Hindawi

Complexity

Volume 2023, Article ID 9876801, 1 page
https://doi.org/10.1155/2023/9876801

Retraction

WILEY | Q@) Hindawi

Retracted: Automatic Grading for Complex Multifile Programs

Complexity

Received 19 December 2023; Accepted 19 December 2023; Published 20 December 2023

Copyright © 2023 Complexity. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. This in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope

(2) Discrepancies in the description of the research
reported

(3) Discrepancies between the availability of data and
the research described

(4) Inappropriate citations

(5) Incoherent, meaningless and/or irrelevant content
included in the article

(6) Manipulated or compromised peer review

The presence of these indicators undermines our con-
fidence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] T. Wang, D. B. Santoso, K. Wang, and X. Su, “Automatic
Grading for Complex Multifile Programs,” Complexity,
vol. 2020, Article ID 3279053, 15 pages, 2020.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9876801

Hindawi

Complexity

Volume 2020, Article ID 3279053, 15 pages
https://doi.org/10.1155/2020/3279053

Research Article

WILEY

Hindawi

Automatic Grading for Complex Multifile Programs

Tiantian Wang ! Djoko Budi Santoso,' Kechao Wang,2 and Xiaohong Su’

ISchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
2School of Information Engineering, Harbin University, Harbin 150001, China

Correspondence should be addressed to Tiantian Wang; wangtiantian@hit.edu.cn

Received 31 March 2020; Accepted 23 May 2020; Published 13 June 2020

Guest Editor: Zhihan Lv

Copyright © 2020 Tiantian Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents an automatic grading method DGRADER, which handles complex multifile programs. Both the dynamic and
the static grading support multifile program analysis. So, it can be an advantage to handle complex programming problem which
requires more than one program file. Dynamic analysis takes advantage of object file linker in compilation to link complex
multifile program. The static grading module consists of the following steps. Firstly, the program is parsed into abstract syntax tree,
which is mapped into abstract syntax tree data map. Then, the information of preprocessor is used for linking external sources
called in main program by complex multifile program linker-fusion algorithm. Next, standardization process is performed for
problematic code removal, unused function removal, and function sequence ordering based on function call. Finally, program
matching successfully tackles structure variance problem by previous standardization process and by simple tree matching using
tag classifier. The novelty of the approach is that it handles complex multifile program analysis with flexible grading with
consideration of modularity and big scale of programming problem complexity. The results have shown improvement in grading

precision which gives reliable grading score delivered with intuitive system.

1. Introduction

Automatic Grading System (AGS) is program which can de-
termine student grade automatically based on score objective
parameter. AGS is needed as popular courses especially in
computer science often have hundreds or thousands of students
but only a few staff [1]. Programming assignment in these
courses is necessary to improve technical programming and
problem solving skill of students. Manual assessment method of
programming practices is a tedious and time-consuming task
[2, 3]. This method is inadequate because first programming
course are often typically complex for a lecturer to assess
correctness accurately and comprehensively by manual as-
sessment [4]. In here, AGS can become a key role to maintain
accuracy and avoid biases as the grading process is based on
objective scoring rules. Importantly, the system must provide
immediate feedback to students so they can learn from their
mistakes [5], allowing them to make self-learning without an
instructor [6].

With the development of information technology, more
and more schools and organizations try to realize the

inclusive and fair education through online learning, hu-
man-computer interaction [7, 8] learning, etc. Nowadays,
various AGS systems already exist and are used by higher
education institutions to enhance learning process [9, 10] or
as programming communities to self-improve in pro-
gramming and problem solving skills. The question “why do
so many automatic assessment systems exist, and why are
new ones created every year?” pops up into discussion in this
research field [11]. One of the reasons for various AGS is that
each system may deliver some features which are not pro-
vided by others to distinguish their advantage factor.

The research still continues until today to pursue reliable
grading system and solve the issues existed in this field. In
here, current major issues are listed, which work as a sample.
This gives an idea to produce final reliable grading and
potential future work.

According to Table 1, these are recent knowledge issues
chosen as the main objective overview in this work to do
novelty works.

Firstly, code variance which can be said as the biggest
factor to affect the result of static program analysis. In static

mailto:wangtiantian@hit.edu.cn
https://orcid.org/0000-0003-2958-8066
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3279053

Complexity

TaBLE 1: Current research issues in automatic grading system.

Issue

Approach

Results

Code variations are widely believed to impede
program analysis because various source codes
have to be recognized as the same [12]

Program normalization by using system
dependence graph (SDG) implemented in
prototype called normalizer

Successful for small-sized program, not
big-sized or complex program

Most existing inlining algorithms not suitable
for code analysis and interprocedural analysis
can analyze the calling context but are very
costly and cannot remove function call
variations [13]

Inlining algorithm based on program
dependence graph (PDGs) using simple
function call tree (SCFT) applied to code

normalization

Limited in dealing with programs with
multiple files

Deals with multiplicity of solutions that exists
for the same programming problems providing
automated evaluation: immediate feedback for
students and grading assignment of program
(14]

Partitioned block by using control flow graph

(CFG) and program behavior comparison with

symbolic execution rather than textual context
or concrete values

Solves a multitude of solution of
problems but is complex in
implementation for big scale program

analysis, these issues must be considered to produce reliable
and precise grading score. Code variance issues solved by
introduced program normalization mechanism to change
the program into an intended structure requiring a program
representation. The program normalization approach uses
system dependence graph as the program representation. It
requires for changing the code or program component
known as refactoring process. The results of the works that
solve code variance issue have significant impact of grading
quality result.

Secondly, state that current inlining algorithms are not
suitable for code analysis. The work approach by using
program representation in Program Dependence Graphs to
expand and manipulate program component focused on
function call is introduced. This issue is actually related to
code variance and focused on the structure program, which
is influenced by function call and function sequence order
written in program code. Results of the approach give more
suitable inlining algorithm for code analysis and improve
mechanism by reducing step of conventional interproce-
dural analysis. However, the existing work cannot deal with
functions in several files.

Thirdly, Arifi et al. have introduced how the program is
partitioned by a block using Control Flow Graph and
generated symbolic variance for program comparison to
solve the problem of multiplicity of solutions [14]. This work
solves a multitude of solution of problems, but is complex in
implementation for big scale programs.

These research studies lay a good foundation for our
work. However, further work is still needed to support
complex multifile programs. As the current single file
program analysis is a relatively straight forward and com-
mon, complex multifile program analysis is a plus to handle
big complex program which is still not solved or suitable for
the recent research [15]. In this paper, we present a novelty
work to handle complex multifile program analysis.

2. Related Work

2.1. Complex Multifile Program Analysis. AGS should be
capable to quickly grade multiple and complex computer
literacy assignments while providing meaningful feedback in
order to stimulate an efficient learning process [16].

