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A new mathematical modeling method, namely, the finite element method and the lumped mass method (LMM-FEM) mixed
modeling, is applied to establish the overall multinode dynamic model of a four-stage helicopter main gearbox. The design of
structural parameters of the shaft is the critical link in the four-stage gearbox; it affects the response of multiple input and
output branches; however, only the meshing pairs were frequently shown in the dynamic model in previous research. Therefore,
each shaft is also treated as a single node and the shaft parameters are coupled into the dynamic equations in this method,
which is more accurate for the transmission chain. The differential equations of the system are solved by the Fourier series
method, and the dynamic response of each meshing element is calculated. The sensitivity analysis method and parameter
optimization method are applied to obtain the key shaft parameters corresponding to each meshing element. The results show
that the magnitude of dynamic response in converging meshing pair and tail output pair is higher than that of other meshing
pairs, and the wall thickness has great sensitivity to a rotor shaft. In addition, the sensitivity analysis method can be used to
select the corresponding shaft node efficiently and choose parameters appropriately for reducing the system response.

1. Introduction

The four-stage helicopter main gearbox has three input
branches; they converge on the central gear and go one way
to the rotor and the other way to the tail chain. The transmis-
sion chain includes many parts, which make its structure very
complicated. The meshing pairs include internal excitations
suchas time-varyingmeshing stiffness and transmissionerror;
in addition, external excitations like torques of the engine,
rotor, and tail load also have an important effect on the system.
The dynamic response has a profound influence on the fatigue
life of the system; therefore, it is necessary to carry out the
dynamic analysis for the four-stage helicopter gearbox.

Regarding gearbox modeling, Kubur et al. [1] established
the dynamic model of a multishaft helical gear reduction sys-
tem formed by flexible shafts and studied the influence of
some of the key system parameters under forced vibrations.
Raclot and Velex [2] simulated the contributions of shape
deviations and mounting errors to the dynamic behaviour

of multistage geared systems. Choy et al. [3] presented a mul-
tistage multimesh gear transmission system; the individual
modal component responses and the overall system dynam-
ics of the gearbox were predicted. Dzitkowski and Dymarek
[4] obtained the multistage gear mechanical characteristics
by properly selecting the dynamical properties of the system
based on using the active synthesis method. Chen et al. [5]
established the vibration model of a four-stage main trans-
mission system in a helicopter through the lumped mass
method, and the influence of the torsional stiffness of shafts
on the first five orders of the system’s natural frequency
was studied. However, in this dynamic model, the shaft was
not regarded as a node and all the differential equations are
related to the meshing pairs.

In the area of gear response analysis, Parker et al. [6] ana-
lyzed the dynamic response of a helicopter planetary gear
system under different ranges of operating speeds and tor-
ques based on a finite element method and focused on the
gear contact conditions. Velex and Flamand [7] calculated
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dynamic tooth loads and response on a planetary gear set by
the Ritz method and compared the results with those given
by direct integrations for highly reduced computation times.
Chaari et al. [8] compared the dynamic response of healthy
planetary gears with cracked planetary gears in both the time
and frequency domains applied with the Wigner-Ville distri-
bution method. Walha et al. [9] investigated dynamics of a
two-stage gear system involving backlash and time-
dependent mesh stiffness, and the decomposition of a non-
linear system into some linear systems was solved by the
Newmark iterative algorithm. Zhou et al. [10] developed a
coupled lateral-torsional nonlinear dynamic model with 16
degrees of freedom (16-DOF) of gear-rotor-bearing trans-
mission system considering the nonlinear features, and the
mean load excitation had a complicated influence on the
coupled system; they concluded that the torsional vibration
was the dominant response in the geared system. Chen
et al. [11] detected the key shafts of the four-stage helicopter
gearbox and analyzed their sensitivity to each branch of the
system through the lumped mass method.

Gearbox parameter optimization plays an important
role in the helicopter design. Chen and Shao [12] demon-
strated the effectiveness of the proposed mesh stiffness
model under the influences of the tooth profile modifica-
tion, not only applied in low contact ratio, but also in high
contact ratio. Yang et al. [13] presented the gearbox
parameter optimization method by the artificial bee colony
algorithm when diagnosing the gear faults and verified the
theory through a two-stage parallel shaft gearbox. Bozca
[14–16] studied gearbox geometric parameter optimization
to reduce rattle noise in an automotive transmission based
on a torsional vibration model, and the module, number
of teeth, axial clearance, and backlash could be improved
through this method. However, system dynamic optimiza-
tions were mostly through gear parameters or profile modifi-
cation; the shaft parameters were not regarded as variables in
these researches.

