
Research Article
A Globally Optimal Robust Design Method for Complex Systems

Yue Chen ,1,2 Jian Shi ,1,2 and Xiao-jian Yi 1,3,4

1Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
2School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Overall Technology, China North Vehicle Research Institute, Beijing 100072, China
4School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

Correspondence should be addressed to Jian Shi; jshi@iss.ac.cn and Xiao-jian Yi; yixiaojianbit@sina.cn

Received 19 December 2019; Revised 30 March 2020; Accepted 8 April 2020; Published 11 May 2020

Academic Editor: Carlos Aguilar-Ibanez

Copyright © 2020 Yue Chen et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

.e uncertainty of the engineering system increases with the growing complexity of the engineering system; therefore, the
tolerance to the uncertainty is essential. In the design phase, the output performance should reach the design criterion, even under
large variations of design parameters..e tolerance to design parameter variations may be measured by the size of a solution space
in which the output performance is guaranteed to deliver the required performance. In order to decouple dimensions, a maximum
solution hyperbox, expressed by intervals with respect to each design parameter, is sought. .e proposed approach combines the
metaheuristic algorithm with the DIRECT algorithm where the former is used to seek the maximum size of hyperbox, and the
latter is used as a checking technique that guarantees the obtained hyperbox is indeed a solution hyperbox. .ere are three
advantages of the proposed approach. First, it is a global search and has a considerable high possibility to produce the globally
maximum solution hyperbox. Second, it can be used for both analytically known and black-box performance functions. .ird, it
guarantees that any point selected within the obtained hyperbox satisfies the performance criterion as long as the performance
function is continuous. Furthermore, the proposed approach is illustrated by numerical examples and real examples of complex
systems. Results show that the proposed approach outperforms the GHZ and CES-IA methods in the literature.

1. Introduction

With the rapid development of technology in recent years, the
systems applied in various engineering areas such as elec-
tronics, communication, and networking have become more
and more complex. .e increasing complexity of the system
provides a new source for the uncertainty. Uncertainty arises
because some design parameters cannot yet be specified
exactly or they may be changed over the course of devel-
opment [1, 2]. However, the higher requirements on systems
place great importance on analyzing the uncertainty.

Traditional optimization techniques seek an optimum in
the design space. Typically, without considering the un-
certainty, the optimum design is frequently pushed to the
constraint boundary of the design. Consequently, this type
of optimum design may be nonrobust and sensitive to
parameter variabilities. Some authors even believe that
optimization is actually just the opposite of robustness [3].

As reliability is nevertheless mandatory, engineers have to
look for robust designs in order to avoid unexpected de-
viations from the nominal performance [4]. To this end,
more advanced methods have been developed to include
uncertainties of the parameters and robustness criteria in the
optimization. .ese include

(i) Methods for selecting a design that is insensitive to
the variations without eliminating possible varia-
tions of design parameters, i.e., robust design opti-
mization (RDO), see [5–7]

(ii) Methods for identifying optimum designs which are
characterized by a low probability of failure, i.e.,
reliability-based design optimization (RBDO), see
[1, 2, 8]

(iii) Methods for computing the effect of variability of
input parameters on variability of objective function
value, i.e., sensitivity analysis (SA), see [9]
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Unfortunately, RDO, RBDO, and SA suffer from certain
disadvantages which exclude them from some important
applications. RBDO and RDO deal with models in the case
where the variability of design parameters is given. If,
however, the variability of the design parameters is not
known completely, it has to be estimated, which is not always
possible. When applying SA, information on how to im-
prove a nonrobust solution is limited, what design parameter
needs to be adjusted and what value it should assume is
unknown.

In this paper, we aim to infer the maximum uncertainty
or variability of design parameters that we can tolerate
without violating the required performance. .at is, we
focus on finding a maximum box-shaped solution space
rather than a single optimum solution. .e box-shaped
solution space, representing a hyperbox, can be expressed by
intervals for each design parameter and has the following
benefits:

(i) .e performance function delivers the required
performance as long as the design parameters lie in
the box-shaped solution space

(ii) For a design to be good, the choice of the value of
one parameter within its assigned interval does not
depend on the values of other parameters as long as
they are within their respective intervals

(iii) .e intervals may be used to assess the robustness
and sensitivity of the uncertain design parameters
by the widths of the associated intervals.