Specially, for larger and complex programming assignment,
it is still not possible for most existing systems to assess good
programming solution. In this case, semiautomated system
is still used, which requires the human evaluator to use
partial part of results from system to decide final grading
[17]. It makes the task more complicated for humans to
assess modular code. This issue will be faced by the current
grading system as a programming problem is more scaled
and complex for advance programming courses or real
practice programming project. It makes the automatic
grading system not follow their primary principle as an
automatic system and become ineffective.

Complex multifile program analysis can be an advantage
to handle complex programming and scaled project, which
requires more than one file program. As stated before, it also
makes modularity and flexibility such as creating user-based
custom libraries to support core program file without re-
writing into main program. In this feature, the imple-
mentation of complex multifile program analysis uses their
primary concept.

2.2. Dynamic and Static Grading Methods. Dynamic analysis
uses black-box concept which depends on output results.
The analysis requires program to be compiled and run with
test cases. The final grade uses comparison results of the
produced output with the expected output. However, it has
fatal drawback, in which student program may not produce
an output because problematic code such as syntactical
errors makes the program fail in the compilation process
[18]. This means the program will fail before processing test
cases. Hence, dynamic analysis itself is not enough for
completely giving all objective scores when it fails and static
analysis is needed.

Static analysis uses white-box concept without compiling
and running the program. It uses rapid advancement
technology from compiler and language-based tool. The
approach also uses code analysis knowledge to analyze
program and gives grading based on scoring objective rules
and parameters.

However, both methods are having their advantage and
disadvantage since static analysis require more complex
process of code analysis. It requires predefined rules and

Complexity

objectives. On the contrary, dynamic analysis is a more
direct approach but does not cover all aspect, especially,
when it fails to perform grading. Choosing which meth-
odology is more feasible makes dynamic versus static
analysis become a topic for consideration for the grading
system. According to dynamic and static analysis principle
in the previous section, both methods have their advantage
and disadvantage factors. Table 2 summarizes of their
comparison.

In here, the knowledge summarizes that static analysis
cannot be used for checking the correctness of student
programs using test cases as an input which produces an
output. On the contrary, traditional dynamic analysis sys-
tems will completely fail to perform grading and miss im-
portant aspects when assessing student programs such as
checking the code quality [19]. This may be the reason to
why some existing automatic grading systems combine the
best of both approaches by improving dynamic testing
mechanism with static technique. By carrying out mutual
combination of both analysis and providing immediate
feedback in grading result, it gives an additional positive
value to the user and advantage of the grading system.

Back to 1992, when Cellidh [20] was introduced, it was
actually a pioneer grading system which combined both
approaches by introducing semantic error detection. It used
for detecting infinite loop issue which is critical for dynamic
grading. The system also uses static verification including
structure, indentation, detect comment, readability mea-
surement, and complexity metrics in dynamic analysis.

In 1997, system called ASSYST [21] combined both
analyses in practice to automate some aspects of grading for
introductory Ada classes, as well as a second-year C pro-
gramming course. It gives grading score to students based on
the correctness (actual output compared to the expected
output), efficiency (run time) on dynamic analysis side,
check program source code style, and its complexity on static
analysis side. In 2000, more systems adopt this combined
method for providing flexible analysis and pursuing po-
tential grading system which provide meaningful interme-
diate feedback.

In 2006, Marmoset [22] was built in the University of
Maryland. The main purpose of the system is to collect
information about development of student programming
skill while doing a programming assignment for triggering
self-improvement. The unique feature is allowing a full
snapshot about student progress in the system, so it can be
analyzed in detail by using different types of test cases
(student, public, release, and secrete) and a personal support
from the lecturer through comments on the code in the page.

In 2008, Web-CAT [23] provided extensibility and
flexibility as its plugins-based architecture taking advantage
of recent development technologies was built using Java
servlet. It provides security features by authentication, er-
roneous or dangerous code detection, and portability. It also
supports manual grading by allowing the lecturer to check
program submitted by the student. It allows lecturers to give
the comment, suggestion, and grading modification. The
programming language supported are C or C++, Java,
Pascal, Prolog, and others flexibility support for integration.

The grade is based on correctness through test cases,
completeness of program, and validity.

In 2011, eGrader [24] provided detailed feedback reports
and allowed students to see model solution provided by the
lecturer or course owner. It also gives specific comments on
syntax and semantic errors if occurred. The static analysis
process implemented in the system consists of two parts,
which are the structural similarity and quality analysis.
Structural similarity analysis is based on the graph repre-
sentation of the program. Quality analysis was achieved by
measurements using software metrics.

In the same year, a system called AutoLEP [25], as an
automatic grading system tool, was developed. It improves
the traditional static grading mechanisms by combining
dynamic code testing. The approach is enriching static
analysis in source code analysis with a comparison of the
similarity degree of compared program. The dynamic
analysis was used to evaluate correctness of the submitted
program using test cases and comparing the expected
output. The static analysis does not compile or execute the
programs. It uses model program to evaluate student pro-
gram construction and how close the student source code is
from the correct solution which is model programs provided
in programming assignment by the lecturer. The final
grading result was achieved by calculation of summarization
from each grading analysis. The works were reported to
distinguish syntactic and semantic analysis from the pre-
vious work. The architecture includes (1) the client and a
computer used by a student, and it performs the static
analysis and can provide quick feedback; (2) a testing server
which has to perform the dynamic analysis; and (3) a main
server which has to control the information of the other
components to establish a grade.

In 2012, a new automatic grading system called Quimera
[26] was built as a web-based application. It was able to
evaluate the program source code written in C language and
provide a full management system for programming con-
tests. It also allows to create and manage programming
exercises both in competitive learning and programming
contest environments. Besides the traditional dynamic ap-
proach, this system provides a static analysis of the program
by measuring the source code quality. Thus, the final grade is
based not only on the source code capability of producing
the expected output but also on its quality and accuracy.

Finally, these are examples of automatic grading tools
existed with flexible code analysis which primarily combine
both method to achieve advantages of grading in their
grading system. The listed tools will be used in comparison
analysis.

3. Overview

As mentioned before, our approach is implemented in our
automatic grading system tools called DGRADER as a web-
based online automatic programming judgement platform.
Web platform chosen as a researcher focused on web-based
assessment system shows positive influence on learning
effectiveness [27]. It is also very effective in distributing
material and collecting the student assignment online [28].

4 Complexity
TaBLE 2: Dynamic versus static analysis in the automatic grading system.
Method Concept Advantage Disadvantage
(i) More direct for grading (i) Requires compilation process and fails when
. i . compilation is unsuccessful
Dynamic Black-box (output) with test cases (ii) Correctness checking (ii) Security issues
(iii) Popular usage (iii) Does not cover all aspect of grading
(1) Does not require (i) Computational complexity
. White-box (code analysis) and comparison .. P P .. . A ..
Static (ii) Capable to analyze code (ii) Requires set of rule definitions for giving

of the correct model

quality

reliability grading
(iii) Not providing correctness checking

Our tool is built by using Spring Model View Controller
(MVC) as framework foundation with Spring Tool Suite
(STS) Integrated Development Environment (IDE) written
in Java programming language. It uses several technologies
integrated to the system to support MOOC:s. The full system
will be running on the host server which can support Apache
Tomcat Server. The database technology used in this ap-
plication is MySQL database.