About the sensitivity analysis to system parameters,
Lin and Parker [17] and Guo and Parker [18] investigated
the natural frequency and vibration mode sensitivities to
system parameters. Chen et al. [19] studied the response
sensitivity to system parameters like gear mesh stiffness,
damping, diameter ratio, and gear mass unbalance in a
coupled gear system. However, sensitivity analysis based on
multinode dynamic modeling has not been captured by
these researches.

In summary, the research of most scholars focuses on the
planetary gear chain of the helicopter main gearbox. The
dynamic equations also seldom reflect the characteristics of
the shaft parameters as independent nodes; thus, it is mean-
ingful to improve the dynamic modeling and propose the
optimization method.

2. LMM-FEM Mixed Modeling

The dynamic modeling process of a typical four-stage heli-
copter main gearbox is shown in Figure 1 [20]. Figure 1(a)
is the system dynamic model, there are seven meshing ele-
ments (A, B, C, D, E, and F) in the system, and the elements
F and G are internal and external meshing pairs in the plan-
etary system, which contains one sun gear, six planet gears,
and one carrier. θ is the rotational degree of freedom
(DOF) of each node. Figure 1(b) is a comparison of the
LMM modeling method and the LMM-FEM mixed model-
ing method. In this new method, the gearbox is regarded as
finite critical nodes, which include a shaft and a meshing pair;
each DOF corresponds to each node of the system. The sys-
tem’s generalized DOF coordinate vector X is

X = θ
j
1 , θ j

2 , θ j
3 , θ j

4 , θ j
5 , θ j

6 , θ j
7 , θ j

8 , θ9, θ10, θ11, θ12, θ13,

θ14 θ15, θ16, θ17, θ18, θ19, θ20, θ21, θ22, θ23, θ24
T

1

2.1. Dynamic Modeling of the Meshing Pairs. For the seven
meshing pairs (A, B, C, D, E, F, and G) highlighted in
Figure 1, the time-varying meshing stiffness can be expressed
in the Fourier series with meshing frequency ω [21]:

k t = km + ka sin ωt + β ,

kspi t = km,spi + ka,spi sin ωt + βspi ,

krpi t = km,rpi + ka,rpi sin ωt + βrpi ,

2

where k t , kspi t , and krpi t are time-varying meshing stiff-
ness of each gear pair; km and ka are the average andmaximum
variable meshing stiffness; β is the initial phase of meshing
stiffness; and ω is the fundamental meshing frequency.

The transmission errors are shown in the same way:

e t = em + ea sin ωt + φ ,

espi t = Aspi sin ωt + φspi + Epi sin ωpHt + φpi + α + Es sin ωsHt + φs −
2π i − 1

N
+ α ,

erpi t = Arpi sin ωt + φrpi + Epi sin ωpHt + φpi − α + Er sin ωrHt + φr −
2π i − 1

N
− α ,

3
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where e t , espi t , and erpi t are time-varying transmission
errors of each gear pair; em and ea are static and dynamic
transmission error amplitude; φ is the initial phase of

transmission error; ωpH , ωsH , and ωrH are rotational fre-
quency of planet gear, sun gear, and carrier; α is the pressure
angle; and N is the number of planet gear.
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Tooth deflection along the meshing line is defined as the
dynamic response and presented as follows:

X t = θdrd − θprp − e t , 4

where θd and θp are rotational DOF of drive gear and driven
gear and rd and rp are the radii of the base circle in the drive
gear and driven gear.

The dynamic forces of each gear pair F t are defined
as follows:

F t = Fp t + Fd t ,
Fp t = k t X t ,

Fd t = c t X t ,

5

where c t is the meshing damping and X t is the relative
velocity along the meshing line.

2.2. Differential Equation of Multinode System. According
to the dynamic modeling above, the differential equation
of the multinode dynamic model can be deduced through
Newton’s law:

Node 1: shaft node

J1θ
j
1 + G1

πD4
1

32l1
1 − d4

D4 θ
j
1 = TEj 6

Nodes 2–3: meshing pair A

Node 4: shaft node
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Node 7: shaft node
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Nodes 8–10: meshing pairs C and D

Node 11: shaft node

Node 12: meshing pair E

Node 14: shaft node
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Node 15: shaft node
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Nodes 16–23: meshing pairs F and G

Node 24: shaft node

where TEj is denoted as the torque of engine j (j = 1,2,3);
D and d are the outer and inner diameters of the hollow
shaft; G is the shear elastic modulus of the shaft; Tt is the out-
put torque of the tail chain; and Tr is the output torque of the
rotor shaft.