(iv) .e intervals are independent of each other andmay
be combined with intervals of other disciplines,
enabling distributed design in separate disciplines

Two categories of approaches that solve similar problems
could be identified in the literature. .e first category is
based on data-mining and machine-learning techniques
[10–13]. .e stochastic approach proposed in [10] combines
query and online learning, which probes a box-shaped
candidate solution space by stochastic sampling and then
readjusts its boundaries in order to remove designs with
insufficient performance and explore more design space that
has not been probed before..e quality of the results and the
efficiency of this stochastic approach are studied in detail in
[11]. .is stochastic approach, however, produces a box-
shaped solution space that may contain some bad designs
and may not have the best size because the Monte Carlo
sampling is used to estimate the locations of good and bad
designs. .e second category is based on an analytical
technique, called interval arithmetic [14]. .e algorithm
presented in [15], for example, applies interval arithmetic
within an iterative optimization scheme to compute the
feasibility of candidate boxes. Interval arithmetic, however,
limits the applicability of the algorithm, as the accuracy of
the results depends on the problem and cannot be assessed
for general cases. Another drawback of the algorithm in [15]
is that the performance function needs to be analytically
known and cannot be treated as a black box [16].

.emaximum box-shaped solution space must both fulfill
the “quantitative” viewpoint (i.e., its volume is maximum) and

“feasible” viewpoint (i.e., it is indeed a solution space). To
address these problems, we propose an innovative approach
which combines the metaheuristic algorithm with the DI-
RECT algorithm. More specifically, we use the metaheuristic
algorithm to search the maximum hyperbox and use the
DIRECT algorithm to guarantee that all designs in the
obtained hyperbox satisfy the performance criterion (i.e.,
the obtained hyperbox is indeed a solution hyperbox).
Actually, in the proposed approach, metaheuristic algo-
rithms do not rely on mathematical properties to be ap-
plied, and DIRECT algorithm only requires evaluations of
the performance function. .erefore, our approach in
essence treats the performance function as a black box and
can be applied to various types of practical engineering
problems for complex systems, such as reliability alloca-
tion, availability allocation, and maintenance analysis. As a
real example of the complex system, the reliability allo-
cation problem of the power-shift steering transmission
control system (PSSTCS) of a heavy vehicle is analyzed by
the proposed approach in this paper.

.e proposed approach is similar to the traditional RDO,
as the variations of design parameters are considered.
However, it differs from the traditional method in which the
optimization is to seek the intervals of a permissible design
range rather than a single design, and interval boundaries are
used as degrees of freedom rather than design parameters.

.e paper is organized as follows. In Section 2, motivated
by a problem from engineering practice, the optimization
problem is formulated for identifying the maximum
hyperbox which guarantees the performance requirement.
Section 3 introduces the DIRECT algorithm. Section 4
presents in detail the proposed approach. Section 5 discusses
the numerical performance of the proposed approach. In
Section 6, engineering cases are investigated. Section 7
presents some concluding remarks.

2. Motivation and Problem Statement

2.1. Example Problem. We consider the voltage divider
shown in Figure 1 in [15]. .e terminal voltage Vab is
expressed as Vab � V0R/(R + Ra) and the resistance
Rin � R + Ra.

Good designs fulfilling the design goals should satisfy

4.5V≤Vab ≤ 5.5V,

80Ω≤Rin ≤ 120Ω.
(1)

Figure 2 shows the complete solution space (gray re-
gion). However, the classical optimum that minimizes Rin
and maximizes Vab is not robust. .e immediate neigh-
borhood of the optimum includes designs that violate
condition (1) and thus fails to meet at least one design goal.