Architecture: Figure 1 shows three blocks of the system,
i.e., user, application (front and back-end), and expanded
core grading API block. Every core page contains a block of
the modular page with defined web services and API. The
system manages basic web features provided by Spring such
as servlet, session handler, and its core features.

Core grading Application Programming Interface (API) of
the system is shown on the right side. It has several API for
specific purposes and functions. The API is triggered by using
defined query parameter and handled by the API handler. Core
grading APIs cover main functions of DGRADER for the
grading task. The first layered API is the assignment handler. Its
main purpose is to handle raw materials of assignments and
extract the information before the grading task. Submission API
is the connector triggered by submission activities. Its role is to
forward information to grading analysis process in the grading
analysis APIs. The information passed by the query parameter is
used to target specific grading in the system. Each grading will
be detailed in its section. Finally, the grading activities will
produce an output feedback which will be displayed in the
interface to users.

3.1. Main Features. The main features of DGRADER are as
follows:

(1) Providing e-learning environment management for
programming courses.

(2) Supporting flexible grading analysis: dynamic and
static analysis. Flexible grading makes the instructor
or programming assignment task creator become
more flexible to choose assessment methods. The
grading method can be based on the complexity of
programming task or its purpose. It also makes the
system capable to cover grading assessment task
when one of the grading fails.

(3) Supporting complex multifile program analysis in
submission activity for solving one programming
problem.

(4) Providing instant feedback and result of grading analysis
for programming assignment problem. The grading is
provided in both categorical and numerical results.

Feedback results in static analysis include

(i) Presenting the final linked-fused program source
code and its standardization result

(ii) Presenting AST traverse log with visitor activities

(iii) Providing visualization for transformation graph
comparison for final linked-fused and standard-
ized program structure

(iv) Presenting function information such as function
list in program, function call sequence, and unused
function list removed by standardization

(v) Presenting the original AST data mapper of final
program and standardized AST data mapper of
standardized program

(vi) Providing root tree visualization by AST root data
mapper

(vii) Providing experimental AST visualization of stan-
dardized program by standardized AST data mapper

(viii) Presenting AST simple tree matching trace analysis
in data mapper

(5) Flexible source program uploading or submission
by using file upload or directly using integrated
CodeMirror text editor.

(6) Supporting course system management similar to
Massive Open Online Courses (MOOCs) and
Learning Management System.

4. Multiple Program Files Analysis

Multiple program file analysis is a novel feature of our
automatic grading system. The reason to present this feature
is because existing systems usually support single file to keep
simplicity of its grading analysis process. However, if a
programming problem is more complex and users need
more files, this will become a limitation factor. In other cases,
users may want to use some libraries which do not require to
be written again or the compiler in dynamic analysis does
not support the library. In order to support multiple pro-
gram file submission, this section presents implemented
approaches including file model, multiple program file
linker in each grading process, and linker-fusion algorithm.

Complexity

Core grading APT
User Front end Code mirror Assignment handler API
Boot JSRI Libraries Raw content
HTML and Data table
strap core Jugin | Information extraction
p olution
Browser JQuery |
T File handler
Assignment API .
Web MVC Eclipse CDT (modules, II parameter Data Hagdley
framework test cases) Mapper
5 Java spring application IBATIS
Spring core
_ MySQL
Spring mock connector
Submission APT Query
API parameter

Grading analysis APT

HTTP (Internet) % URL handler AJAX handler API handler

| Grading preparation

(linker and fusion) | | e

Page handler
T | GCC compiler | | AST (CDT) |
Back end I
Data transaction i Process builder Static Program cleaner
———— Security Module Services analysis analysis | Node dicti
- Error handler ph 0de dictionary
Physical s Servi handl handl
| | Layer 1 | | | Module 1 | | Service 1 | N | APT task 1 | andler Grading g Similarity
DGRADERDB | [|| rayerz || |[Module2 || [servicez || |[aprwskcz |[T° Grading
DGRADER | Layer N | | Module N | | Service N | | APT task N | I
logDB
& 5 Output alysi

FIGURE 1: System architecture.

4.1. File Model. File model is implemented to handle mul-
tiple file program submission. It separates into the following
two parts:

(1) Preprocessor: the beginning part of source state-
ment or preprocessing statement #include<[li-
brary]> which can be parsed by using
ASTPreprocessorStatement. The user can use
several external files to support main files for
solving one programming problem. The filename
of the sources should be the same in file upload
process because it will be linked via parameter
search. Custom libraries by the user can be written
in this defined statement #include “[external_-
sources_filename]” as a rule. The double quote
indicates its user custom libraries or external
sources. The system will process linker-fusion
process to combine linked multiple program file.

(2) Content: this part contains the body of source
program or other parts below preprocessor
statements.

4.2. Multifile Linker in Dynamic Grading. Dynamic grading
use compilation for handling complex multifiles to be linked,
as shown in Figure 2. As an example for linking complex
multifile program C or C++ programming language, it uses
the linking process of GCC compilation process. It uses two
input: main source and path of external source (multiple files
paths). The differentiation from static is the type of the main
source in here which will become .bin files from Proc-
essBuilder. The linking process in the system is possible with
GCC command by using the parameter in backend program
as an example:

> gecc-o [main].exe [multiple_files_path] -w (for C
complex multifile program) >g++ -o [main].exe [multi-
ple_files_path]-w (for C++ complex multifile program)

Multiple_files_path expression is files’ path of external
sources used in main_source. The command will process the
main program in the compilation process to become an
object and call every external source in the linking process.
The linking process will continue to analyze and expand the
preprocessor to make every external source become inten-
ded object of executable file with -0 command. The -w
command used to give warning error feedback such as
preprocessor is not linked in case of file not found which
makes compilation process fail.

4.3. Multifile Linker in Static Grading. The process still has
two inputs: main source (raw source) and the external source
path of multiple files which are already generated in the
preparation process. The two inputs will be linked and fused
in the next process, as shown in Figure 3 by linker and
fusion. Static grading using source program linker-fusion
algorithm is in Algorithm 1. Final output is a fused program
with all the source code as a whole. The fused source code
will not be processed through compilation but processed
with code analysis using AST to parse element of program in
external source used in the main program.
The algorithm is divided into four steps:

Step 1: get preprocessor statement set ps of the main
source program by Eclipse CDT/JDT API features
which can generate AST of main source using getAll-
PreprocessorStatements ().

