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A novel hyperchaotic circuit is proposed by introducing a memristor feedback in a simple Lorenz‐like chaotic system. Dynamic 
analysis shows that it has infinite equilibrium points and multistability. Additionally, the symmetrical coexistent attractors are 
investigated. Further, the hyperchaotic system is implemented by analogue circuits. Corresponding experimental results are 
completely consistent with the theoretical analysis.

1. Introduction

Chua [1] predicted the existence of the fourth basic circuit 
element—memristor in 1971. However, it was not until 2008 
that a team of researchers at Hewlett‐Packard (HP) made 
nano‐membrane memristive devices for the first time [2]. 
Since then, memristors have attracted great attentions and 
relative researches cover academia and industry. �e emer-
gence of memristive devices is expected to achieve nonvolatile 
memory. Moreover, memristors are considered to be a better 
way to implement artificial neural network synapses in hard-
ware [3]. Also, due to the nonlinear characteristic of memris-
tor, it can be used in chaotic circuits.

In 2008, Chua and Itoh [4] first constructed memristor 
oscillators from Chua's oscillators by replacing Chua's diodes 
with memristors, where the piece‐wise linear (PWL) memris-
tor model was used. Two years later, Muthuswamy [5] applied 
the smooth cubic flux‐controlled memristor model to Chua's 
oscillators, which generated different chaotic attractors. �e 
same memristor model was used in [6, 7] too. More specifi-
cally, in 2011, a twin‐T notch filter was used to control chaos 
in a memristor based circuit in [6], and [7] implemented a 
hyperchaotic circuit by using this model in 2012. In 2019, 
based on a new current‐controlled memristor, a new four‐
dimensional chaotic circuit is proposed and studied [8]. In 
these studies, nonlinear characteristic of memristor and 
dynamical properties of memristive chaotic and hyperchaotic 

circuits had been researched. In the same year, Wang presented 
a novel memristor model based on light dependent resistor 
(LDR) and its emulator in [9] and further realized a memca-
pacitor emulator based on the LDR memristor in [10]. Later 
in 2014, [11] analyzed dynamic characteristics of a LDR mem-
ristor based chaotic system. Another new memristor model 
was applied to Chua's circuit, and the complex transient 
dynamic behaviour was found in this circuit [12]. Up to now, 
only the HP memristor can be manufactured and widely used. 
In order to research application circuits with the HP memris-
tor, [13] presented a flux‐controlled model of HP memristor 
and analyzed its chaotic oscillator. A chaotic circuit based on 
two HP memristor in antiparallel was presented in  
[14].

�e above chaotic circuits are simple and use less numbers 
of circuit elements. Nevertheless, there are other chaotic circuit 
design approaches, like Lorenz system [15], Chen system [16], 
Lü system [17] and most other nonlinear dynamical systems 
[18] could be described by ordinary differential equations 
containing product terms, which could easily be realized by 
electronic circuits via standard operational amplifiers  
(op‐amps) and four‐quadrant analogue multipliers. Generally, 
the op‐amp is used for the integral operation and nonlinear 
multiplicative operation is implemented by multipliers. In this 
paper, the op‐amps and multipliers are working together with 
a memristor to introduce a feedback in a chaotic circuit to 
realize a hyperchaotic circuit.
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In this paper, based on a simple chaotic circuit of three dimen-
sion Lorenz‐like system, a hyperchaotic circuit was con-
structed by introducing a memristor feedback. �is paper is 
organized as follows. Section 2 gives the memristor mathe-
matical model and its equivalent circuit. In Section 3, the 
hyperchaotic circuit is constructed, the Lyapunov exponent 
and the Lyapunov dimension of the system are calculated. 
Section 4 discusses the stability and equilibrium points of the 
system. Section 5 analyzes the dynamic properties of the sys-
tem, including the power spectrum and symmetrical coexist-
ent attractors of the system. Section 6 presents the results of 
the circuit experiment. Section 7  draws conclusions.