.e classical optimum would not be a suitable choice
because of the lack of robustness. Using the complete so-
lution space instead would also be impractical, as the tol-
erable range for Ra would depend on the choice of R. For
decoupling the design parameters, hyperboxes contained in
the complete solution space, expressed by intervals for each
design parameter, are desirable.
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.e robustness of uncertain design parameters [17] is
defined as the widths of the associated intervals whereby the
performance criterion (1) is met. Maximum robustness is
provided if the intervals are as large as possible..e choice of
intervals is not unique, and the size of the interval for Ra

depends on the choice of the interval for R. .e approach
proposed here is to maximize the volume of the solution
hyperbox, and the resulting unique intervals are shown in
Figure 2.

2.2. Problem Statement. Let x � (x1, x2, . . . , xm) represent
the design parameters or design points or designs, where m is
the number of dimensions. .e output performance at x is
given by

y � f(x), (2)

with f being the performance function. If the analytical form
of f is not known, it is considered as a black box, and y may
have to be computed numerically. In typical optimization
problems, the performance is optimized, that is, a design x is
sought such that y obtains an extreme value. In the approach
presented here, the performance has to be sufficient by
satisfying the performance criterion:

f(x) ≥f
c
, (3)

with the threshold value fc. .e performance criterion is the
requirement of performance. For example, if the perfor-
mance function is the reliability, the performance criterion is
that the reliability should be above the given threshold (e.g.,
0.99).

Design points satisfying (3) are called good, otherwise are
called bad. .e design spaceD(xl, xu) is assumed to be
continuous and defined by the lower and upper bounds of
the design parameters, given by xl and xu, that is,
D(xl,xu) � [xl,xu] � x: xl

i≤xi≤xu
i , i �1, . . . ,m . .e complete

solution space is the set of all good design points in the design
space. .e shape of the complete solution space depends on
the output performance and the performance criterion given
by (2) and (3), respectively. In general, boundaries of the
range of one parameter depend on the values of other pa-
rameters. In order to obtain interval boundaries of each
parameter that are independent of other parameters, only
subspaces that are hyperboxes are considered. .e hyperbox
D � D(xlow,xup) can be expressed by

D xlow, xup  �
def xlow, xup 

� x: x
low
i ≤xi ≤x

up
i , i � 1, . . . , m ,

(4)

that is, the lower bound and upper bound of the hyperbox
D(xlow, xup) are xlow and xup, respectively. Moreover, let
xbound denote the bounds of the hyperbox, namely,
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Figure 1: Voltage divider example.
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xbound �
def xlow, xup  � x

low
1 , . . . , x

low
m , x

up
1 , . . . , x

up
m . (5)

.e volume of the hyperbox D(xlow, xup) is thus given by

v xlow, xup  �
def



m

i�1
x
up
i − x

low
i . (6)

A hyperbox which only includes good design points is
called a solution hyperbox. Simply, the hyperbox which
meets the condition f(x) ≥fc for all x ∈ D(xlow, xup) is the
solution hyperbox. Furthermore, fmin(xlow, xup) is defined
as the global minimization of the performance function on
the hyperbox, that is, fmin(xlow, xup) �

defminx∈D(xlow ,xup)f(x).
With these preparations at hand, the problem of

searching for a maximum solution hyperbox can be for-
mulated as the following constrained optimization problem:

max
xlow ,xup

v xlow, xup( 

subject to minx∈D xlow ,xup( )f(x)≥fc

xl ≤ xlow ≤ xup ≤ xu.

(7)

If f(x) is analytically known and minx∈[xlow ,xup]f(x) (i.e.,
fmin(xlow, xup)) can be explicitly expressed by xlow and xup,
the optimization problem (7) can be solved by traditional
optimization algorithms. Unfortunately, in most of the
engineering problems, the following two cases are more
common. First, the performance function f(x) is not an-
alytically known; therefore, it is produced by numerical
simulations. Second, minx∈[xlow ,xup]f(x) cannot be explicitly
expressed by xlow and xup. To cope with these two cases, this
paper aims to present a new approach based on performance
function samples (i.e., the performance function can be
analytically known or black box). .ere are two key diffi-
culties for solving this optimization problem. First is how to
maximize the size of the hyperbox. Second is how to
guarantee the obtained hyperbox is a solution hyperbox.

