Research Article

Mitigation of Bullwhip Effect in Closed-Loop Supply Chain Based on Fuzzy Robust Control Approach

Songtao Zhang and Min Zhang

1School of Logistics, Linyi University, Linyi 276005, China
2Library, Linyi University, Linyi 276005, China

Correspondence should be addressed to Min Zhang; zm0205@163.com

Received 25 July 2019; Revised 23 November 2019; Accepted 16 December 2019; Published 21 January 2020

Guest Editor: Raúl Villafuerte-Segura

Copyright © 2020 Songtao Zhang and Min Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Uncertainties and lead times make the closed-loop supply chain (CLSC) more complex, less stable, and then the bullwhip effect (BE) will become more intense. This paper will address a fuzzy robust control (FRC) approach to mitigate the BE in the uncertain CLSC with lead times. For the reverse channels for products in the CLSC, the customers’ used products are recycled by both the manufacturer and the third party recovery provider, and new products bought by customers within a certain period of time can be returned to the retailer. In the CLSC system, the state transformation equations of the inventories and the total operation cost are set up. A new FRC approach is proposed to mitigate the BE and realize the robust stability of the uncertain CLSC with lead times. A simulation example verifies the mitigation effect of the BE under the proposed FRC approach.

1. Introduction

Whether governments construct green supply chains through governmental interventions [1] or enterprises undertake social responsibility through social work donation [2], the environment can be more friendly. Therefore, both governments and enterprises have been paying more and more attention to the closed-loop supply chain (CLSC) which can achieve sustainable development [3].

The complexity of the business environment results in many uncertainties in the CLSC. Especially in the reverse supply chain, there are uncertainties in quality, quantity, and time of the recycled products, which lead to the uncertainty of remanufacturing profit. For example, ReCellular, one of the largest phone remanufacturers in the United States, divides used phones into six quality levels for remanufacturing. Uncertainty is one of the main reasons for the existence of bullwhip effect (BE), and the other reason is lead time. If BE cannot be effectively mitigated, the operating efficiency of the CLSC will be reduced, and then the operating cost will be increased. In serious cases, the CLSC will collapse. Therefore, for the mitigation issue of the BE in the CLSC with uncertainties and lead times, we will propose a fuzzy robust control (FRC) approach to reduce the BE and realize the robust stability of the CLSC.

The remainder of this paper is formulated as follows: Section 2 offers a review of the related literature. Section 3 puts forward a kind of Takagi–Sugeno fuzzy model for the CLSC with uncertainties and lead times. Section 4 addresses a FRC approach to mitigate the BE in the CLSC system. The simulation studies are carried out in Section 5. The conclusions and future research directions are given in Section 6.

2. Literature Review

In the CLSC, used products can be recycled by various subjects. For example, the used products can be recycled by the manufacturer [4] or by the retailer [5]. Wei and Zhao [6] studied the decision-making issue of the used products recycled by the manufacturer, the retailer, or the third party recovery provider (3PRP). Furthermore, recycling used products can be performed by multiple subjects at the same time to realize more convenient for customers and more efficient for enterprises. This recycling pattern is called hybrid recycling. Therefore, some scholars have
been devoting themselves to the study of the CLSC with hybrid recycling channels; for example, based on hybrid recycling channels, Allah et al. [7] investigated the pricing strategies of the CLSCs with the single-channel forward supply chain and with the dual-channel forward supply chain; Shi and Ma [8] recycled the used medical equipment supply chain and with the dual-channel forward strategies of the CLSCs with the single-channel forward recycling channels, Ma and Liu [9] analyzed the optimal profit of the CLSC.

For the studies mentioned above, [7–9] did not consider the impacts of uncertainties and lead times on the CLSC system with hybrid recycling channels. However, uncertainties and lead times are two important factors leading to BE. Therefore, many scholars studied the BE caused by uncertainties or lead times; for example, by simulation-based approach, Do et al. [10] quantified the BE with different demands and stochastic lead times; for a two-echelon serial supply chain, Agrawal et al. [11] compared the effects of lead time reduction and information sharing on the mitigation of the BE; using the statistical method, Kim et al. [12] considered the stochastic lead time and provided expressions for quantifying the BE both with information sharing and without information sharing; Modak and Kelle [13] used a hybrid all-unit quantity discount along a franchise fee contract to mitigate the BE in the dual-channel supply chain with the delivery time and stochastic demand; Li and Liu [14] explored the mitigation of the BE in the supply chain with uncertainties and the vendor order placement lead time.

In recent years, approaches based on control theory have been widely applied to mitigate the BE, such as Model Predictive Control (MPC) approach [15], Internal Model Control (IMC) approach [16], Proportional plus Integral Control (PIC) approach [17], and Common Robust Control (CRC) approach [18]. Among these mitigation approaches, the MPC approach, the IMC approach, and the PIC approach cannot implement the switching control, and the CRC approach can only perform the conventional switching control but cannot achieve the flexible switching control of the FRC approach.

Up to now, research on the mitigation of the BE in the CLSC with uncertainties and lead times has not yet been found. But, a fuzzy control approach has been applied to mitigate the BE in uncertain CLSC with hybrid recycling channels by Zhang et al. [19]. Therefore, we will follow the research ideas in [19] to address a control approach for mitigating the BE of the CLSC with uncertainties and lead times. The critical contributions of this paper comparing to [19] are listed as follows.

2.1. Lead Times Are Included in the CLSC Models. There are the manufacturer’s production lead time and recycling lead time in the manufacturer’ inventory model; the retailer’s ordering lead time and the 3PRP’s recycling lead time are, respectively, considered in the retailer’s inventory model and in the 3PRP’s inventory model; all lead times are included in the total operation cost model of the CLSC.

2.2. An Additional Takagi–Sugeno Fuzzy Controller for Lead Times Is Designed. We will design an additional Takagi–Sugeno fuzzy negative feedback controller, which is the product of the inventory feedback gains with lead times and the inventory variables with lead times.

2.3. A New Fuzzy Control Approach Is Put Forward. We will put forward a new FRC approach which can effectively mitigate the BE caused by uncertainties and lead times and ensure the stability of the CLSC system. LMIs (linear matrix inequalities) to be solved in this paper are more complex than those in [19].

3. CLSC Model

3.1. CLSC Model with Uncertainties and Lead Times. As shown in Figure 1, this paper constructs a CLSC model that includes a manufacturer, a retailer, a 3PRP, and customers. Because products recycled by both the manufacturer and the 3PRP are the most effective pattern among hybrid recycling channels [20], for reverse supply chain in our model, the manufacturer and the 3PRP simultaneously recycle customers’ used products, and the retailer allows customers to return new products within a certain period of time.