2. Memristor Model and Its Equivalent Circuits

According to [19], memristors can be classified as ideal mem-
ristors, ideal generic memristors, generic memristors, and 
extended memristors, and the current controlled and voltage 
controlled ideal memristor can be described by the following 
relations:

where � and � denote the voltage cross and current goes 
through a memristor, � and � are the charge and flux on the 
memristor at time �, �(�) and �(�) represent memristance 

(1)�푣 = �푅(�푞)�푖, �푑�푞/�푑�푡 = �푖,

(2)�푖 = �퐺(�휑)�푣, �푑�휑/�푑�푡 = �푣,

and memductance. A smooth flux‐controlled memristor 
model was researched in [5], whose memductance is given by:

where � and � are constants and setting as �훼 = 1, �훽 = 0.02 
through the whole paper. Absolutely, Equation (3) describes 
an ideal memristor. By Matlab simulation, Figure 1(a) shows 
the voltage‐current characteristics of the memristor at differ-
ent frequencies, when it is powered by a sinusoidal voltage 
source, whose amplitude is chosen as 4 V and the angular fre-
quency � is setting to 0.1 rad/s. From Figure 1(a), we can see 
that the memristor degenerates into a normal resistor when 
the angular frequency is large enough. �e time domain dia-
grams of voltage and current are shown in Figure 1(b). 
Moreover, Figure 2(a) shows the memductance of the mem-
ristor changes with time and Figure 2(b) describes the flux‐
charge characteristics of the memristor.

(3)�퐺(�휑) = �훼 + �훽�휑2,

U1

R1
v

C1

100 MΩ

10 nF 

A1

U2

R3

10 kΩ

R2

500 kΩ

R4

10 kΩ

1V

U3

R5

10 kΩ+
–

+
–

+
–

R6

10 kΩA2

v
i

1

2

3

V1

Figure 3: Equivalent circuit of the memristor.

Figure 1: (a) Pinched hysteresis loop of the memristor at different 
frequencies. (b) Timing diagram of voltage and current.
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Figure 2:  (a) Timing diagram of memductance. (b) Flux‐charge 
characteristics of the memristor.
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�e emulator of the memristor described by Equation (3) 
is given in Figure 3. A�er the input voltage � passing through 
an integrator consisting of a resistor R1, a capacitor C1 and an 
op‐amp U1, the negative flux(−�휑) is gotten at node 1. �en �2 
could be obtained by multiplier A1 and the response of an 
inverting adder consists of resistors R2, R3, R4 and op‐amp U2 
can be described by the following equation:

where �1 is a DC voltage bias. �e signal −�퐺(�휑) at node 2 is 
inverted by the inverter composed by R5, R6 and op‐amp U3, 
then a�er �(�) at node 3 multiplying with the input voltage 
v in multiplier A2, the corresponding output current i could 
be obtained. �e Multisim simulation results of this equiva-
lent circuit are shown in Figure 4, with input voltage 
�휈 = 4 sin(2�휋�푓�푡). Figure 4(a) shows the pinched hysteresis loop, 
the timing diagrams of voltage � and current � are shown in 
Figure 4(b), the results verify the effectiveness of the equiv-
alent circuit.

3. Construction of Hyperchaotic Circuit

A simple Lorenz‐like system was reported in [20], which is 
described as:

Such dynamical systems could easily be implemented by the 
op‐amps and multipliers. As shown in Figure 5, if we consider 
the memristor as an open circuit, i.e., when the feedback has not 
been applied, it realizes the Lorenz‐like system described by 
Equation (5). Now let the memristor mentioned above be used 
as a feedback element, according to Kirchhoff’s law, basic circuit 
theory and the relationship between the terminal voltage and 
current described by Equations (2) and (3), the equivalent hyper-
chaotic circuit state equation in Figure 5 can be written as:

(4)−�퐺(�휑) = −�푅4
�푅3

�푉1 −
�푅4
�푅2

�휑2,

(5)

{{{{{{
{{{{{{
{

�푑�푥
�푑�푡 = �푎(�푦 − �푥);
�푑�푦
�푑�푡 = �푏�푥 − �푥�푧;
�푑�푧
�푑�푡 = �푥2 − �푐�푧.