Step 2: handling preprocessor statement set ps. Every ps
found will be filtered by using patternMatch() to detect

Main source
(source)

Process
builder

-

Main source
(.bin, .class, etc.)

External source

Compilation

Compiler

(multiple file path)

FIGURe 2: Complex multifile program linker in dynamic grading.

Variable:
psl]: preprocessor statement pfname(]: preprocessor filename
fpath: file path metadata in database fimp: final multipath string

Final program
(.exe, jar, etc.)

Complexity

End

es: external source to be fused
Input:

mp(]: multipath in database by
Output: final fused source fs
Begin:

(3) add to ps(]

(5) if ps[] size>0
(6) for i=1 to ps[] size

9) add to pfnamel[i]

)
12)
(13)
(14)
(15)

for i=1 to mp[] size
for j=1 to pfname[] size

(17)
(18)
(19)
(20)
(21)
(22) End

fs —ms
if fmp length >0
for i=1 to fmp length

fs —fs concat (ces)

ms: main source of the program

(1) Step 1: Analyze preprocessor in ms using AST
(2) if ms contains user defined custom library

(4) Step 2: Handle ps[] in ms to get pfname[]

(7) *regex - II¥II([A¥U]*)¥IIH

(8) while patternMatch (regex) == true
(10) Step 3: Link external sources using mp[] to get pfname[]
if (mp[i] contains pfname(j]) fpath —— mp[i]
if (j==1) fmp «— fmp concat (mp[i])

else fmp «— fmp concat (mp[i]) concat (,)
(16) Step 4: Fusion es using fmp to fs

€es «— searchContent (fmp(ems))

assignment id

ALGORITHM 1: Multifile program

Main source
(source)

External source
(multiple file path)

linker and fusion algorithm.

Final program

(source) End

Linker and fusion

FIGURE 3: Multifiles linker in static grading.

user custom libraries defined by the following format:#
[TYPE_OF_LANGUAGE_IMPORT_WAY (import/in-
clude)]<space>“[FILENAME].” Regex is used to parse
preprocessor filenames into pfname set.

Step 3: linking process by analyzing the file path da-
tabase mp. Each pfname found mp will generate fmp as
final linked string query for every external source used
in main source of the program.

Step 4: final step of the process is to get fused source
code fs. The searchContent() function will analyze the

code by using textual search (e.g., .dll.h) or AST
(source code which can be parsed) to get the contents of
the files, denoted by € es, used by the main source of the
program. These contents are fused into one source file.

4.4. Dynamic Grading. The dynamic grading method covers
multiprogram file submission for solving one programming
assignment. The main source file triggered in here stated as a
student program with several preprocessor statements is
used to direct the external sources files. The first phase is

Complexity

Variable:
ASTdata[]: program AST data map
fASTdata[]: final refactored program AST data map
Input:
pAST: program AST
sb[]: syntax bank
Output: final standardized program AST fsAST
Begin:
(1) Step 1: Traverse and visit pAST with ASTVisitor class, do Step 2
(2) Step 2: Handle AST node for AST data mapper to get ASTdata([]
(3) Index=0
(4) for every AST node
(5) initialization ASTdata[] key (see detail in Table 3)
(6) node=AST node, current tag=AST tag
(7) if current tag=function statement or expression

(8) syntax = nodeParser(node)
9) if syntax not exists on sb[]//syntax classifier
10) inner user function node
11) else
12) inner standard function node
(13) if current tag # previous tag
(14) exit no =index (exit AST node branch tree)

(15) node info =flag based on node and tag information, process no = index
(16) index ++

(17) add ASTdata[index]

(18) Step 3: Handle AST data for refactoring to get final ASTdata([]

(19) fASTdata[] = RefactoringCore(ASTdatal[i])

(20) Step 4: Rebuild final source from fASTdata[] to get fsAST

(21) for i=0 to fASTdata[] size

(22) fsAST =fsAST add node(fASTdata[i])

(23) End

ALGORITHM 2: Program standardization using AST algorithm.

TaBLE 3: AST data map.

Key Description
Index Used for indexing of visiting and traversing process sequences while using ASTVisitor
Node Visited syntax node
Parent node Node parent to indicate its parent
Child node Node child to indicate its child by node parser
Indicating node type

(). Root (node does not have parent and has child or its entry, and it also can indicate starting of program function)

Flag . .
(ii). Parent (node has parent and child)
(iii). Child (node has parent only, or its leaf node)

Syntax Indicating syntax to distinguish whether its user defined syntax or standard programming language syntax; it can be
classifier distinguished by comparing standard programming language syntax data provided and learned in database
Process Indicating process entry (starting process) and exit number of node

program preparation, involving program builder process to
prepare .bin file for C/C++ and class for java or other languages
will be supported in future update. It also processes external
source locator for linking process based on the preprocessor
statement. Linking and compilation task example for C and
C++ program use GNU GCC compiler which produce exe-
cutable file.exe of linked and final program. Next process is
using the executable file to run in DGRADER host machine
with input from test case data. The running process of each test
case produces an output.txt file. It will be compared with the test

case expected output in database grading criterion. The grading
process will be taken after achieving the comparison value of
real output and expected output. Finally, final dynamic grading
score will be produced.

4.5. Static Grading. The inputs of the static grading process
include a student program with external sources (if any) and
model programs. A student program and its external source
will be finalized with program linker-fusion which was al-
ready explained before. In this case, both fused student

8 Complexity
Input:
A: Standardized student program AST
B: Standardized model program AST i
Output: Count of similarity node
Begin:
(1) Step 1: GenerateMap(A, B)
(2) A —set info tree based on Map key for A tree
(3) B -——set info tree based on Map key for B tree
(4) global TagMap «— &
(5) global GlobalNodeMap «— &
(6) for each root node r € ANB
A—ASTofrinA
(7) do{ B«—ASTofrinB
Similarity Matching (A, B)
(8) Step 2: SimilarityMatching(A, B)
(9) ns,cp—20
(10) local LocalNodeMap «— &
(11) for each (ANode, BNode) € (A, B)
12) if (ANode, BNode) = (ATag ANodeNo, BTag BNodeNo)
(13) TagMap «— TagMap U {ATag < BTag}
(14) LocalNodeMap «— LocalNodeMap U {ANodeNo < BNodeNo}
15) else if (ANode, BNode) = (AChildNo:=a op ’, BChildNo:=b op b’)
(16) SimilarityMatching(a, b)
@17) SimilarityMatching(a’, b’)
(18) if isLocal(a) and is Local (b) and TagMap(a, b) is equal
19) LocalNodeMap «— LocalNodeMap U {a < b}
(20) ns+1, cp+l
(21) else if
(22) GlobalNodeMap «— GlobalNodeMap U {a < b}
(23) cp+l
(24) else if. ..
(25) else break
(26) End
ALGORITHM 3: AST simple tree matching with tag classifier algorithm.
TaBLE 4: Experiment setup for testing dynamic grading.
Assignment name Main goal No. of test cases Concurrent process
Task 1 Calculate numbers based on data Calculate n of i, data 10 7
Task 2 Reverse Fibonacci number Print n reversed Fibonacci number 15 10

program and model programs will be parsed and produce
their program AST. Next process will conduct refactoring of
both programs. In our preferred way, model programs are
already have been standardized before by the course as-
signment creator in assignment registration menu to save
total time of analysis process. Only student program will be
refactored as standardization rule in program matching. This
standardization as “one-rule” for avoiding some variances
issues will impact the accuracy result in the matching
process. After this process, both sides can be compared using
program matching using modified AST simple tree
matching-pattern algorithm. The task of standardization and
program matching will breakdown in Section 4.5.1.