Based on Figure 1, considering the uncertain system parameters and lead times, we set up the inventory equations of the CLSC as follows:

\[
\begin{align*}
x_1(k+1) &= x_1(k) + u_1(k) + u_4(k - \tau_1) + u_3(k) + u_2(k - \tau_2) + (\eta + \Delta \eta)x_4(k) - u_3(k), \\
x_2(k+1) &= x_2(k) + u_2(k) + u_5(k - \tau_1) + (\mu + \Delta \mu)x_3(k) - u_1(k), \\
x_3(k+1) &= x_3(k) + w_1(k) - u_3(k) - u_4(k) - (\mu + \Delta \mu)x_3(k) - (\lambda + \Delta \lambda)x_4(k), \\
x_4(k+1) &= x_4(k) + u_4(k) + u_6(k - \tau_4) - (\eta + \Delta \eta)x_4(k) - (\lambda + \Delta \lambda)x_4(k).
\end{align*}
\]
Accordingly, we set up the total cost equation of the CLSC as follows:

\[
z(k) = (c_{h1} + \Delta c_{h1})x_1(k) + (c_{h2} + \Delta c_{h2})x_2(k) + (c_{h3} + \Delta c_{h3})x_3(k) \\
+ (c_n + \Delta c_n)[u_1(k) + u_1(k - \tau_1)] \\
+ (c_r + \Delta c_r)[u_3(k) + u_3(k - \tau_3) + (\eta + \Delta \eta)x_4(k)] \\
+ (c_m + \Delta c_m)[u_3(k) + u_3(k - \tau_3)] \\
+ (c_i + \Delta c_i)[u_4(k) + u_4(k - \tau_4)] \\
+ (c_{mt} + \Delta c_{mt})(\eta + \Delta \eta)x_4(k) \\
+ (c_q + \Delta c_q)(\mu + \Delta \mu)x_3(k) \\
+ (c_d + \Delta c_d)(\lambda + \Delta \lambda)x_4(k) \\
+ (c_s + \Delta c_s)[u_2(k) + u_2(k - \tau_2)].
\] (2)

Equations (1) and (2) are described by the deviation values (deviation value = actual value − nominal value).

In addition, based on different inventory statuses, each node enterprise will design corresponding production patterns or ordering patterns, which leads to some different models in different periods. Then, the ith model of the CLSC can be shown as follows:

\[
\begin{aligned}
x(k + 1) &= (A_i + \Delta A_i)x(k) + (B_i + \Delta B_i)u(k) + \sum_{e=1}^{4} (B_{ie} + \Delta B_{ie})u(k - \tau_e) + (B_{ie} + \Delta B_{ie})w(k), \\
z(k) &= (C_i + \Delta C_i)x(k) + (D_i + \Delta D_i)u(k) + \sum_{e=1}^{4} (D_{ie} + \Delta D_{ie})u(k - \tau_e),
\end{aligned}
\] (3)

where \(x^T(k) = [x_1(k), x_2(k), x_3(k), x_4(k)]\), \(u^T(k) = [u_1(k), u_2(k), u_3(k), u_4(k)]\), \(u^T(k - \tau_e) = [u_1(k - \tau_1), u_2(k - \tau_2), u_3(k - \tau_3), u_4(k - \tau_4)]\), and \(w^T(k) = [w_1(k), 0, 0, 0]\); \(A_i\) denotes the inventory status coefficient matrix; \(B_i\) denotes the production, ordering, and recycling coefficient matrix; \(B_{ie}\) denotes the production, ordering, and recycling coefficient matrix with lead time; \(B_{ie}\) denotes the coefficient matrix of the customers’ demand; \(C_i\) denotes the coefficient matrix of the inventory cost, the cost of the new products returned, the disposal cost, part of remanufacturing cost, and part of recycling cost; \(D_i\) denotes the coefficient matrix of production cost, ordering cost, part of remanufacturing cost, and part of recycling cost; \(D_{ie}\) denotes the coefficient matrix of production cost, ordering cost, part of remanufacturing cost, and part of recycling cost with lead time; and \(\Delta A_i, \Delta B_i, \Delta B_{ie}, \Delta B_{ie}, \Delta C_i, \Delta D_i, \) and \(\Delta D_{ie}\) respectively, denote the corresponding uncertain matrices.
3.2. Takagi–Sugeno Fuzzy Model of CLSC. In the process of wide variation of the inventory level, switching activities will take place among models to maintain a reasonable inventory level in each node enterprise. In order to effectively mitigate the BE of the CLSC, we will utilize Takagi–Sugeno fuzzy systems [21] to implement the flexible switching in the CLSC. Then, Model (3) is transformed into the following discrete Takagi–Sugeno fuzzy model:

\[R_j: \text{If } x_1(k) \text{ is } M_{j1}^i, \ldots, x_j(k) \text{ is } M_{j}^i, \ldots, \text{ and } x_n(k) \text{ is } M_n^i, \text{ then} \]

\[
\begin{align*}
\begin{cases}
x(k+1) &= (A_i + \Delta A_i)x(k) + (B_i + \Delta B_i)u(k) + \sum_{i=1}^{d} (B_{ie} + \Delta B_{ie})u(k - \tau_e) + (B_{we} + \Delta B_{we})w(k), \\
z(k) &= (C_i + \Delta C_i)x(k) + (D_i + \Delta D_i)u(k) + \sum_{i=1}^{d} (D_{ie} + \Delta D_{ie})u(k - \tau_e), \\
x(k) &= \varphi(k), \quad k \in \{0, 1, \ldots, N\},
\end{cases}
\end{align*}
\]

where \(w(k) \in I_2[0, \infty); \varphi(k) \) denotes the initial condition of the CLSC; \(x^T(k) = [x_1(k), x_2(k), \ldots, x_n(k)] \); \(u^T(k) = [u_1(k), u_2(k), \ldots, u_n(k)] \); \(u^T(k - \tau_e) = [u_1(k - \tau_e), u_2(k - \tau_e), \ldots, u_n(k - \tau_e)] \); and \(w^T(k) = [w_1(k), w_2(k), \ldots, w_n(k)] \).

By singleton fuzzifier, product inference, and centre-average defuzzifier, Model (4) can be expressed as follows:

\[
\begin{align*}
\begin{cases}
x(k+1) &= \sum_{i=1}^{r} h_i(x(k)) \cdot \left[(A_i + \Delta A_i)x(k) + (B_i + \Delta B_i)u(k) + \sum_{i=1}^{d} (B_{ie} + \Delta B_{ie})u(k - \tau_e) + (B_{we} + \Delta B_{we})w(k) \right], \\
z(k) &= \sum_{i=1}^{r} h_i(x(k)) \cdot \left[(C_i + \Delta C_i)x(k) + (D_i + \Delta D_i)u(k) + \sum_{i=1}^{d} (D_{ie} + \Delta D_{ie})u(k - \tau_e) \right],
\end{cases}
\end{align*}
\]

where \(h_i(x(k)) = \mu_i(x(k))/\sum_{i=1}^{r} \mu_i(x(k)) \) and \(\mu_i(x(k)) = \prod_{i=1}^{n} M_{ij}(x_i(k)) \); since \(\mu_i(x(k)) \geq 0 \), we have \(h_i(x(k)) \geq 0 \) and \(\sum_{i=1}^{r} h_i(x(k)) = 1 \). In the following expressions, \(x(k) \) will be elided from \(h_i(x(k)) \) for simplicity.

Because of the existence of the membership degree function in Model (5), the flexible switching can be realized among the models of the CLSC.

4. Mitigation of BE

4.1. Measurement of BE. We use the following parameter \(\gamma \) to represent the mitigation degree of BE:

\[
\frac{\text{[total cost of CLSC]}_2}{\text{[customers’ demand]}_2} \leq \gamma.
\]

(6)

From the inequality above, we know that the mitigation degree of BE depends on the size of the total cost of the CLSC and the size of the customers’ demand. The lower \(\gamma \) is, the smaller BE is.

