝑖2 = 𝑟𝑖+12 this implies 𝑟𝑖+12 > 𝑥3,II

2
.

That is, 𝑟𝑖+12 > 𝛿(𝜇1 − 𝛿 + 𝜆2𝑟𝑖+12 𝜇1)/(𝜇1(1 + 𝜆2) − 𝛿2) − 𝛿(𝜇1 −𝛿)𝑟01/(𝜇1(1 + 𝜆2) − 𝛿2) + 𝜇1(𝜇2 − 𝛿)𝑟02/(𝜇1(1 + 𝜆2) − 𝛿2).
This is equivalent to 𝑟𝑖+12 > 𝛿(𝜇1−𝛿)/(𝜇1𝜇2−𝛿2)−𝛿𝑟01(𝜇1−𝛿)/(𝜇1𝜇2 − 𝛿2) + 𝜇1𝑟02(𝜇2 − 𝛿)/(𝜇1𝜇2 − 𝛿2) = 𝑥3,III2 . Hence,𝑟𝑖+12 > 𝑥2(𝑟𝑖+11 , 𝑟𝑖+12 ), which implies (𝑟𝑖1, 𝑟𝑖+12 ) ∉ 𝑄3,III. This is a

contradiction. It follows that 𝑥2(𝑟𝑖1, 𝑟𝑖2) = 𝑥3,II2 .

We can obtain similar results for 𝑄2,III and 𝑄1,III.
Lemma B.14. If (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄1,III, then 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦1,III1 .

Lemma B.15. If (𝑟𝑖1, 𝑟𝑖+12 ) ∈ 𝑄2,III, then 𝑦1(𝑟𝑖1, 𝑟𝑖+12 ) = 𝑦2,III1 .

The proofs of the two Lemma are similar to that of
Lemmas B.12 and B.13.

Proof of Theorem 3. Let (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃1,I. According to the
definition, we have 𝑟𝑖2 > 𝑦2(𝑟𝑖1, 𝑟𝑖2) and 𝑟𝑖1 > 𝑥1(𝑟𝑖1, 𝑟𝑖2). From
Lemma B.5, we have 𝑟𝑖2 > 𝑦1,I2 and 𝑟𝑖1 > 𝑥1,I1 . Thus, (𝑟𝑖1, 𝑟𝑖2) ∈𝑋1,I, which leads to 𝑃1,I ⊆ 𝑋1,I.

Similarly, it follows from Lemmas B.5, B.8–B.10, B.12, and
B.13 that (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑃𝜔 implies (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑋𝜔 for each 𝜔 ∈ Ω.
Thus,we have𝑃𝜔 ⊆ 𝑋𝜔 for each𝜔 ∈ Ω. Formutually exclusive
and exhaustive sets 𝑃𝜔, we have 𝑃𝜔 = 𝑋𝜔 for each 𝜔 ∈ Ω.
Thus, for times 𝑡 ∈ 𝑇𝑜𝑑𝑑, the unique SPE strategy of player 1
is to make the proposal 𝑥𝜔 if (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑋𝜔. In other words,
the unique SPE strategy of player 1 is to follow strategy 𝑓.
Similarly, we have 𝑄𝜔 = 𝑋𝜔 for each 𝜔 ∈ Ω. Thus, for times𝑡 ∈ 𝑇𝑒V𝑒𝑛, the unique SPE strategy of player 2 is to make the
proposal 𝑦𝜔 if (𝑟𝑖1, 𝑟𝑖2) ∈ 𝑋𝜔; that is, the unique SPE strategy
of player 2 is to follow strategy 𝑔.

By Part II of the proof of Theorem 2, the unique optimal
strategy of player 1 atmoments 𝑡 ∈ 𝑇𝑒V𝑒𝑛 is to accept offers that
are at least SPE proposal of player 2 and to turn down those
that are not. In other words, at time 𝑡 ∈ 𝑇𝑒V𝑒𝑛, the unique
SPE strategy of player 1 is 𝑓. Similarly, at time 𝑡 ∈ 𝑇𝑜𝑑𝑑, the
unique optimal strategy of player 2 is to accept and turn down
proposals by the strategy 𝑔.
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