Remark 1. If the performance criterion is fl ≤f(x) ≤fu, the
optimization problem formulation (7) sets f(x) �

def min
f(x) − fl, − f(x) + fu  and fc �

def0.

Remark 2. Typically, engineering problems have multiple
performance functions fi(x)≥fc

i , i � 1, . . . , q. In the opti-
mization problem formulation (7), minx∈Df(x) ≥fc is
replaced by minx∈Dfi(x) ≥fc

i , i � 1, . . . , q.

3. The DIRECT Algorithm

We consider the global optimization problem of the form

min
x∈D xlow ,xup( )

f(x). (8)

As mentioned in Section 2, D(xlow, xup) � [xlow, xup] �

x: xlow
i ≤xi ≤x

up
i , i � 1, . . . , m  is an m-dimensional

hyperbox (hyper-rectangle), and f(x) is a performance
function.

In the literature, there are numerous methods for dealing
with problem (8) (see, e.g., [18–27]). DIRECT (DIviding

RECTangles) is one of the most known partitioning-based
algorithms that balance local and global search in an attempt
to find the global minimizer efficiently [24–27]. .e main
procedure of the DIRECT algorithm involves partitioning
potentially optimal (the most promising) hyper-rectangles
and evaluating the performance function at the centers of
these hyper-rectangles [28–31].

DIRECT’s performance is independent of the scaling of
D and the problem is typically scaled as follows:

T(x) � A x − xlow ,

A � diag
1

x
up
1 − xlow

1
, . . . ,

1
x
up
m − xlow

m

 .

(9)

.us, the bound-constrained problem (8) can be re-
duced to the following problem:

min
x∈D

f A
− 1x + xlow , (10)

over the unit hypercube D � [0, 1]m..at is, the search space
is transformed to the m-dimensional unit hypercube.

3.1. Selection Scheme. To select the potentially optimal hy-
per-rectangles, DIRECT assesses the goodness based on the
lower bound estimates for the performance function over
each hyper-rectangle. .e requirement of potential opti-
mality is stated formally in Definition 1.

Definition 1 (potentially optimal hyper-rectangle). Suppose
that we have a partition of the unit hypercube into n hyper-
rectangles. Let ci denote the center point of the ith hyper-
rectangle, di denote the distance from the center point to the
vertices, ε> 0 be a positive constant, and fmin be the current
best function value. A hyper-rectangle j is said to be po-
tentially optimal if there exist some K> 0 such that

f A
− 1cj + xlow  − Kdj ≤f A

− 1ci + xlow  − Kdi,

for all i � 1, . . . , n,
(11)

f A
− 1cj + xlow  − Kdj ≤fmin − ε fmin


. (12)

.e hyper-rectangle j is potentially optimal if the lower
Lipschitz bound for the performance function computed by
the left-hand side of (11) is the smallest one with some
positive constant K among all hyper-rectangles. In (12), the
parameter ε is used to protect from an excessive refinement
of the local minimum [24, 31].

DIRECT identifies potentially optimal hyper-rectangles
in at least two different ways: using modified Graham’s scan
algorithm [32] or the rule described by Lemma 2.3 in [33].
Usually this does not impose significant difference; thus, in
this paper, we use the modified Graham’s scan algorithm.

3.2.DivisionandSampling Scheme. We start by sampling the
points c ± δei, i � 1, . . . , m, where c is the center point of the
hypercube, δ is one-third the side length of the hypercube,
and ei is the ith unit vector (i.e., a vector with a one in the ith
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(1) Identify the set I of dimensions with the maximum side length. Let δ equal one-third of this maximum side length.
(2) Sample the function at the points c ± δei for all i ∈ I, where c is the center of rectangle and ei is the ith unit vector.
(3) Divide the rectangle containing c into thirds along the dimensions in I, starting with the dimension with the lowest value of

ωi � min f(A− 1(c + δei) + xlow), f(A− 1(c − δei) + xlow) , and continuing to the dimension with the next smallest ωi until we
have split on all dimensions i ∈ I.