4.5.1. Program Standardization. The program standardiza-
tion algorithm is shown in Algorithm 2. It is an essence work to
solve program matching issues such as code variance in
programs.

It starts with program AST and continues with traversing
and visiting tree process using ASTVisitor. In here, the ap-
proach introduces AST data mapper rather than using raw
program tree or AST directly to manipulate program which is
required in the refactoring process to ease the process of data
representation and rebuilding program tree. The AST data
mapper stores AST information from ASTVisitor by using
map with indexing key (ASTdata key written in Table 3). After
mapping process, it continues to refactoring process by calling
RefactoringCore() to modify or transform the program by
using this data map. This procedure will create final fASTdata.
It will be used for rebuilding final standardized program
source code and program tree representation in feedback.

Program refactoring consists of the following steps.
Step 1: removal of problematic code such as syntax

error, expression error, and any other with tag problem
in ASTdata by problem binder which processed while

Complexity

TABLE 5: Dynamic grading result.

Grading feedback

Result

Average execution time (ms)

Task 1 Yes
Task 2 Yes

20
136

TABLE 6: Static programming assignment example.

Assignment name

Main goal

Calculate numbers

Task 1 (data)

Task 2 Reverse fibonacci
number

Task 3 Coin changing

Task 4 Bitonic tour

Calculate # of i, data

Print n reversed fibonacci number

Consider the problem of making change for n cents using the fewest number of coins
Input: n Points: vy, ..., v, on a plane with different x coordinates; d;;: distance between any pair of points (v;,
v;), i # j; output: a bitonic tour with smallest distance

traversing the program using AST and mapped into
ASTdata mapper. The problem binder takes advantage
of parser to detect syntactical problem. As an example
for traversing the C and C++ program using Eclipse
CDT ASTVisitor CPPASTProblem.

Step 2: identifying and removal of unused function in
ASTdata. This task deletes its related elements by using
start-end index of the node which is already mapped in
ASTdata.

Step 3: reordering function calling sequences. In this
case, main function will become first function call in
sequence as the rule of program. The process continues
to detect other call function by creating ASTroot data
mapper. It only targets root type of the node with the
root tag filter or classifier. The node is considered as a
root node according to flag root detail in Table 3. The
result of transformation can be seen from transfor-
mation from original AST into root AST.

Step 4: the final step is producing a final standardized
program from ASTroot.

4.5.2. Program Matching. The program matching process
requires two program trees as an input which are the student
program and model program i. Both programs are already
standardized automatically by the system in the previous
process to achieve same structure as one-rule policy in
process of program matching.

In program matching, AST simple tree matching is
chosen to compare program AST which takes advantage
of dynamic programming to calculate maximum node-
pair between compared tree program with semantic
similarity [29]. However, this algorithm has an issue with
overhead memory as it does the code changes when code
variance occurred in matching process to make the
variance for both compared programs unified. It is also
stated in the result test that some code changing activity
fail in the process. This will impact the matching simi-
larity accuracy score. Finally, we have improved the ap-
proach with AST simple tree matching algorithm, as
shown in Algorithm 3.

The algorithm is modified to use advantage of AST tag
classifier concept which can be implemented by the method
in program AST traversing with any parser. This will solve
the overhead and the variance issues.

The improved program matching algorithm has two
steps:

Step 1: both programs will be mapped into ASTMap which
contains key information. It uses root node r which is
already ordered by following the rule in the standardi-
zation process. Tag and node are used as matching pa-
rameters. TagMap is used to take advantage of the AST tag
classifier in tag matching comparison. GlobalNodeMap
and LocalNodeMap are used for node element which will
be considered equal if encountered in the same tag in the
same root node position.

Step 2: after both program trees are mapped into AST-
Map, the process will invoke SimilarityMatching(). Every
index data in map will be compared and paired. Accu-
mulate the global TagMap and compare GlobalNodelMap
with LocalNodeMap per indexed data in ASTMap. Next
process is to encounter the exact tag to be compared with
it pairs and add into TagMap in tag matching task.
LocalNodeMap used for detection of the identical node in
node matching. As stated before, as long as the node
follows the same tag and position it will be considered as
equal otherwise it will add pattern to find the matching
target invoking recursive SimilarityMatching() call. For
every matching node with same position in local A and B
will increase node similarity and pattern count. Total
accumulate ns will be compared to maximum node
coverage of both programs. Finally, the final score can be
calculated based on how many maximum nodes are
covered by ns in the grading process.

5. Experimental Analysis

5.1. Dynamic Grading. In dynamic grading, testing conduct
with 2 tasks in Table 4. The concurrent process is used to
measure system capability to handle concurrent grading process
when students finalize their submission at the same time.

10 Complexity
TABLE 7: General testing solution program condition.
. Standardization
LOC Function Max node Unused node])
Transform node Program efliciency improvement rate (%)
Solution 1 12 1 40 6 38 1.9
Solution 2 48 7 94 43 49 52.128
Solution 3 55 9 182 24 158 13.19
Solution 4 120 14 424 35 389 8.25
TasLE 8: General testing condition. from the AST classifier. It makes every variation occurred in
Task 1 Task 2 Task 3 Task 4 the program solved or tolerated as lor{g as it has true
condition from tag and node matching in program
No. of model program 2 2 5 8 . . .
matching. The expectation of testing by manual assessment
Concurrent process 4 3 7 4
produced. Finally, static grading approach implemented in
DGRADER can be found reliable as it is giving good pre-
TABLE 9: General static grading result. cision of grading score and is also proofed by manual
assessment.
Result
Grading feedback Analysis time (ms) Expected result
Task 1 Yes 88 Yes 5.3. Reliability and Grading Precision Testing. This testing is
Task 2 Yes 90 Yes focused in reliability of the final grading score in the static
Task 3 Yes 1022 Yes grading assessment. In here, assignment “reverse Fibonacci
Task 4 Yes 678 Yes

All submission results shown in Table 5 produce grading
feedback both successful or error result explanation with the
score. The feedback shows success or failure with real and
expected output of each test case. In here, testing activity also
considers average execution time which measures the time
needed by the system to finish the job. Finally, it is successful
to achieve dynamic grading mechanism. The concurrent
process also can be handled by automatic queuing process
and multithreading.