The equations for each DOF could be written as the
following matrix-vector form:

M X + C X + K X = F 18

The excitation F could be expanded to the Fourier
series with the fundamental frequency as well; kth order
excitation is

Fk = A1 k sin ωkt + A2 k cos ωkt 19

The excitation causes the system to generate a
response [22]:

Δx k = B1 k sin ωkt + B2 k cos ωkt, 20

where B1 k and B2 k could be solved by the following
equation:

−ω2
k M + K −ωk C

ωk C −ω2
k M + K

B1 k

B2 k

=
A1 k

A2 k

21

The dynamic response is the linear superposition of the
results corresponded by each order:

Δx t = 〠
5

k=1
B1 k sin ωkt + B2 k cos ωkt 22

3. Numerical Calculation

3.1. System Parameter and Response Calculation. The param-
eters of nodes are shown in Table 1. In addition, the system is
powered by three engines, the maximum output power of
each engine is 1500 kW, and engine speed is 10,000 rpm.
The output power of the rotor is 4000 kW, and the rotor
speed is 300 rpm. The transmission mechanical efficiency
is 95%.

The calculation results can be seen from Figure 2, and the
dynamic response exhibits periodic vibrations under multi-
frequency excitation caused by time-varying meshing stiff-
ness and transmission errors; thus, the response amplitudes
are different. The gear rotational frequency reduces with
the transmission chain following the output branch; in other
words, the deceleration effect is obvious.

By comparison, it indicates that the dynamic response of
meshing pair E has the maximum amplitude due to the heavy
tail output load. In addition, the magnitude of the response in
meshing pair C, especially pair C3, has a relatively higher
response as well, as a result of the three-input branches con-
verging at the central gear. Regarding the planetary gear
train, the response of planetary gear 1 is greater than that of

J16θ16 + 〠
6
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Fp
spi t + Fd

spi t r16 + G15
πD4

15
32l15

1 − d415
D4
15

θ16 − θ15 = 0,
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cpi t rpi = 0,

J23θ23 − 〠
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πD4

24
32l24
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24
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16
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the other planetary gears due to its largest transmission and
manufacturing error.

3.2. Sensitivity Analysis of Responses Influenced by Shaft
Wall Thickness. The sensitivity analysis method is widely
used to study the key variables under many uncertainties,
which can provide a parametric reference for the design
of the four-stage helicopter gearbox. In this paper, the
ratio of the inner and outer diameters of the shaft is
regarded as a variable, the sensitivity coefficient of each
pair is calculated, and the key shafts affecting the response
characteristics are investigated.

The ratio of the inner and outer diameters of the shaft is
defined as α; the sensitivity coefficient of the response x t to
α is defined as follows:

Sxα =
x
α′
′ − xα /xα
α′ − α /α

× 100%, 23

where x and x′ are the response amplitudes corresponding to
the ratio of α and α′.
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Figure 2: Dynamic response regarding tooth deflection in each gear pair.
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By changing the diameter ratio α, the sensitivity coeffi-
cient of each meshing pair is shown in Figure 3. According
to Figure 3(a), the sensitivity coefficients of node 1 i tomesh-
ing pairs (A, B, and C) are greater than 50%, and the coeffi-
cient is gradually increased with the transmission chain.
Therefore, the diameter ratio of node 1 is the most sensitive
to meshing pair C. In addition, node 1 is also about 28% sen-
sitive to the response of the planetary gear system, and the
other meshing pairs are insensitive to this node.

According to Figure 3(b), the sensitivity coefficient of
node 4 and meshing pair A is the highest, which directly
affects the dynamic response of the first-stage deceleration,
and the sensitivity of the subsequent stages is gradually
reduced. The sensitivity of node 7 in Figure 3(c) has the sim-
ilar influence law as that of node 1, and the sensitivity coeffi-
cients are quite close as well. In Figure 3(d), node 11 has the

highest sensitivity (14.5% and 38%) with its adjacent mesh-
ing pair D and meshing pair E. In Figure 3(e), node 14 is
highly sensitive to the meshing pairs of the tail chain, which
includes meshing pairs D and E. In Figure 3(f), the wall
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Figure 3: Sensitivity coefficient of each meshing pair influenced by α.

Table 2: Sensitivity correspondence of wall thickness.

Meshing pair Most sensitive node

A, B, C Node 1 and node 7

D Node 14

E Node 11

F Node 15

G Node 24
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thickness of node 15, the input shaft of the sun gear, directly
affects the response of the planetary gear train; thus, it is the
most critical node of meshing pair F. Node 24 in Figure 3(g),
the rotor shaft, has the sensitivity of 17% to meshing pair G,
and the coefficient is much larger than that of other nodes.

From these figures, the sensitivity correspondence and
shaft selection method regarding wall thickness could be gen-
eralized in Table 2, which could be a reference for reducing
the vibration shock.