4.2. FRC Approach. We introduce known constant matrices \(H_{1i}, H_{2i}, E_{11i}, E_{12i}, E_{13i}, E_{21i}, E_{22i}, L_{ei} \), and \(O_{ei} \) and time-varying uncertain matrices \(F_{1i}(k) \) and \(F_{2i}(k) \) to describe the uncertain parameters in the CLSC; \(F_{1i}(k) \) and \(F_{2i}(k) \) are Lebesgue-measurable and satisfy \(F_{1i}^T(k)F_{1i}(k) \leq 1 \) and

\[
\begin{align*}
\begin{cases}
F_{1i}^T(k)F_{2i}(k) &\leq 1. \quad \text{Then, we represent the uncertain parameter matrices in Model (5) as follows:} \\
[\Delta A_i, \Delta B_i, \Delta B_{ei}, \Delta B_{ei}, \ldots, \Delta B_{ei}, \ldots, \Delta B_{ei}, \ldots, \Delta B_{ei}] &\leq H_{1i}F_{1i}(k)[E_{11i}, E_{12i}, E_{13i}, L_{ei}, \ldots, L_{ei}, \ldots, L_{ei}, \ldots]; \\
[\Delta C_i, \Delta D_i, \Delta D_{ei}, \ldots, \Delta D_{ei}, \ldots, \Delta D_{ei}, \ldots] &\leq H_{2i}F_{2i}(k)[E_{21i}, E_{22i}, O_{ei}, \ldots, O_{ei}, \ldots, O_{ei}, \ldots].
\end{cases}
\end{align*}
\]

(7)

For the fuzzy CLSC system in Model (5), we design the Takagi–Sugeno fuzzy controller as follows.

Controller rule \(K^i_1 \):

If \(x_1(k) \text{ is } M_{j1}^i, \ldots, x_j(k) \text{ is } M_{j}^i, \ldots, \text{ and } x_n(k) \text{ is } M_n^i \), then

\[
\begin{align*}
\{ u(k) &= -K_i x(k), \quad i = 1, 2, \ldots, r, \\
u(k - \tau_e) &= -K_e x(k - \tau_e), \quad e = 1, 2, \ldots, g,
\end{align*}
\]

(8)

where \(K_i \) is the inventory feedback gain matrix and \(K_e \) is the inventory feedback gain matrix with lead times. Furthermore, we can obtain the following overall model of Model (8):

\[
\begin{align*}
\begin{cases}
\{ u(k) &= \sum_{i=1}^{r} h_i K_i x(k), \\
u(k - \tau_e) &= -\sum_{i=1}^{r} h_i K_e x(k - \tau_e).
\end{cases}
\end{align*}
\]

(9)
Therefore, introducing Controller (9) into Model (5), we have

\[
\begin{align*}
\mathbf{x}(k+1) &= \sum_{i=1}^{r} \sum_{j=1}^{r} h_i h_j \left[(\mathbf{A}_i - \mathbf{B}_i \mathbf{K}_j) \mathbf{x}(k) - \sum_{c=1}^{g} \mathbf{B}_{ic} \mathbf{K}_{jc} \mathbf{x}(k - \tau_c) + \mathbf{B}_{ic} \mathbf{w}(k) \right], \\
\mathbf{z}(k) &= \sum_{i=1}^{r} \sum_{j=1}^{r} h_i h_j \left[(\mathbf{C}_i - \mathbf{D}_i \mathbf{K}_j) \mathbf{x}(k) - \sum_{c=1}^{g} \mathbf{D}_{ic} \mathbf{K}_{jc} \mathbf{x}(k - \tau_c) \right],
\end{align*}
\]

(10)

where \(\mathbf{A}_i = \mathbf{A}_i + \Delta \mathbf{A}_i, \mathbf{B}_i = \mathbf{B}_i + \Delta \mathbf{B}_i, \mathbf{C}_i = \mathbf{C}_i + \Delta \mathbf{C}_i, \mathbf{D}_i = \mathbf{D}_i + \Delta \mathbf{D}_i, \) and \(\mathbf{B}_{ic} = \mathbf{B}_{ic} + \Delta \mathbf{B}_{ic}, \mathbf{D}_{ic} = \mathbf{D}_{ic} + \Delta \mathbf{D}_{ic}. \)

For the further analysis, we introduce the following Definitions, Property, and Lemma.

Definition 1 (see [22]). A cluster of fuzzy sets \(\{F_j^m, m = 1, 2, \ldots, q_j\} \) are said to be a standard fuzzy partition in the universe \(X \) if each \(F_j^m \) is a normal fuzzy set and \(F_j^m \) (\(m = 1, 2, \ldots, q_j \)) are full-overlapped in the universe \(X \). \(q_j \) is said to be the number of fuzzy partitions of the \(j \)th input variable on \(X \).

Definition 2 (see [22]). Given a discrete switched system (10) is asymptotically stable if local common positive definite matrices \(\mathbf{P}_c \) and \(\mathbf{Q}_{cc} \) can be found in the following inequalities:

\[
\begin{align*}
\mathbf{P} &= \left[\mathbf{P}_c - \sum_{c=1}^{g} \mathbf{Q}_{cc} \right] * \\
&= \left[\begin{array}{cc}
\mathbf{P}_c & * \\
0 & \mathbf{Q}_{cc} \\
\end{array} \right], \\
\mathbf{M}_{ij} &= \mathbf{M}_{ij} + \mathbf{M}_{ji} \leq 0, \quad i \in I_c,
\end{align*}
\]

(12)

\[
\begin{align*}
\mathbf{N}_{ij} &= \mathbf{N}_{ij} + \mathbf{N}_{ji} \leq 0, \quad i \neq j, i, j \in I_c,
\end{align*}
\]

(13)

Theorem 1. System (10) with a certain \(\gamma \) and fuzzy sets of inventories satisfying standard fuzzy partitions is robustly asymptotically stable if local common positive definite matrices \(\mathbf{P}_c \) and \(\mathbf{Q}_{cc} \) can be found in the following inequalities:

\[
\begin{align*}
\mathbf{P} &= \left[\mathbf{P}_c - \sum_{c=1}^{g} \mathbf{Q}_{cc} \right] * \\
&= \left[\begin{array}{cc}
\mathbf{P}_c & * \\
0 & \mathbf{Q}_{cc} \\
\end{array} \right], \\
\mathbf{M}_{ij} &= \mathbf{M}_{ij} + \mathbf{M}_{ji} \leq 0, \quad i \in I_c,
\end{align*}
\]

(12)

\[
\begin{align*}
\mathbf{N}_{ij} &= \mathbf{N}_{ij} + \mathbf{N}_{ji} \leq 0, \quad i \neq j, i, j \in I_c,
\end{align*}
\]

(13)

where

\[
\begin{align*}
\mathbf{M}_{ij} &= \mathbf{M}_{ij} + \mathbf{M}_{ji} \leq 0, \quad i \in I_c,
\end{align*}
\]

(14)

\[
\begin{align*}
\mathbf{Q} &= \text{diag} \left\{ \mathbf{Q}_{1c}, \ldots, \mathbf{Q}_{ec}, \ldots, \mathbf{Q}_{gc} \right\},
\end{align*}
\]

\[
\begin{align*}
\mathbf{N}_{ij} &= \mathbf{N}_{ij} + \mathbf{N}_{ji} \leq 0, \quad i \neq j, i, j \in I_c,
\end{align*}
\]

(14)

Proof. Suppose there are \(f \) ORGs in System (10), \(v_d(d = 1, 2, \ldots, f) \) denotes the operating region of the \(d \)th ORG and \(L_d = \{ \text{the rule numbers involved in the } d \text{th ORG} \}. \)

(1) The first part of the proof:

For \(\mathbf{x}(k) \) and \(\mathbf{x}(k+1) \) in the same ORG, we express the local model of the \(d \)th ORG as follows:

\[
\begin{align*}
\mathbf{x}(k+1) &= \sum_{i \in L_d} \sum_{j \in L_d} h_i h_j \left[\mathbf{M}_{ij} \mathbf{x}(k) - \sum_{c=1}^{g} \mathbf{B}_{ic} \mathbf{K}_{jc} \mathbf{x}(k - \tau_c) + \mathbf{B}_{ic} \mathbf{w}(k) \right], \\
\mathbf{z}(k) &= \sum_{i \in L_d} \sum_{j \in L_d} h_i h_j \left[\mathbf{N}_{ij} \mathbf{x}(k) - \sum_{c=1}^{g} \mathbf{D}_{ic} \mathbf{K}_{jc} \mathbf{x}(k - \tau_c) \right],
\end{align*}
\]

(15)
where $M_{ij} = \bar{A}_{ij} - \bar{B}_iK_{jc}$, $N_{ij} = \bar{C}_i - \bar{D}_iK_{jc}$, and K_{jc}
denotes the state feedback gain matrix with lead
times in the cth MORG.
Furthermore, Model (15) is described further as
follows:

$$V_d \text{ follows:}$$

For System (16), a Lyapunov function is defined as

$$V_d(x(k)) = x^T(k)P_d x(k) + \sum_{e=1}^{g-1} \sum_{\xi = d - e} x^T(\xi)Q_{ce} x(\xi).$$

Then, based on Lemma 1, we obtain the following
$$\Delta V_d(x(k)) = V_d(x(k+1)) - V_d(x(k))$$

\begin{align}
\Delta V_d(x(k)) &= x^T(k+1)P_d x(k+1) - x^T(k)P_d x(k) + \sum_{e=1}^{g-1} \left[x^T(k)Q_{ce} x(k) - x^T(k-\tau_e)Q_{ce} x(k-\tau_e) \right] \\
&= \sum_{i \in L_d} \sum_{j \in L_d} h_i h_j \sum_{p \in L_d} h_p h_q \left[x^T(k)M_{ij}^T P_c M_{pq} x(k) - x^T(k)P_c x(k) \right] \\
&\quad + \sum_{e=1}^{g-1} \left[x^T(k)Q_{ce} x(k) - x^T(k-\tau_e)Q_{ce} x(k-\tau_e) \right] \\
&= \sum_{i \in L_d} \sum_{j \in L_d} h_i h_j \sum_{p \in L_d} h_p h_q \left[x^T(k) \left(\frac{M_{ij} + M_{jk}}{2} \right) P_c \left(\frac{M_{pq} + M_{jq}}{2} \right) - P_c \right] x(k) \\
&\quad + \sum_{e=1}^{g-1} \left[x^T(k)Q_{ce} x(k) - x^T(k-\tau_e)Q_{ce} x(k-\tau_e) \right] \\
&\leq \sum_{i \in L_d} \sum_{j \in L_d} h_i h_j x^T(k) \left(\frac{M_{ij}^T P_c M_{ij} + M_{ij}^T P_c M_{ij}}{2} \right) x(k),
\end{align}
By the Schur complement, we have \(\bar{M}^T_l P \bar{M}_l - \bar{P} + \bar{N}^T_l \bar{N}_l < 0 \) and \(\bar{M}^T_l P \bar{M}_l - \bar{P} + \bar{N}^T_l \bar{N}_l < 0 \) which are equivalent to Inequalities (12) and (13), then \(J_1 < 0 \) holds, i.e., \(z^T(k)z(k) < \gamma^2 \bar{w}^T(k)w(k) \); furthermore, if let \(N \rightarrow +\infty \), \(\|z(k)\|_2^2 < \gamma^2 \|w(k)\|_2^2 \) holds. Therefore, CLSC system (16) is asymptotically stable under \(w(k) \neq 0 \).

If \(w(k) \equiv 0 \), Inequality (21) can be expressed as

\[
\Delta V_d(x(k)) \leq \sum_{i,j \in \mathcal{L}_d} h_i h_j x^T(k) \left[\bar{M}^T_{ij} P \bar{M}_{ij} - \bar{P} \right] x(k) + 2 \sum_{i<j \in \mathcal{L}_d} h_i h_j x^T(k) \left[\bar{M}^T_{ij} P \bar{M}_{ij} - \bar{P} \right] x(k).
\]

(26)

Based on Inequalities (12) and (13), we have \(\bar{M}^T_l P \bar{M}_l - \bar{P} < 0 \) and \(\bar{M}^T_l P \bar{M}_l - \bar{P} < 0 \), and then \(\Delta V_d(x(k)) < 0 \) can be obtained. Therefore, CLSC system (16) is robustly asymptotically stable under \(w(k) \equiv 0 \).

(2) The second part of the proof:

For \(x(k) \) and \(x(k+1) \) in the different ORGs, we first construct the following characteristic function in any ORG:

\[
\lambda_d = \begin{cases}
\mathbf{1}, & x(k) \in \mathcal{V}_d, \\
0, & x(k) \notin \mathcal{V}_d.
\end{cases}
\]

(27)

Then, the overall system of local system (16) can be expressed as

\[
x(k+1) = \sum_{d=1}^{f} \lambda_d \left[\sum_{i,j \in \mathcal{L}_d} h_i h_j M_{ij} x(k) \right],
\]

\[
z(k) = \sum_{d=1}^{f} \lambda_d \left[\sum_{i,j \in \mathcal{L}_d} h_i h_j N_{ij} x(k) \right].
\]

(28)

After \(P_m = \sum_{d=1}^{f} \lambda_d P_{\mathcal{V}_d} \) and \(Q_{\mathcal{V}_m} = \sum_{d=1}^{f} \lambda_d Q_{\mathcal{V}_d} \) are defined, we present the following Lyapunov function:

\[
V(x(k)) = x^T(k) P_m x(k) + \sum_{i=1}^{g} \sum_{\ell=1}^{k+1} x^T(\ell) Q_{\mathcal{V}_m} x(\ell)
\]

\[
= x^T(k) \left(\sum_{d=1}^{f} \lambda_d P_{\mathcal{V}_d} \right) x(k) + \sum_{i=1}^{g} \sum_{\ell=1}^{k+1} x^T(\ell) \left(\sum_{d=1}^{f} \lambda_d Q_{\mathcal{V}_d} \right) x(\ell)
\]

\[
= \sum_{d=1}^{f} \lambda_d V_d(x(k)).
\]

(29)
way, we have $J_2 < 0$, i.e., $z^T(k)z(k) < \gamma^2w^T(k)w(k)$; if let $N \rightarrow +\infty$, $\|z(k)\|_2^2 < \gamma^2\|w(k)\|_2^2$ can be obtained. Therefore, System (28) is asymptotically stable under $w(k) \neq 0$.

For $w(k) \equiv 0$ in System (28), we have

$$\Delta V(x(k)) = V(x(k+1)) - V(x(k))$$

$$= \sum_{d=1}^f \lambda_d V_d(x(k+1)) - \sum_{d=1}^f \lambda_d V_d(x(k))$$

$$= \sum_{d=1}^f \lambda_d [V_d(x(k+1)) - V_d(x(k))]$$

$$= \sum_{d=1}^f \lambda_d \Delta V_d(x(k)) < 0.$$

(30)

Therefore, System (28) under $w(k) \equiv 0$ is asymptotically stable in any ORG.