ALGORITHM 1: Procedure for dividing rectangles.

(0) Parameter setting: set the maximum number of iterations Kmax.
(1) Normalize the search space to be the unit hypercube. Let c1 be the center point of this hypercube and evaluate f(A− 1c1 + xlow). Set
fmin � f(A− 1c1 + xlow), n � 1, and k � 1.
(2) Identify the set S of potentially optimal rectangles.
(3) Select any rectangle j ∈ S.
(4) Use Algorithm 1 to determine where to sample within rectangle j and how to divide the rectangle into subrectangles. Updatefmin,
set n � n + Δn, where Δn is the number of new points sampled.
(5) Set S � S − j ; If S≠∅ go to Step 3.
(6) Set k � k + 1. If k � Kmax, stop and output the minimum value fmin; Otherwise, go to Step 2.

ALGORITHM 2: .e DIRECT algorithm.
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Figure 3: .ree iterations of the DIRECT algorithm on Branin’s function: gray colored hyper-rectangles highlight potentially optimal
ones. .ey are selected in the first phase of the current iteration and divided in the second phase of the current iteration. Red points are
sample points where the performance function is evaluated. (a) Iteration 1, (b) Iteration 2, and (c) Iteration 3.
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position and zeros elsewhere). .e strategy in [31] is used to
divide the hypercube.

More precisely, we adopt the following rule for sub-
dividing a hypercube. Let

ωi � min f A
− 1 c + δei(  + xlow , f A

− 1 c − δei(  + xlow  

(13)

be the best of the function values sampled along dimension i.
.en, we start by splitting along the dimension with the
smallest ω value. Once this is done, we split the rectangle
containing c into thirds along the dimension with the next
smallest ω value. Continue in this way until we have split on
all long dimensions. By dividing only along the long di-
mensions, we ensure that the rectangles shrink on every
dimension. A formal description of the rectangle division
procedure is given in Algorithm 1.

3.3.9e DIRECT Algorithm Flowchart. We now have all the
ingredients for the DIRECT algorithm. We initialize the
search by sampling at the center of the unit hypercube. Each
iteration begins with identifying the set of potentially op-
timal hyper-rectangles as described in Section 3.1. .ese
hyper-rectangles are then sampled and subdivided as de-
scribed in Section 3.2. .e process continues until a pre-
specified iteration limit is reached. A formal statement of the
DIRECT algorithm is given in Algorithm 2.

In order to better illustrate how the DIRECT algorithm
works, Figure 3shows the first three iterations of the al-
gorithm on the two-dimensional Branin function in [34].
For each iteration, the first row shows the set of po-
tentially optimal rectangles (gray colored), and the second
row shows how these rectangles are sampled (red points) and
subdivided.

3.4. Convergence. .e DIRECT algorithm is guaranteed to
converge to the globally optimal function value if the per-
formance function is continuous or at least continuous in
the neighborhood of a global optimum [31]. .is follows the
fact that, as the number of iterations goes to infinity, the set
of points sampled by DIRECT forms a dense subset of the
unit hypercube. .at is, given any point x in the unit hy-
percube and any η> 0, DIRECT will eventually sample a
point within the neighborhood of x with radius η. It is
proved that DIRECT with a large enough iteration number
can converge with a high accuracy [31, 35–37].

4. The Proposed Approach

As metaheuristic algorithms are general and do not rely
on mathematical properties for application and the DI-
RECT algorithm converges to the global optimum with a
high accuracy, an innovative approach which combines
metaheuristic algorithms with the DIRECT algorithm is
proposed in this paper to tackle the two challenges
mentioned in Section 2.2. First, the metaheuristic algo-
rithm is used for seeking the largest hyperbox. Second, the
DIRECT algorithm is used as a checking technique to

ensure all designs in the obtained hyperbox satisfy the
performance criterion.