�en the dimensionless state equation of the circuit can be 
described by:

where �, �, � and � are internal state variables of the memris-
tive system, and �, �, �, �, � and � are parameters. When we 
set the parameters as �푎 = 24, �푏 = 4, �푐 = 19, �푑 = 9, �훼 = 1 and 
�훽 = 0.02, the system can generate hyperchaos. �e hyperchaotic 
attractor as shown in Figure 6, which indicates the hyperchaotic 
system has a complex dynamic behaviour. Figures 6(a)–6(d) 
are the hyperchaotic phase diagrams on x-y, x-z, y-z, and x-w 
planes, respectively. �e Lyapunov exponent can be calculated 
as �퐿�퐸1 = 0.3399, �퐿�퐸2 = 0.2144, �퐿�퐸3 = −0.0045, �퐿�퐸4 = −33.5498 by 
Jacobi method, and the Lyapunov dimension �� is 3.0164 cal-
culated by Equation (8), which indicates that the system is 
hyperchaotic under the appropriate parameters.

�e expression of divergence of the memristive hyperchaotic 
system can be described as follows:

when parameters �푎 = 24, �푏 = 4, �푐 = 19, �푑 = 9, the ∇�푉 is less than 
0, so the system is dissipative and converge exponentially.

(6)

{{{{{{{{{
{{{{{{{{{
{

�퐶1
�푑v�푥
�푑�푡 = 1

�푅2
v�푦 − 1

�푅1
v�푥 + �퐺(�휑�푦)v�푦;

�퐶2
�푑v�푦
�푑�푡 = 1

�푅3
v�푥 − 1

�푅4
v�푥v�푧;

�퐶3
�푑v�푧
�푑�푡 = 1

�푅5
v�푥

2 − 1
�푅6

v�푧;
�푑�휑�푦
�푑�푡 = v�푦.

(7)

{{{{{{{{
{{{{{{{{
{

�푑�푥
�푑�휏 = �푎(�푦 − �푥) + �푏�퐺(w)�푦;
�푑�푦
�푑�휏 = �푐�푥 − �푥�푧;
�푑�푧
�푑�휏 = �푥2 − �푑�푧;
�푑w
�푑�휏 = �푦,

(8)�퐷�퐿 = �푗 + 1
������퐿�퐸�푗+1

�����

�푗
∑
�푖=1

�퐿�퐸�푖 = 3 + (�퐿�퐸1 + �퐿�퐸2 + �퐿�퐸3)�����퐿�퐸4
����

.

(9)∇�푉 = �휕�̇푥
�휕�푥 + �휕�̇푦

�휕�푦 + �휕�̇푧
�휕�푧 + �휕�̇푤

�휕�푤 = −�푎 − �푑,

Figure 4: Simulation result of Multisim, (a) pinched hysteresis loop, and (b) timing diagram.
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Figure 5: Hyperchaotic circuit by introducing memristor feedback.

Figure 6: Hyperchaotic circuit by introducing memristor feedback.
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Figure 7: (a) Poincaré mapping projected onto �푦−�푤 plane and (b) space diagram of Poincaré mapping.
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According to the Routh‐Hurwitz stability criterion, the system 
is stable if and only if the sequences of determinants of its prin-
cipal submatrices are all positive. In other words, if �1, �2, �3 
and �4 are all greater than 0, then the system is stable. When 
parameters �, �, �, and � are set to 24, 9, 19 and 4, 
�훥2 = −(912�푒2)/25 − 5640, which is always less than 0. So all 
the equilibria of the system are unstable under the above 
parameters, and the system may generate chaos or 
hyperchaos.

5. Dynamical Property Analysis

5.1. Poincaré Mapping and Sequence Diagram Analyses.  When 
parameters are setting as �푎 = 24, �푏 = 4, �푐 = 19, �푑 = 9, the 
Poincaré mapping of the hyperchaotic system is shown in 
Figure 7. Figure 7(a) is the Poincare mapping obtained when 
the cross plane is selected as �푥 = 0. To describe its acquisition 
process more vividly, Figure 7(b) shows the 3 dimensional 
stereoscopic graphics. Poincaré mapping reflects the motion 
characteristics of the system. As shown in Figure 7(a), the 
Poincaré mapping manifests as dense points and its structure 
is hierarchical, so it can be determined that the motion of the 
system is in a chaotic or hyperchaotic state.