From Proposition 1, CLSC system (10) is robustly asymptotically stable if P_c and Q_{ec} can be solved in Inequalities (12) and (13). Q.E.D.

In order for Inequalities (12) and (13) to be easily solvable LMIs, we transform Theorem 1 into the following Theorem 2.

Theorem 2. System (10) with a certain γ and fuzzy sets of inventories satisfying standard fuzzy partitions is robustly asymptotically stable if local common positive definite matrices P_c and Q_{ec}, matrices K_{ic}, K_{jc}, K_{iwc}, and K_{iwc}, and constants $\epsilon_{ijc} > 0$ and $\epsilon_{jic} > 0$ can be found in the following Inequalities (31) and (32):

\[
\begin{bmatrix}
-P_c + \sum_{e=1}^g Q_{ec} & a & a & a & a & a & a \\
0 & -\bar{Q} & a & a & a & a & a \\
0 & 0 & -\gamma^2 \mathbf{I} & a & a & a & a \\
\Omega_1 & -\Omega_3 & \mathbf{B}_{wi} & -\mathbf{I} + \epsilon_{iwc} \mathbf{H}_{1i} \mathbf{H}_{1i}^T & * & * & * \\
\Omega_2 & -\Omega_4 & 0 & 0 & -\mathbf{I} + \epsilon_{iwc} \mathbf{H}_{2i} \mathbf{H}_{2i}^T & * & * \\
\Delta_1 & -\Delta_3 & \mathbf{E}_{1i} & 0 & 0 & -\epsilon_{iwc} \mathbf{I} & * \\
\Delta_2 & -\Delta_4 & 0 & 0 & 0 & 0 & -\epsilon_{iwc} \mathbf{I}
\end{bmatrix} < 0, \quad i \in I_c, \quad (31)
\]

\[
\begin{bmatrix}
-4P_c + 4 \sum_{e=1}^g Q_{ec} & a & a & a & a & a & a \\
0 & -4\bar{Q} & a & a & a & a & a \\
0 & 0 & -4\gamma^2 \mathbf{I} & a & a & a & a \\
\Omega_5 & -\Omega_7 & \mathbf{B}_{wi} + \mathbf{B}_{wj} \mathbf{A}_{11} & * & * & * & * \\
\Omega_6 & -\Omega_8 & 0 & 0 & \Delta_{12} & * & * & * \\
\Delta_5 & -\Delta_3 & \mathbf{E}_{1i} & 0 & 0 & -\epsilon_{jic} \mathbf{I} & * & * \\
\Delta_6 & -\Delta_4 & 0 & 0 & 0 & 0 & -\epsilon_{jic} \mathbf{I} & * \\
\Delta_7 & -\Delta_9 & \mathbf{E}_{13j} & 0 & 0 & 0 & -\epsilon_{jic} \mathbf{I} & * \\
\Delta_8 & -\Delta_{10} & 0 & 0 & 0 & 0 & 0 & -\epsilon_{jic} \mathbf{I}
\end{bmatrix} < 0, \quad i < j, i, j \in I_c, \quad (32)
\]
where

\[\tilde{Q} = \text{diag}\{Q_{1c}, \ldots, Q_{ec}, \ldots, Q_{gc}\}, \]
\[\Omega_1 = A_j - B_j K_{ic}, \]
\[\Omega_2 = C_j - D_j K_{ic}, \]
\[\Omega_3 = B_{ij} K_{1ic}, \ldots, B_{ie} K_{aic}, \ldots, B_{ij} K_{gc}, \]
\[\Omega_4 = [D_{ij} K_{1ic}, \ldots, D_{ie} K_{aic}, \ldots, D_{ij} K_{gc}], \]
\[\Omega_5 = A_j - B_j K_{jc} + A_j - B_j K_{ic}, \]
\[\Omega_6 = C_j - D_j K_{jc}, \]
\[\Omega_7 = [B_{ij} K_{jic} + B_{ij} K_{jic}, \ldots, B_{ie} K_{jic}, \ldots, B_{ij} K_{jgc} + B_{ij} K_{jgc}], \]
\[\Omega_8 = [D_{ij} K_{jic} + D_{ij} K_{jic}, \ldots, D_{ie} K_{jic}, \ldots, D_{ij} K_{jgc} + D_{ij} K_{jgc}], \]
\[\Delta_1 = E_{11i} - E_{12i} K_{ic}, \]
\[\Delta_2 = E_{21i} - E_{22i} K_{jc}, \]
\[\Delta_3 = [L_{1i} K_{1ic}, \ldots, L_{ec} K_{ac}, \ldots, L_{gc} K_{gc}], \]
\[\Delta_4 = [O_{1i} K_{1ic}, \ldots, O_{ac} K_{ac}, \ldots, O_{gc} K_{gc}], \]
\[\Delta_5 = E_{11i} - E_{12i} K_{jc}, \]
\[\Delta_6 = E_{21i} - E_{22i} K_{jc}, \]
\[\Delta_7 = E_{11j} - E_{12j} K_{ic}, \]
\[\Delta_8 = E_{21j} - E_{22j} K_{ic}, \]
\[\Delta_9 = [L_{1j} K_{jic}, \ldots, L_{ec} K_{jic}, \ldots, L_{gc} K_{jgc}], \]
\[\Delta_{10} = [O_{1j} K_{jic}, \ldots, O_{ac} K_{jic}, \ldots, O_{gc} K_{jgc}], \]
\[\Delta_{11} = -I + \varepsilon_{jg} H_{j1} H_{j1}^T + \varepsilon_{jg} H_{j1}^T H_{j1}, \]
\[\Delta_{12} = -I + \varepsilon_{jg} H_{j2} H_{j2}^T + \varepsilon_{jg} H_{j2}^T H_{j2}. \]

Proof. Theorem 2 can be proved in the same idea as Theorem 1. Therefore, the proof process of Theorem 2 is not shown. Q.E.D.

5. Simulation Analysis

We choose a type of television CLSC composed of a television manufacturer, a television retailer, and a 3RP as the simulation object to evaluate the mitigation effect of the BE under the FRC approach proposed in Section 4. The television manufacturer’s fuzzy membership functions and the television retailer’s fuzzy membership functions are shown in Figure 2. In Figure 2, both \(F_1^1(x_1(k)) \) and \(F_1^2(x_2(k)) \) satisfy the conditions of standard fuzzy partition. We set \(M_1^1 = M_1^2 = F_1^1 \), \(M_1^1 = M_1^2 = F_1^2 \), \(M_2^1 = M_2^2 = F_2^1 \), and \(M_2^1 = M_2^2 = F_2^2 \).

From Figure 2, we know there are 4 fuzzy rules included in one MORG called S. Referring to the product-design strategies in [25], we apply 4 fuzzy rules to describe the manufacturer’s production patterns and the retailer’s ordering patterns for the different inventory levels as follows:

- **R₁:** the television manufacturer produces new televisions and remanufactures recycled televisions simultaneously. The television retailer allows return of new televisions and orders new televisions simultaneously.
- **R₂:** the television manufacturer produces new televisions and remanufactures recycled televisions simultaneously. The television retailer only allows return of new televisions.
- **R₃:** the television manufacturer only remanufactures recycled televisions. The television retailer only allows return of new televisions.
- **R₄:** the television manufacturer only remanufactures recycled televisions. The television retailer allows return of new televisions and orders new televisions simultaneously.