5.2. Static Grading. In static grading, programming as-
signment tasks are shown in Table 6. Task 1 and task 2 are
reused in this testing as DGRADER offer flexibility grading
assessment method change by updating the assignment
configuration. The lecturer just needs to add model pro-
grams in the assignment material. Back to testing focus, each
sample solution has its behaviour and condition according
to Table 7 such as Line of Code (LOC), number of functions,
max number of nodes (generated by traversing program
AST), and number of unused nodes (code node which are
not used in the program).

Standardization data present transforms result from
maximum number of nodes to number of transform nodes
as automatic transform by program standardization in the
system. The number of transform nodes implies the effi-
ciency of the standardized program. The program efficiency
improvement rate can be calculated by comparing original
maximum number of nodes and number of transform
nodes. For example, solution 2 data showed significant
52.128% program efficiency improvement.

Based on Table 8 as the testing condition, the result is
shown in Table 9. All solution submitted successfully gives
grading feedbacks and results. Expected result means that
every variance tolerant achieve full 100% mark as it uses tag

number” in the previous assignment sample is chosen. The
approach uses 1 solution submission and sees its comparison
with 4 models (chosen) provided in the assignment. Solution
and model programs are shown in Figure 4. The solution
program is chosen solution 2 in the previous test, and its
condition can be seen in Table 7, and model condition is
listed in Table 10.

In here, testing activity hypothesis for model 1 and
model 2 will give perfect grading score in the final result.
Both the models are nearly same to program solution and
also its algorithm which used recursive function to do the job
for printing reversed Fibonacci number. The purpose is to
check the reliability and precision of logically similar pro-
grams by manual assessment. Model 3 is actually .cpp
program which uses array approach, and model 4 uses more
variables to save values for producing reversed Fibonacci
number without recursive function call. They adopt different
algorithms to the student solution.

It is clearly evident from Table 11 that similar nodes of
solution to models 1 and 2 have 100% final coverage. As
stated before, model 1 and model 2 are not exactly the same
to the solution. The perfect coverage achieved by variance
tolerance successfully tolerates the code variance issues in
program matching process. Variance type divided into 3
categories is used based on 9 listed code variance issues in
Table 1. In here, the division is based on their related impact
into the issue listed variable (name), function (invocation or
call, expression, naming), and control structure (compound
statement, redundancy, structure order, code format, and
algorithm).

Starting analysis with model 1 which is nearly the same,
but program solution has code structure data {int x*, int y*}.
In matching, the pattern increased as it tries to find the node
first related to the code with ending in not finding any
possible node related to that code. In here, matching still
processed and ignored as tolerant in the control structure as
the code categorized to impact in the compound statement

Complexity

Modell

#include <stdio.h>
#include <math.h>
int n;
int main()
{
scanf ("%d”, &n);
print (n) ;
return 0;

int print(int n)

11

Model2

#include <stdio.h>
#include <math.h>
int main()
{
int x;
scanf ("%d”, &x);
printReverseFib (x) ;
return 0;

int printReverseFib(int n)

Similarity score 81(81)

return 0;

if (n<=1) if (n<=1)
printf ("%d ”, fib(n)); printf ("%d 7, f(n));
else else
{
1 <4 {
pr'inl,f‘(”%d 7, fib(n)); Solution | 4 pr‘intf(”%d - ‘f(n)) c
print (n-1) ; printReverseFib(n-1) ;
} }
return 0: #include <stdio.h> return 0%
} #include <math.h> 1
int fib(int n) int n; int f(int x)
(struct data {
if (n¢=1) L if (x<=1)
return n; int *x, *y; return x;
else } ;) else
return fib(n-1) + fib(n-2); 1{m main () return f(x-1) + f(x-2):
} }

scanf ("%d”, &n);
Score:100. 00 printReversedFib (n); Score:100. 00

int printReversedFib(int n)

Similarity score 64 (64)

{
Model3 — ifac) o Model4
printf ("%d 7, £(n)); . . .
olse int main(void)

#include <bits/stde++. h> { {

int main() printf (“%d %, £(n)): r.)rim[“(number:”) ;

{ . printReversedFib(n-1) ; mne
cin >> n; } scanf s("%d”, &n);
ReversedFibonacci (n) ; return 0: if (n>47)
return 0; ! n=47:

' }

1 5 -0 -

! . . N int f(int n) Long %nt fl170,

int ReversedFibonacci(int n) [long int f2=1;

{ . f(ne=) t[or(lnt i=2; i<n;i+H)
int ej[n], return n;:) _ e
a%(l)%—(l), else fclmizlnt s= ;
alll=1;) _—y

' return f(n-1) + f(n-2);
for(int i=2: i<n; i++) € } P f2=s;
{ }
alil=ali-2]+ali-1]; while (£1>0)

1
for (int i=n-1; i>=0; i--)

{

cout<<ali]<<” 7;
}
return 0;
}
Similarity Score: 13(98)
Score:13. 27

1
printf ("%1d 7, f2);
long int t=f2-f1;
£2=r1;
fl=t;
}
return 0;
Similarity Score: 14(105)
Score:13. 33

FIGURE 4: Feedback result of program matching trace analysis.

and structure order. It also occurs function naming variance
print() and fib() in model compared with printReversedFib()
and f() in solution which are successfully tolerated as it is
expected to be considered the same. Left remaining codes are
exactly the same with solution, which means similarity node
coverage of program solution and model 1 is perfect. It

covers 81 nodes of model 1 program with 100% (tolerate all
variances) in final coverage.

In model 2, there exists variable variances of node x
which is node 7 in program solution. In matching process, it
is found that x corresponds to node # for the following code.
The matching process considered in this node is the same as

12 Complexity
TaBLE 10: Model program condition.
) Variance
LOC Function Max node i .
Variable Function Control structure
Model 1 48 3 81 2 2 1
Model 2 48 3 64 1 2 1
Model 3 25 2 98 1 1 2
Model 4 22 1 105 4 0 2
TaBLE 11: Static grading precision result.
o . Variance tolerance .
Similarity Max Final coverage bl] Total pattern matching
node node (%) Variable Function Control - Structure process
(%) (%) (%)
Model 1 81 81 100 — 100 100 394
Model 2 64 64 100 100 100 100 387
Model 3 13 98 13, 26 100 100 <10 137
Model 4 14 105 13, 33 100 100 <20 159
Total pattern 1077
Precision matching >98

TaBLE 12: Existing similar program comparison (main features).