More specifically, in this paper, two methods are pro-
posed: one combines simulated annealing with the DIRECT
algorithm and the other combines the distributed covariance
matrix adaptation evolution strategy with the DIRECT al-
gorithm. .ey will be referred to as the simulated annealing
DIRECT algorithm (SA-DIRECT) and the distributed co-
variance matrix adaptation evolution strategy DIRECT al-
gorithm (d CMA-ES-DIRECT), respectively. Of course, one
can use other metaheuristic algorithms, but these two
metaheuristic algorithms are derivative-free and insensitive
to initial solution and global search.

4.1. Simulated Annealing DIRECT Algorithm (SA-DIRECT).
Simulated annealing (SA) proposed by Kirkpatrick et al. [38]
is based on the similarity between the solid annealing
process and solving global optimization problems. It is a
generic probabilistic meta-algorithm for the global opti-
mization problem. SA has been applied to a wide range of
problems especially in those cases where traditional opti-
mization techniques have shown poor performances or
simply have failed [39].

Simulated annealing DIRECT (SA-DIRECT) algorithm
is illustrated in Algorithm 3. Initially, the SA-DIRECT sets
the design space and builds an initial solution for problem
(7). More specifically, we generate a solution (xlow0 , xup0 ),
where xlow0 and xup0 are stochastically generated from the
range [xl, xu]. .en, we evaluate minx∈D(xlow0 ,xup0 )f(x) by the
DIRECTalgorithm in order to check whether this generated
solution meets constraints. If the constraint conditions, i.e.,
xl ≤ xlow0 ≤ x

up
0 ≤ xu andminx∈D(xlow0 ,xup0 )f(x) ≥fc, are met, we

calculate the associated value of the fitness function (i.e., the
volume expressed by equation (6)). Otherwise, we discard
this generated solution and generate a new initial solution.

Next, during the process of optimization, in each iter-
ation, a neighbor solution to the current solution (xlowl , xupl )

is generated according to a predefined neighborhood
structure, and minx∈D(xlow

l
,xup

l
)f(x) is evaluated by the DI-

RECTalgorithm. If the condition minx∈D(xlow
l

,xup
l

)f(x) ≥fc is
not satisfied, this neighbor solution is rejected. Otherwise,
the volume v(xlowl , xupl ) is calculated by equation (6). .e
improving move (the volume of the neighbor is larger than
that of the current solution) is always accepted, whilst worse
neighbor is accepted with a certain probability determined
by the Boltzmann probability [40], exp(Δv/T)> r, where Δv
is the difference between the volume of the current solution
and the generated neighbor, and r is randomly generated
from the range [0, 1]. Moreover, T is a parameter (called the
temperature) which periodically lowers during the search
process according to the temperature updating rule. .e
temperature updating rule (as adopted in [41]) is T � βtT0,
where T0 is the initial temperature, β is the cooling ratio, and
t is the number of times the temperature has been lowered.
.e halting criterion of SA is “reaching the maximum
number of times the temperature could be lowered.”

Finally, the SA-DIRECT verifies whether the best solu-
tion meets the constraints by the DIRECT algorithm with a

6 Complexity



relatively large maximum number of iterations. If the
constraints are not met, the SA-DIRECT goes back to
Step 1. Otherwise, the SA-DIRECT outputs the solution.

In this paper, the maximum number of the iterations at
each temperature lmax � 200 and the maximum number of
times the temperature could be lowered tmax � 1000.

4.2. Distributed Covariance Matrix Adaptation Evolution
Strategy DIRECT Algorithm (dCMA-ES-DIRECT). .e
evolution strategy (ES) is developed as a powerful tool for
numerical optimization tasks [42]. Covariant matrix ad-
aptation evolution strategy (CMA-ES) acts as an improved
robust form of evolution strategy [43]. .e main feature of
the CMA-ES is the ability of being invariant to landscape
transformations and scaling modulation. .e CMA-ES is
also invariant to applications of rotation, reflection, and
translation, besides maintaining order and monotonicity
[43]. It offers no discrepancy in behavior towards varied
nature of functions and can be easily generalized. Com-
plexity of algorithm is largely reduced with update schemes
of CMA-ES, and thus it offers an extremely prospective
mode of maximization in fitting function landscapes
[44, 45]. .e implementation details of CMA-ES are given
in the appendix.