Therefore, under the different rules, the uncertain CLSC model with hybrid recycling channels and lead times can be expressed as follows:
\[x_1(k+1) = x_1(k) + u_1(k) + u_4(k - \tau_1) + u_3(k) + u_3(k - \tau_1) + (\eta + \Delta\eta)x_4(k) - u_2(k), \]
\[x_2(k+1) = x_2(k) + u_2(k) + u_2(k - \tau_2) + (\mu + \Delta\mu)x_3(k) - w_1(k), \]
\[x_3(k+1) = x_3(k) + w_1(k) - u_2(k) - u_4(k) - (\mu + \Delta\mu)x_3(k), \]
\[x_4(k+1) = x_4(k) + u_4(k) + u_4(k - \tau_4) - (\eta + \Delta\eta)x_4(k) - (\lambda + \Delta\lambda)x_4(k), \]

\[z(k) = (c_{i_{1h}} + \Delta c_{i_{1h}})x_1(k) + (c_{i_{2h}} + \Delta c_{i_{2h}})x_2(k) \]
\[+ (c_{i_{3h}} + \Delta c_{i_{3h}})x_3(k) + (c_{i_{4h}} + \Delta c_{i_{4h}})x_4(k) \]
\[+ (c_{i_{1c}} + \Delta c_{i_{1c}})[u_1(k) + u_1(k - \tau_1)] \]
\[+ (c_{i_{2c}} + \Delta c_{i_{2c}})[u_2(k) + u_2(k - \tau_2)] \]
\[+ (c_{i_{3c}} + \Delta c_{i_{3c}})[u_3(k) + u_3(k - \tau_3)] \]
\[+ (c_{i_{4c}} + \Delta c_{i_{4c}})[u_4(k) + u_4(k - \tau_4)] \]
\[+ (c_{i_{1c}} + \Delta c_{i_{1c}})(\mu + \Delta\mu)x_3(k) \]
\[+ (c_{i_{2c}} + \Delta c_{i_{2c}})(\lambda + \Delta\lambda)x_4(k), \]

\[z_1(k+1) = x_1(k) + u_1(k) + u_3(k - \tau_3) + (\eta + \Delta\eta)x_4(k), \]
\[x_2(k+1) = x_2(k) + u_2(k) + u_3(k - \tau_3) + (\mu + \Delta\mu)x_3(k) - w_1(k), \]
\[x_3(k+1) = x_3(k) + w_1(k) - u_3(k) - u_4(k) - (\mu + \Delta\mu)x_3(k), \]
\[x_4(k+1) = x_4(k) + u_4(k) + u_4(k - \tau_4) - (\eta + \Delta\eta)x_4(k) - (\lambda + \Delta\lambda)x_4(k), \]

\[z(k) = (c_{i_{1h}} + \Delta c_{i_{1h}})x_1(k) + (c_{i_{2h}} + \Delta c_{i_{2h}})x_2(k) + (c_{i_{3h}} + \Delta c_{i_{3h}})x_3(k) \]
\[+ (c_{i_{1c}} + \Delta c_{i_{1c}})[u_1(k) + u_1(k - \tau_1)] + (c_{i_{2c}} + \Delta c_{i_{2c}})[u_2(k) + u_2(k - \tau_2)] + (c_{i_{3c}} + \Delta c_{i_{3c}})[u_3(k) + u_3(k - \tau_3)] \]
\[+ (c_{i_{4c}} + \Delta c_{i_{4c}})[u_4(k) + u_4(k - \tau_4)] \]
\[+ (c_{i_{3c}} + \Delta c_{i_{3c}})(\mu + \Delta\mu)x_3(k) \]
\[+ (c_{i_{4c}} + \Delta c_{i_{4c}})(\lambda + \Delta\lambda)x_4(k), \]

\[z_1(k+1) = x_1(k) + u_1(k) + u_3(k - \tau_3) + (\eta + \Delta\eta)x_4(k) - u_2(k), \]
\[x_2(k+1) = x_2(k) + u_2(k) + u_2(k - \tau_2) + (\mu + \Delta\mu)x_3(k) - w_1(k), \]
\[x_3(k+1) = x_3(k) + w_1(k) - u_2(k) - u_4(k) - (\mu + \Delta\mu)x_3(k), \]
\[x_4(k+1) = x_4(k) + u_4(k) + u_4(k - \tau_4) - (\eta + \Delta\eta)x_4(k) - (\lambda + \Delta\lambda)x_4(k). \]
 Complexity

\[
z(k) = (c_{i1} + \Delta c_{i1})x_1(k) + (c_{i2} + \Delta c_{i2})x_2(k) + (c_{i3} + \Delta c_{i3})x_3(k)
+ (c_{i4} + \Delta c_{i4})u_1(k) + u_1(k - \tau_{i1}) + (\eta + \Delta \eta)x_4(k)
+ (c_{i5} + \Delta c_{i5})u_2(k) + u_3(k - \tau_{i2}) + (\eta + \Delta \eta)x_4(k)
+ (c_{i6} + \Delta c_{i6})(\eta + \Delta \eta)x_4(k)
+ (c_{i7} + \Delta c_{i7})(\mu + \Delta \mu)x_4(k) + (c_{i8} + \Delta c_{i8})(\lambda + \Delta \lambda)x_4(k)
+ (c_{i9} + \Delta c_{i9})[u_2(k) + u_2(k - \tau_{i2})]
\]

(34)

Furthermore, the fuzzy CLSC model can be obtained as follows:

\[R_1: \text{If } x_1 \text{ is } M_1^1 \text{ and } x_2 \text{ is } M_2^1, \text{ then}
\]
\[
\begin{align*}
x(k + 1) &= h_1 \left[(A_{i1} + \Delta A_{i1})x(k) + (B_{i1} + \Delta B_{i1})u(k) + \sum_{z=1}^{4} (B_{i1z} + \Delta B_{i1z})u(k - \tau_{i1}) + (B_{i1w} + \Delta B_{i1w})w(k) \right], \\
z(k) &= h_1 \left[(C_{i1} + \Delta C_{i1})x(k) + (D_{i1} + \Delta D_{i1})u(k) + \sum_{z=1}^{4} (D_{i1z} + \Delta D_{i1z})u(k - \tau_{i1}) \right].
\end{align*}
\]

(35)

\[R_2: \text{If } x_1 \text{ is } M_1^1 \text{ and } x_2 \text{ is } M_2^2, \text{ then}
\]
\[
\begin{align*}
x(k + 1) &= h_2 \left[(A_{i2} + \Delta A_{i2})x(k) + (B_{i2} + \Delta B_{i2})u(k) + \sum_{z=1}^{4} (B_{i2z} + \Delta B_{i2z})u(k - \tau_{i2}) + (B_{i2w} + \Delta B_{i2w})w(k) \right], \\
z(k) &= h_2 \left[(C_{i2} + \Delta C_{i2})x(k) + (D_{i2} + \Delta D_{i2})u(k) + \sum_{z=1}^{4} (D_{i2z} + \Delta D_{i2z})u(k - \tau_{i2}) \right].
\end{align*}
\]

(36)

\[R_3: \text{If } x_1 \text{ is } M_1^1 \text{ and } x_2 \text{ is } M_2^3, \text{ then}
\]
\[
\begin{align*}
x(k + 1) &= h_3 \left[(A_{i3} + \Delta A_{i3})x(k) + (B_{i3} + \Delta B_{i3})u(k) + \sum_{z=1}^{4} (B_{i3z} + \Delta B_{i3z})u(k - \tau_{i3}) + (B_{i3w} + \Delta B_{i3w})w(k) \right], \\
z(k) &= h_3 \left[(C_{i3} + \Delta C_{i3})x(k) + (D_{i3} + \Delta D_{i3})u(k) + \sum_{z=1}^{4} (D_{i3z} + \Delta D_{i3z})u(k - \tau_{i3}) \right].
\end{align*}
\]