Main features

Complex Grading metric
A h p g
pproaches ?upported multifiles Platform Work mode . .
anguages analysis Dynamic Static
Cellidh Java, C++ No Web Standaloggs comp etitive Code correctness Semantlc error.
learning detection, verification
ASSYST C/Ct4 No Web Standalone, competitive Code correctness, Code .analy51s.,
learning run time check complexity matrices
Marmoset Multilanguage No Web Standalone Code correctness CO?;SEZBISIS
. . Code correctness, Validity check
Web-CAT Multilanguage No Web (Java) Standalone, plugins completeness (model)
eGrader Java No Desktop Standalone Code correctness Structure matching
(Java) (model)
AutoLEP C/C++ No Desktop Standalone Code correctness Similarity matching
(C#) (model)
Quimera C/C++ No Web Standal(;ne, competitive e correctness Code quality and
earning accuracy (model)
DGRADER C/C++, Java Yes Web (Java) Standalone, API services, Code correctness, AST similarity

competitive learning

run time check

matching (model)

expected, as algorithm uses the AST tag classifier in nodes.
Besides, structure variance occurs as declaration of x inside
main() compared to program solution which is global
variable. The matching process is also successful to tolerate
this variance and gives similarity 64 node coverages perfectly
as expected.

However, models 3 and 4 as expected have low final
coverage because both are completely different. The major
factor is because both models have distinguished control
structure such as algorithm, code format, and related factor
which is categorized in this category. Model 3 as stated
before is .cpp but the system still is capable to compare .c
program solution with this model which is a plus point.
Models 3 and 4 use different approach from solution that
uses recursive method. It impacts the matching process

which gives less node coverage and tolerant percentage. The
issues can be solved by providing more template program to
the system for assignment problem. Finally, final grading
score still gives correct score as expected.

5.4. Case Study Similar Program Comparison Analysis.
The columns in Table 12 refer main features of this objective
comparison parameter. From the above parameter, we
compare DGRADER as our web-based automatic grading
system with the other similar programs which provide
flexible grading analysis.

The first key element for comparison analysis is pro-
gramming language support. Marmoset and Web-CAT are
strong in this aspect as they support multilanguages.

Complexity 13
TaBLE 13: Existing similar program comparison (scoring features).
Scoring features
Approaches Categorical ~ Numerical Feedback Rankin Plagiarism
grading grading Error Result analysis & detection
Cellidh No No Yes Yes Yes Yes
ASSYST Yes No Yes Yes Yes Yes
Marmoset No No No Yes No No
Detailed C
Web-CAT No No (highlighting) Code style (highlighting) No No
eGrader No Yes Yes Program structure No No
AutoLEP No Yes Detailed Semantic analysis No No
(report)
Quimera No Yes Yes Yes No No
Detailed Standardization, AST map, transform graph,
DGRADER Yes Yes (report) function call, AST visualization, and matching Yes Configurable

trace analysis (semantic analysis)

The second one is complex multifile program analysis
feature. Only DGRADER provides complex multifile pro-
gram analysis for the user to solve one programming
problem within more than one modules, libraries, or files. It
improves flexibility to solve complex problems with an ef-
ficient approach without rewriting program if some libraries
exist.

In platform perspective, web platform has become
popular consideration rather than becoming a local tool
such as AutoLEP and eGrader. Nowadays, everything can be
accessed online easily by using browser or mobile device
which increases the portability which adds value for flexi-
bility scale.

Next on aspect of work mode, common tools only work
as standalone or specific usage. Web-CAT provides plugin
for their integration with other platform which require
installation. Only DGRADER can work as standalone or
integrated with other system by providing its API services
which potential for widespread usage. It also delivers with
MOOCs with user course management and programming
contest platform as feature to support competitive learning.
Cellidh, ASSYST, and Quimera also support this competitive
learning. It is purposed to increase interest of the user as the
content in the system can become user content based.

In grading metrics, compared tools provide flexible
grading analysis, which are dynamic and static. However,
each approach is different as listed. In dynamic approach, it
can be generalized that all approaches are tested with code
correctness by using test case input and the output is
compared with the expected output. In static, there are
various approaches using code analysis. DGRADER uses
AST similarity matching with model programs. The ap-
proach with model is popularly used by the existing tools.
This model is more practical and easier to be measured but
requires more models to increase the accuracy and grading
precision.

The columns in Table 13 refer the scoring features of this
objective comparison parameter. DGRADER comes with
various result analyses as their instant feedback and scoring.
Instant feedback includes error explanation if any error
occurred specially in dynamic grading. In static grading
assessment, present feedback such as linked-fused program

source, standardized program source, and mapped into AST
data map can be read by the user in result analysis. It also
presents transformed graph structure to see change by
automatic standardization process, function call sequence,
AST visualization of program, and matching trace analysis.

Final scoring provided both in number range 0-100 and
categorical score with stars to make the system more in-
teractive. User ranking also provided to stimulate usage and
improve user programming and problem solving skill
through the reward system with point and level. Plagiarism
detection feature is also considered in this scoring feature as
it will impact the final grading score. In these compared
tools, only Cellidh, ASSYST, and our tool DGRADER
provide this feature. The programming assignment creator
also can enable plagiarism detection features.

Finally, all comparison analysis can measure to see
improvement of each compared tools. Back to DGRADER,
our tool currently limited programming language as listed.
However, API services will be potential for future devel-
opment of cross platform integration which means more
support of programming language and other features.
DGRADER also provides meaningful and informative
feedback with novelty complex multifile program analysis
feature.

6. Conclusions

In this paper, we have presented a novel technique to handle
complex multifiles program with flexible static and dynamic
grading. It is implemented practically as an automatic
grading system platform called DGRADER. In order to deal
with multifiles program, the dynamic analysis process takes
an advantage of the compiler in linking process to compile
complex multifile program. The static analysis process uses
the presented complex multifiles program linker-fusion
algorithm which parsed preprocessor from program AST to
find other external sources. It is successful to link and fuse
elements in external sources which are used in the main
program. In static analysis, code variance issues in program
matching are tackled by the improved algorithm of AST
simple tree matching. The AST tag classifier creates tolerant
factor of variances from the compared node of solution and

14

model programs. Program standardization also contributes
to transform the program by following the rules in program
matching. The results have shown good accuracy in final
grading precision as expected in the case of sufficient model
programs.

Data Availability

The data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant nos. 61977020 and 61672191),
Natural Science Foundation of Heilongjiang Province
(Grant no. LH2019F046), Harbin Science and Technology
Innovation Talents Research Project (Grant no.
2016RAQXJ013), and Doctoral research fund of Harbin
University (Grant no. HUDF2019101).

References

[1] S. Li, X. Xiao, B. Basset, T. Xie, and N. Tillman, “Measuring
code behavioral similarity for programming and software
engineering education,” in Proceedings of the ACM 38th IEEE
International Conference on Software Engineering Companion,
pp. 501-510, Austin, TX, USA, May 2016.