3.3. Sensitivity Analysis of Responses Influenced by Shaft
Length. The sensitivity coefficient of the response x t to
the shaft length is defined as follows [23]:

Sxl =
x
l′
′ − xl /xl
l′ − l /l

× 100%, 24

where x and x′ are the response amplitudes corresponding to
lengths l and l′.

By changing the only variable parameter shaft length l, the
sensitivity coefficient of each meshing pair is calculated in the
same way, as is shown in Figure 4. From Figures 4(a)–4(c), it
can be seen that the three meshing pairs of node 1, node 4,
and node 7 have the highest sensitivity to three meshing pairs
in the input branch, but the sensitivity coefficient of node 4 is
relatively low. In Figures 4(d) and 4(e), node 11 and node 14
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Figure 4: Sensitivity coefficient of each meshing pair influenced by shaft length.
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are similar in the influence law; they both have about 10%
sensitivity coefficient to meshing pairs D and E. In
Figure 4(f), the coefficient of node 15 to meshing pair F in
the planetary gear system is 44%; with the coefficient
depicted in Figure 4(f), it could be concluded that the wall
thickness and shaft length of node 15 are critical parameters
to internal meshing pair in the planetary gear train. In
Figure 4(g), although node 24 is the most sensitive to the
external meshing pair of the planetary gear system, the sen-
sitivity coefficient is only 0.12%. In addition, the highest
response sensitivity correspondence regarding shaft length
is generalized in Table 3.

3.4. Structural Parameter Optimization Based on Response
Sensitivity Analysis. By the sensitivity analysis of the meshing
pairs based on the wall thickness and the shaft length, the
most sensitive parameter has been investigated according to
Tables 2 and 3. From Figure 2, it could be noted that the max-
imum response amplitude of the four-stage system is located
at meshing pair E, according to the sensitivity analysis; the
corresponding node is node 11. The second largest response
amplitude is situated at meshing pair C3, and the corre-
sponding node is node 1.

Therefore, a parameter optimization method is provided
by changing the structural parameters of the shaft node with-
out considering other errors and phase changes. It is initially
set that the design range of the shaft diameter ratio α of node
1 is 0.6 to 0.9, and the range of the shaft length l is 0.6 to
1.4m. After going through the parameters in the range, the
selected diameter ratio and shaft length are shown in
Table 4 as an improved group. Similarly, α11 is limited to
0.75~0.9, and l11 is 1.2~1.8m; the original group and
improved group are selected in the same way. Calculate the
dynamic response of the original group and the improved
group separately, as shown in Figure 5. From the figure
and table, it can be concluded that the response of mesh-
ing pair C3 is reduced by 34.7% and that of meshing pair E

is decreased by 36.1%, and the improvement effect is
quite obvious.

4. Conclusion

Basedon thenewdynamicmodelingmethod and the response
characteristics analysis, the overall multinode dynamic model
of a four-stage helicoptermain gearbox is established. By solv-
ing coupling differential equations, the sensitive laws of
wall thickness and length of the hollow shaft are obtained.
Therefore, the structural parameter optimization method is
proposed to improve the original parameter group. The
results enable us to draw the following conclusions:

(1) The magnitude of dynamic response in meshing
pairs E and C3 is higher than that of other meshing
pairs due to the load torque and converging influence

(2) Each meshing pair has the most sensitive node
according to the sensitivity analysis; parameter sensi-
tivity correspondence tables are proposed for the
main gearbox design

(3) Regarding the rotor shaft (node 24), the wall thick-
ness has great sensitivity to response; nevertheless,
the influence of shaft length is negligible

(4) In the design of the four-stage helicopter main
gearbox, the shaft corresponding to node 1 should
be relatively short and thick, and the shaft corre-
sponding to node 11 should be comparatively long
and thin, which can effectively reduce the response
of the system

(5) The sensitivity analysis method can be applied to
quickly select the corresponding shaft node and its
parameters for reducing the response, which has a
good auxiliary effect on system modification. The
improvement effect is obvious according to the group
comparison

Table 4: Parameter optimization of the hollow shaft.

Parameter Original group Improved group Optimization effect

α1 0.75 0.6 N/A

l1 0.8 0.6 N/A

α11 0.75 0.9 N/A

l11 1.4 1.8 N/A

XC3 0.0262 0.0171 −34.7%
XE 0.0343 0.0219 −36.1%
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Figure 5: Dynamic response optimization comparison regarding
tooth deflection.

Table 3: Sensitivity correspondence of shaft length.

Meshing pair Most sensitive node

A, B, C Node 1

D, E Node 11

F Node 15

G None
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