Figure 8 presents the sequence diagrams of the system, 
which indicates the motion of the system is pseudo‐random 
and aperiodic. So combining with the above analyses and 

4. Equilibrium Points and Stability of the 
System

In order to resolve the equilibrium of the system, let the 
right side of Equation (7) equal to 0, and it is found that 
the equilibrium points set is �푂 = {�푥 = �푦 = �푧 = 0, �푤 = �푒}, 
which indicates that there are infinite equilibria existing 
in the memristive system. Different from most of the 
common chaotic systems, memristive chaotic systems often 
contain infinite equilibria points. The system’s Jacobian 
matrix at O is described as:

Further, the characteristic equation corresponding to the 
Jacobian matrix can be obtained as follow:

From Equation (11), the coefficients of the polynomial can be 
obtained, which are �푎0 = 1, �푎1 = �푎 + �푑, �푎2 = �푎�푑 − �푎�푐 − �푏�푐
− 0.02�푏�푐�푒2,  �푎3 = −(0.02�푏�푐�푑�푒2 + �푎�푐�푑 + �푏�푐�푑), �푎4 = 0, �푎5 = 0, 
�푎6 = 0 and �푎7 = 0. As shown in Equation (12), the coefficients 
of the polynomial could be arranged into a square matrix form, 
called the Hurwitz matrix.

(10)�퐽 = [[
[

−�푎 �푎 + �푏(1 + 0.02�푒2) 0 0
�푐 0 0 0
0 0 −�푑 0
0 1 0 0

]]
]
.

(11)
�휆4 + (�푎 + �푑)�휆3 + (�푎�푑 − �푎�푐 − �푏�푐 − 0.02�푏�푐�푒2)�휆2

− (0.02�푏�푐�푑�푒2 + �푎�푐�푑 + �푏�푐�푑)�휆 = 0.

(12)
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�푎0 �푎2

�儨�儨�儨�儨�儨�儨�儨,
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Figure 9: (a) Lyapunov exponent spectrum versus parameter � and  
(b) bifurcation diagram versus parameter �.
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the Lyapunov exponents, it can be judged that the system 
could be in the hyperchaotic state under the above 
parameters.

5.2. Influence of Parameter Variation on Dynamics of 
System.  Parameter variation affects the equilibrium point 
and stability of the system, so it is meaningful to discuss the 
impact of parameter changes of the system. Figure 9 shows the 
corresponding Lyapunov exponent spectrum and bifurcation 
diagram when parameter � is changing from 6 to 18, while 
other parameters �, �, � are fixed.

It is worth pointing out that there should be four Lyapunov 
exponents in a four dimension system. However, only three 
Lyapunov exponents are shown in Figure 9(a), because the fourth 
Lyapunov exponent is negative and much smaller than the other 
three ones, so in order to clearly show the details of the Lyapunov 
exponent spectrum, the fourth Lyapunov exponent is not shown. 
And Figure 9(b) is the corresponding bifurcation diagram, when 
the parameter � increases, the system gradually transitions from 

Figure 10: Attractor and power spectrum for (a, b) period‐1; (c, d) period‐2; (e, f) hyperchaos.

x

5

10

15

20

25

30

35

z

–20 –10 0 10 20

(a)

x

0

10

20

30

40

z

–40 –20 0 20 40

(c)

–40 –20 0 20 40
x

0

10

20

30

40

z

(e)

Frequency/Hz

0

0.2

0.4

0.6

0.8

1

Sp
ec
tr
um

×104
4 6 8 100 2

(b)

Frequency/Hz ×104

0

0.2

0.4

0.6

0.8

1

Sp
ec
tr
um

0 2 4 6 8 10

(d)

0 5 10
Frequency/Hz ×104

0

0.2

0.4

0.6

0.8

1

Sp
ec
tr
um

(f)

Table 1:  �e properties of coexistent attractors under different 
conditions.

Properties Parameters  
(a, b, c, d) Initial values Figure 

number
Symmetrical 
chaotic 
attractors

(24, 4, 2, 19) (0, 0.1, 0, 0) 
(0, −0.1, 0, 0) Figure 11(a)

Symmetrical 
chaotic 
attractors

(24, 4, 10, 19) (0, 0.1, 0, 0.1) 
(0, −0.1, 0, −0.1) Figure 11(b)

Symmetrical 
hyperchaotic 
attractors

(24, 4, 19, 9) (0, 0.1, 0, 26) 
(0, −0.1, 0, −26)

Figures 11(c) 
and 11(d)

Symmetrical 
quasiperiodic 
attractors

(24, 4, 19, 9) (0, 0.1, 0, 130) 
(0, −0.1, 0, −130) Figure 11(e)

Symmetrical 
period 1 
attractors

(24, 4, 19, 9) (0, 0.1, 0, 150) 
(0, −0.1, 0, −150) Figure 11(f)
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than 0, a Lyapunov exponent equal to 0, and a Lyapunov expo-
nent less than 0 until � reaches 11.8. �is also proves that the 
system can indeed be in hyperchaotic state under certain 
parameters.

hyperchaotic state to periodic state and the bifurcation diagram 
is consistent with the Lyapunov exponent spectrum.