[2] S. Gulwani, I. Radicek, and F. Zuleger, “Automated clustering
and program repair for introductory programming assign-
ments,” in Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI
2018), pp. 465-480, New York, NY, USA, June 2018.

[3] T. Wang, J. Xu, X. Su, C. Li, and Y. Chi, “Automatic
debugging of operator errors based on efficient mutation
analysis,” Multimedia Tools and Applications, vol. 78, no. 21,
pp- 29881-29898, 2019.

[4] D. G. Kay, T. Scoot, P. Isaacson, and K. A. Reek, “Automated

grading assistance for student program,” ACM SIGCSE

Bulletin, vol. 26, no. 1, pp. 381-382, 1994.

P. Li and L. Toderick, “An automatic grading and feedback

system for e-learning in information technology education,”

in Proceedings of the ASSE Annual Conference and Exposition
for Emerging Computing and Information Technologies,

pp- 1-11, Seattle, Washington, June 2015.

[6] C. Wilcox, “Testing strategies for the automated grading of
student program,” in Proceedings of the 47th ACM Technical
Symposium on Computing Science Education—SIGCSE ’16,
pp- 437-442, Memphis, TN, USA, March 2016.

[7] J. Qi, G. Jiang, G. Li, Y. Sun, and B. Tao, “Intelligent human-
computer interaction based on surface EMG gesture recog-
nition,” IEEE Access, vol. 7, pp. 61378-61387, 2019.

[8] G. Li, L. Zhang, Y. Sun, and J. Kong, “Towards the SEMG
hand: internet of things sensors and haptic feedback appli-
cation,” Multimedia Tools and Applications, vol. 78, no. 21,
pp. 29765-29782, 2019.

[9] G. Conole and B. Warburton, “A review of computer-assisted
assessment,” ALT-J, vol. 13, no. 1, pp. 17-31, 2005.

[5

Complexity

[10] K. M. Ala-Mutka, “A Survey of automated assessment ap-
proaches for programming assignments,” Computer Science
Education, vol. 15, no. 2, pp. 83-102, 2005.

[11] P. Ilhantola, T. Ahoniemi, V. Karavirta, and O. Seppala,
“Review of recent systems for automatic assessment of pro-
gramming assessment,” in Proceedings of the 10th Koli Calling
International ~ Conference on Computing Education
Research—Koli Calling ’10, pp. 86-93, Koli, Finland, October
2010.

[12] T. Wang, X. Su, and P. Ma, “Program normalization for
removing code variations,” in Proceedings of the 2008 IEEE
International Conference on Computer Science and Software
Engineering, pp. 306-309, Hubei, China, December 2008.

[13] T. Wang, X. Su, and P. Ma, “Function inlining algorithm for
program analysis,” in Proceedings of the 2009 IEEE Interna-
tional Conference on Computational Intelligence and Software
Engineering, pp. 1-4, Wuhan, China, December 2009.

[14] S. M. Arifi, A. Zahi, and R. Benabbou, “Semantic similarity
based evaluation for C programs through the use of symbolic
execution,” in Proceedings of the 2016 IEEE Global Engineering
Education Conference, pp. 826-833, Abu Dhabi, UAE, April
2016.

[15] A.N.Jacobvitz, A. D. Hilton, and D. J. Sorin, “Multi-program
benchmark definition,” in Proceedings of the 2015 IEEE In-
ternational Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 72-82, Philadelphia, PA, USA,
March 2015.

[16] K. Matthews, T. Janicki, L. He, and L. Patterson, “Imple-
mentation of an automatic grading system with an adaptive
learning component to affect student feedback and response
time,” Journal of Information System Education, vol. 23, no. 1,
pp- 71-83, 2012.

[17] M. Pozenel, L. Furst, and V. Mahnic, “Introduction of the
automated assessment of homework assignments in a uni-
versity-level programming course,” in Proceedings of the 2015
38th International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics
(MIPRO), pp. 761-766, Opatija, Croatia, May 2015.

[18] T. Wang, X. H. Su, and P. J. Ma, “Semantic similarity-based
grading of student programs,” Information Software Tech-
nology, vol. 49, no. 2, pp. 17-31, 2007.

[19] D. Fonte, D. Cruz, A. L. Gancarski, and P. R. Henriques, “A
flexible dynamic system for automatic grading of program-
ming exercises,” in Proceedings of the 2nd Symposium on
Language, Applications and Technologies, pp. 129-144, Dag-
stuhl, Germany, 2013.

[20] S.D. Benford, E. K. Burke, E. Foxley, and C. A. Higgins, “The
Ceilidh system for the automatic grading of students on
programming courses,” in Proceedings of the 33rd Annual on
Southeast Regional Conference ACM-SE 33, Clemson, SC,
USA, March 1995.

[21] D. Jackson and M. Usher, “Grading student programs using
ASSYST,” in Proceedings of the 28th SIGCSE Technical
Symposium on Computer Science Education, pp. 335-339, San
Jose, CA, USA, February 1997.

[22]]J. Spacco, D. Hovemeyer, W. Pugh, F. Emad,
J. K. Hollingsworth, and N. Padua-Perez, “Experiences with
marmoset,” ACM SIGCSE Bulletin, vol. 38, no. 3, pp. 13-17,
2006.

[23] S. H. Edwards and M. A. Perez-Quinones, “Web-CAT,” ACM
SIGCSE Bulletin, vol. 40, no. 3, p. 328, 2008.

[24] F. Alshamsi and A. Elnagar, “An automated assessment and
reporting tool for introductory Java programs,” in Proceedings
of the 2011 International Conference on Innovations in

Complexity

[25

(26]

(27]

(28]

(29]

Information Technology (IIT), pp. 324-329, Abu Dhabi, UAE,
April 2011.

T. Wang, X. Su, P. Ma, Y. Wang, and K. Wang, “Ability-
training-oriented automated assessment in introductory
programming course,” Computers ¢ Education, vol. 56, no. 1,
pp. 220-226, 2011.

D. Fonte, I. V. Boas, D. Cruz, A. L. Gancarski, and
P. R. Henriques, “Program analysis and evaluation using
quimera,” in Proceedings of ICEIS, pp. 209-219, Wroclaw,
Poland, June 2012.

T.-H. Wang, “Web-based dynamic assessment: taking as-
sessment as teaching and learning strategy for improving
students’ e-Learning effectiveness,” Computers & Education,
vol. 54, no. 4, pp. 1157-1166, 2010.

D. Muiioz de la Pena, F. Gémez-Estern, and S. Dormido, “A
new internet tool for automatic evaluation in control systems
and programming,” Computers ¢ Education, vol. 59, no. 2,
pp. 535-550, 2012.

I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source
code evolution using abstract syntax tree matching,” in
Proceedings of the 2005 International workshop on Mining
Software Repositories, pp. 1-5, Saint Louis, MO, USA, May
2005.

15