(37)

\[R_4: \text{If } x_1 \text{ is } M_1^1 \text{ and } x_2 \text{ is } M_2^4, \text{ then}
\]
\[
\begin{align*}
x(k + 1) &= h_4 \left[(A_{i4} + \Delta A_{i4})x(k) + (B_{i4} + \Delta B_{i4})u(k) + \sum_{z=1}^{4} (B_{i4z} + \Delta B_{i4z})u(k - \tau_{i4}) + (B_{i4w} + \Delta B_{i4w})w(k) \right], \\
z(k) &= h_4 \left[(C_{i4} + \Delta C_{i4})x(k) + (D_{i4} + \Delta D_{i4})u(k) + \sum_{z=1}^{4} (D_{i4z} + \Delta D_{i4z})u(k - \tau_{i4}) \right].
\end{align*}
\]

(38)

According to the Takagi–Sugeno fuzzy models mentioned above, we design the following fuzzy feedback controller.

\[K^i: \text{If } x_1(k) \text{ is } M_1^1 \text{ and } x_2(k) \text{ is } M_2^i, \text{ then}
\]
\[
\begin{align*}
u(k) &= -\sum_{i=1}^{4} h_i K_{i1} x(k), \\
u(k - \tau_{i1}) &= -\sum_{i=1}^{4} h_i K_{i1} x(k - \tau_{i1}), \\
u(k - \tau_{i2}) &= -\sum_{i=1}^{4} h_i K_{i2} x(k - \tau_{i2}), \\
u(k - \tau_{i3}) &= -\sum_{i=1}^{4} h_i K_{i3} x(k - \tau_{i3}), \\
u(k - \tau_{i4}) &= -\sum_{i=1}^{4} h_i K_{i4} x(k - \tau_{i4}).
\end{align*}
\]

(39)
Considering the actual operation situation of the television CLSC, we set $D_{0m} = 120, D_{1m} = 160, D_{0r} = 110, \text{ and } D_{1r} = 155 \times 10^3 \text{ (set); } c_{h1} = 0.015, \ c_{h2} = 0.020, \ c_{h3} = 0.015, \ c_n = 0.150, \ c_r = 0.005, \ c_m = 0.100, \ c_{cr} = 0.005, \ c_d = 0.020, \ c_{cr} = 0.007, \ c_s = 0.180 \times 10^3 \text{ Yuan}; \ \eta = 0.98, \ \mu = 0.01, \ \text{and } \lambda = 0.02.$

\[A_1 = A_2 = A_3 = A_4 = \begin{bmatrix} 1 & 0 & 0 & 0.98 \\ 0 & 1 & 0 & 0.01 \\ 0 & 0 & 0.99 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_1 = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_3 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_4 = \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_{11} = B_{21} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_{31} = B_{41} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_{12} = B_{22} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_{22} = B_{32} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_{13} = B_{23} = B_{33} = B_{43} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[B_{14} = B_{24} = B_{34} = B_{44} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \]

\[B_{w1} = B_{w2} = B_{w3} = B_{w4} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \]

\[C_1 = C_2 = C_3 = C_4 = [c_{h1} \ c_{h2} \ \mu c_{q} \ c_{h3} + \eta c_{r} + \eta c_{cr} + \lambda c_{d}], \]

\[D_1 = [c_n \ c_s \ c_r + c_m \ c_t], \]

\[D_2 = [0 \ c_s \ c_r + c_m \ c_t], \]

\[D_3 = [0 \ 0 \ c_r + c_m \ c_t], \]

\[D_4 = [0 \ c_s \ c_r + c_m \ c_t], \]

\[D_{11} = D_{21} = [c_n \ 0 \ 0 \ 0], \]

\[D_{31} = D_{41} = [0 \ 0 \ 0], \]

\[D_{12} = D_{22} = [0 \ c_s \ 0 \ 0], \]

\[D_{22} = D_{32} = [0 \ 0 \ 0], \]

\[D_{13} = D_{23} = D_{33} = D_{43} = [0 \ 0 \ c_r + c_m \ 0], \]

\[D_{14} = D_{24} = D_{34} = D_{44} = [0 \ 0 \ 0 \ c_t], \]

\[E_{11i} = \begin{bmatrix} 0 & 0 & 0 & 0.02 \\ 0 & 0 & 0.02 & 0 \\ 0 & 0 & 0.02 & 0 \\ 0 & 0 & 0 & -0.03 \end{bmatrix}, \]

\[E_{22i} = \begin{bmatrix} 0.004 & 0.004 & 0.002 & 0.007 \end{bmatrix}, \]

\[E_{22i} = \begin{bmatrix} 0.003 & 0.002 & 0.015 & 0.015 \end{bmatrix}, \]

\[E_{22i} = \begin{bmatrix} 0.003 & 0.015 & 0.015 \end{bmatrix}, \]

\[E_{22i} = \begin{bmatrix} 0.002 & 0.015 & 0.015 \end{bmatrix}, \]

\[O_{1} = O_{21} = [0.001 \ 0 \ 0 \ 0], \]

\[O_{21} = O_{41} = [0 \ 0 \ 0 \ 0], \]

\[O_{12} = O_{42} = [0 \ 0.002 \ 0 \ 0], \]

\[O_{22} = O_{32} = [0 \ 0 \ 0 \ 0], \]

\[O_{13} = O_{23} = O_{33} = O_{43} = [0 \ 0 \ 0.002 \ 0], \]

\[O_{14} = O_{24} = O_{34} = O_{44} = [0 \ 0 \ 0 \ 0.001], \]

\[H_{1} = 0.1, \]

\[H_{2} = 0.2, \]

\[F_{1i} = F_{2i} = \sin (k), \]

\[(i = 1, 2, 3, 4), \]

\[\gamma = 0.5.\]
The FRC approach proposed in Section 4 can guarantee the television CLSC system to be robustly stable after the following results, which meet Conditions (31) and (32) in Theorem 2, are obtained.

\[
P_1 = \begin{bmatrix}
121.8898 & 0.0028 & 0.1511 & 0.1485 \\
0.0028 & 122.7989 & 0.0013 & -0.0113 \\
0.1511 & 0.0013 & 121.8829 & 0.1509 \\
0.1485 & -0.0113 & 0.1509 & 121.8811 \\
\end{bmatrix},
\]

\[
Q_{11} = Q_{21} = Q_{31} = Q_{41} = \begin{bmatrix}
24.3455 & -0.0000 & -0.0006 & -0.0006 \\
-0.0000 & 24.3419 & -0.0000 & 0.0000 \\
-0.0006 & -0.0000 & 24.3455 & -0.0006 \\
-0.0006 & 0.0000 & -0.0006 & 24.3455 \\
\end{bmatrix}.
\]
Figure 5: Simulation diagram of the total cost under CRC (unit: ×10^5 Yuan).

Figure 6: Simulation diagram of the inventories under FRC (unit: ×10^3 sets).