Moreover, it can be clearly observed from Figure 9(a) that 
during � grows, there are two Lyapunov exponents greater 

Figure 11: Symmetrical coexistent attractors of the system on the �-�, �-� plane.
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Figure 11 shows the typical coexisting attractors of this system, 
the blue and red trajectories are phase diagrams starting from 
symmetrical initial values under same sets of parameters. Table 1 
presents different states and their corresponding parameters, 
initial values, and figure numbers in Figure 11. More specifically, 
in Figures 11(a) and 11(b), both of them are chaotic attractor 
coexisting with other symmetrical chaotic attractors. 
Figures 11(c) and 11(d) describe two symmetrical hyperchaotic 
attractors coexisting with each other. Figure 11(e) shows 
symmetrical quasiperiodic coexistent attractors, and symmetrical 
period 1 coexistent attractors are shown in Figure 11(f).

6. Circuit Experiment

From the previous analysis, the hyperchaotic system described 
by Equation (7) can be in hyperchaotic state when the param-
eters are set as �푎 = 24, �푏 = 4, �푐 = 19, �푑 = 9, �훼 = 1 and �훽 = 0.02. 

(13)
{{{{{{{{{
{{{{{{{{{
{

�푑�푥
�푑�휏 = �푎(�푦 − �푥)

+ �푏�퐺(w)�푦
�푑�푦
�푑�휏 = �푐�푥 − �푥�푧
�푑�푧
�푑�휏 = �푥2 − �푑�푧
�푑w
�푑�휏 = �푦

⇐⇒

{{{{{{{{{
{{{{{{{{{
{

−�푑�푥�푑�휏 = −�푎(�푦 − �푥)
+ �푏�퐺(w)�푦

−�푑�푦�푑�휏 = −�푐�푥 + �푥�푧
�푑�푧
�푑�휏 = �푥2 − �푑�푧

−�푑w�푑�휏 = −�푦.

5.3. Power Spectrum Analysis.  As everyone knows, the power 
spectrum of a periodic signal is a discrete spectrum, the power 
spectrum of aperiodic signals is a continuous spectrum and for a 
noise signal, whose power spectrum is continuous and smooth. 
Chaotic and hyperchaotic signals are a kind of aperiodic signal, 
so its power spectrum should be a continuous spectrum. Figure 
10 shows the attractors and the normalized power spectrums 
corresponding to different states of the system. Concretely, 
Figure 10(a) shows period‐1 attractor when parameter �푑 = 14.64 
and Figure 10(b) presents its sole power spectrum. Similarly, 
Figure 10(c) is period‐2 attractor as �푑 = 12 and Figure 10(d) is 
the corresponding discrete power spectrum. Figure 10(e) shows 
the hyperchaotic attractor when �푑 = 9, it is worth to note that 
there are a large number of peaks in its corresponding power 
spectrum Figure 10(f). Such phenomenon is mainly due to the 
existence of numerous double periodic bifurcations in chaos or 
hyperchaos. It can be found that power spectrum analysis can 
be effectively used to compare and distinguish noise signals, 
periodic signals, chaotic and hyperchaotic signals.

5.4. Symmetrical Coexistent Attractors.  �e system shown 
in Equation (7) is symmetric about the �‐axis, which can be 
derived from invariance when transforming (�푥, �푦, �푧, �푤) to 
(−�푥, −�푦, �푧, −�푤), as shown in Equation (13). �erefore, the 
system can enter symmetrical trajectories under symmetrical 
initial values.

Figure 13: Chaotic attractors observed from an analog oscilloscope. (a) x-y plane; (b) x-z plane; (c) y-z plane; (d) x-w plane.

(a)

(c)

(b)

(d)
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