Figure 7: Simulation diagram of the control variables under FRC (unit: ×10^3 sets).
Then, we will perform the simulation tests to compare the mitigation effect of the BE between the proposed FRC approach and the CRC approach. Set the initial values as follows: \(x_1(0) = 14, x_2(0) = 12, x_3(0) = 8, \) and \(x_4(0) = 6 \) (unit: \(\times 10^3 \) sets). Set the nominal values as follows: \(\bar{x}_1 = 155, \bar{x}_2 = 140, \bar{x}_3 = 120, \) and \(\bar{x}_4 = 80 \) (unit: \(\times 10^3 \) sets); \(\bar{u}_1 = 130, \bar{u}_2 = 120, \bar{u}_3 = 50, \) and \(\bar{u}_4 = 70 \) (unit: \(\times 10^3 \) sets); we let \(\tau_1 = \tau_2 = \tau_3 = \tau_4 = 4 \) (unit: day), and the customers’ demand meets the normal distribution \(\mathcal{N}(6,0.3^2) \). Then, the simulation results are shown in Figures 3–8, in which Figures 3–5 are the simulation diagrams under CRC, and Figures 6–8 are the simulation diagrams under FRC.

As shown in Figures 3–5, by utilizing the CRC approach to mitigate the BE of the uncertain CLSC with hybrid recycling channels and lead times, there are larger fluctuations for the variables of the CLSC system, which result in the worse mitigation level of the BE and the higher total cost of the CLSC. On the contrary, it can be seen from Figures 6–8 that the FRC approach proposed in this paper can mitigate the BE more effectively and make the CLSC system to be robustly stable. Also, the fluctuation ranges of all variables under the FRC approach are less that those under the CRC approach. Especially, compared with the CRC approach, the FRC approach realizes the total cost of the CLSC system in the stable and lower levels. Therefore, for the mitigation of the BE caused by uncertainties and lead times, the FRC approach proposed in this paper can more effectively guarantee the interests of enterprises in the supply chain and ensure the long-term and stable development of the CLSC.

6. Conclusions

BE is a universal phenomenon in the operation process of the supply chain system. Therefore, the mitigation of the BE has become one of the most focused and urgent issues for enterprises in the supply chain. In this paper, we have set up an uncertain model of the CLSC with hybrid recycling channels and lead times. To implement the flexible switching in the CLSC system, the aforementioned model is transformed into a CLSC fuzzy model. Then, the manufacturer’s production patterns and the retailer’s ordering patterns are put forward according to their respective inventory levels. A new FRC approach is proposed to mitigate the BE of the uncertain CLSC with lead times. Simulation results show that this approach can effectively mitigate the impacts of uncertainties and lead times on the BE of the CLSC and guarantee the CLSC system in a robust stable state, which will reduce the loss of the CLSC caused by the BE. It is known from this paper and [19] that the FRC approach is an effective approach to mitigate the BE and can improve the mitigation effect of the CRC approach. For the future research directions, one is how to coordinate the cost sharing among the manufacturer, the retailer, and the 3PRP; another is that the FRC approach is combined with other approaches to more effectively mitigate the BE.

Abbreviations

- \(x_1(k) \): Manufacturer’s inventory at period \(k \)
- \(x_2(k) \): Retailer’s inventory at period \(k \)
- \(x_3(k) \): Customers’ inventory at period \(k \)
- \(x_4(k) \): 3PRP’s inventory at period \(k \)
- \(u_1(k) \): Manufacturer’s production variable at period \(k \)
- \(u_2(k) \): Retailer’s ordering variable at period \(k \)
- \(u_3(k) \): Manufacturer’s used products recycling variable at period \(k \)
- \(u_4(k) \): 3PRP’s used products recycling variable at period \(k \)
- \(w_1(k) \): Customers’ demand at period \(k \)
- \(\tau_1 \): Manufacturer’s production lead time
- \(\tau_2 \): Retailer’s ordering lead time
- \(\tau_3 \): Lead time of the used products recycled by the manufacturer
- \(\tau_4 \): Lead time of the used products recycled by 3PRP
- \(\eta \): Remanufacturing rate

Figure 8: Simulation diagram of the total cost under FRC (unit: \(\times 10^5 \) Yuan).
\(\Delta \eta \): Uncertainty of \(\eta \)
\(\mu \): Return rate of the new products
\(\Delta \mu \): Uncertainty of \(\mu \)
\(\lambda \): Disposal rate
\(\Delta \lambda \): Uncertainty of \(\lambda \) \(0 \leq \eta, \mu, \lambda \leq 1, \eta + \lambda = 1 \)
\(z(k) \): Total cost of the CLSC at period \(k \)
\(c_{h_1} \): Manufacturer’s unit inventory cost
\(\Delta c_{h_1} \): Uncertainty of \(c_{h_1} \)
\(c_{h_2} \): Retailer’s unit inventory cost
\(\Delta c_{h_2} \): Uncertainty of \(c_{h_2} \)
\(c_{h_3} \): 3PRP’s unit inventory cost
\(\Delta c_{h_3} \): Uncertainty of \(c_{h_3} \)
\(c_i \): Unit production cost of the new product
\(\Delta c_i \): Uncertainty of \(c_i \)
\(c_r \): Unit remanufacturing cost
\(\Delta c_r \): Uncertainty of \(c_r \)
\(c_m \): Unit recycling cost from customers to the manufacturer
\(\Delta c_m \): Uncertainty of \(c_m \)
\(c_j \): Unit return cost
\(\Delta c_j \): Uncertainty of \(c_j \)
\(c_d \): Unit disposal cost
\(\Delta c_d \): Uncertainty of \(c_d \)
\(c_t \): Retailer’s unit ordering cost
\(\Delta c_t \): Uncertainty of \(c_t \)
\(R_i \): The \(i \)th fuzzy rule, \(i = 1, 2, \ldots, r \)
\(r \): The number of fuzzy rules
\(M_j \): The fuzzy set, \(j = 1, 2, \ldots, n \)
\(\tau_e \): The \(e \)th lead time, \(e = 1, 2, \ldots, g \)
\(g \): The number of lead times
\(n \): The number of node enterprises
\(M_j(x_j(k)) \): The grade of membership of \(x_j(k) \) in the fuzzy set \(M_j \)
\(\mu_i(x(k)) \): The membership degree of the \(i \)th rule
\(\| \cdot \|_c : \ell_2[0, \infty) \) norm
\(G_c \): The \(c \)th MORF, \(c = 1, 2, \ldots, \prod_{j=1}^n (m_j - 1) \)
\(I_c \): The set of the rule numbers in \(G_c \)
\(m_j \): The number of the fuzzy partitions of the \(j \)th input variable
\(F^t_1(x_1(k)) \): The fuzzy partitions of \(x_1(k) \), \(t = 1, 2 \)
\(F^s_2(x_2(k)) \): The fuzzy partitions of \(x_2(k) \), \(s = 1, 2 \)
\(D_{s_{\text{max}}} \): Television manufacturer’s safe inventory
\(D_{t_{\text{max}}} \): Television manufacturer’s expected inventory
\(D_{m_{\text{max}}} \): Television manufacturer’s maximum inventory
\(D_{sr} \): Television retailer’s safe inventory
\(D_{tr} \): Television retailer’s expected inventory
\(D_{r_{\text{max}}} \): Television retailer’s maximum inventory.

Data Availability

The simulation data used to support the findings of this study are included within the manuscript. These data are restricted by the China Video Industry Association in order to protect trade secrets. Data can be available from http://www.cvianet.org.cn for researchers who meet the criteria for access to confidential data.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are grateful for supports from the Shandong Provincial Social Science Plan Foundation, China (no. 19BYS13) and the Shandong Provincial Natural Science Foundation, China (no. ZR2018 MG004).

References