.e CMA-ES is powerful and performs well. However,
better results can be obtained by distributed covariant matrix
adaptation evolution strategy (dCMA-ES) with multiple
subpopulations and proper migration strategy [46].

Particularly, the population model of dCMA-ES divides the
large population into multiple small demes. .ese demes
evolve independently of each other for a certain number of
generations, and then a number of individuals are migrated
from one deme to another. .e dCMA-ES preserves diversity
in the population through multiple demes, while increasing
the selection pressure through periodic migration [47].

.e migration operator includes four parameters: (a)
migration topology that defines the topology of the con-
nections between demes, (b) the migration rate (the fraction
of the population that migrates) that controls how many
individuals migrate, (c) migration interval that affects the
frequency of migrations, and (d) migration policy that se-
lects emigrants and replaces existing individuals with in-
coming migrants [48].

In this paper, the ring topology is selected as the mi-
gration scheme [47]. In other words, individuals are
transferred between directionally adjacent demes. .e mi-
gration policy is that the best individuals (the larger volume
value) are selected as migrants to replace the worst indi-
viduals at the receiving demes. .e migration interval is set
to 20 generations to permit the demes to partially converge
prior to migration. .e migration rate is set to 5 percent to
provide a reasonable selection pressure. .e final remaining
experimental parameters directly related to the dCMA-ES
are the deme size and deme count.

.e distributed covariant matrix adaptation evolution
strategy DIRECT (dCMA-ES-DIRECT) algorithm is illustrated

(0) Parameter setting:
Set the initial temperature T0, the cooling ratio β, the maximum number of the inner iterations lmax and the maximum number of
the outer iterations tmax.

(1) Initialization:
(1.1) Set the lower and upper bounds of design space, xl and xu, and the threshold level fc.
(1.2) Generate randomly xlow0 and xup0 from the range [xl, xu].
(1.3) Evaluate fmin � minx∈D(xlow0 ,xup0 )f(x) by Algorithm 2 with Kmax � ⌊50 ln 2m⌋.
(1.4) If all the constraints are satisfied. i.e., xl ≤ xlow0 ≤ x

up
0 ≤ xu and fmin ≥fc, then calculate the volume by equation (6) and store it

in v0, i.e., v0 � v(xlow0 , xup0 ); Otherwise, go to Step 1.2.
(1.5) Set xlow � xlowc � xlow0 , xup � xupc � xup0 , vb � vc � v0, and T � T0.

(2) For t � 1, . . . , tmaxdo:
(2.1) Set l � 1.
(2.2) While l≤ lmaxdo:

(2.2.1) Generate a new solution (xlowl , xupl ) in the neighborhood of (xlowc , xupc ), i.e., xlowl � xlowc + (xu − xl)⊙(2rl − 1)3,
xupl � xupc + (xu − xl)⊙ (2ru − 1)3, where rl and ru are randomly and uniformly generated from range [0, 1]m, and ⊙
denotes componentwise multiplication.

(2.2.2) Evaluate fmin � minx∈D(xlow
l

,xup
l

)f(x) by Algorithm 2 with the parameter setting Kmax � ⌊100 ln 2m⌋.
(2.2.3) If constraints xl ≤ xlowl ≤ x

up
l ≤ x

u and fmin ≥fc are all met, then evaluate the volume vl by equation (6), i.e.,
vl � v(xlowl , xupl ); Otherwise go to Step 2.2.1.

(2.2.4) Evaluate Δv � vl − vc, if Δv≥ 0, then set xlowc � xlowl and xupc � xup
l
; If vl − vb > 0, then set xlow � xlowl , xup � xup

l
.

(2.2.5) If Δv< 0, then generate a random number r in [0, 1] and evaluate P � exp(Δv/T); If P> r, then set xlowc � xlowl , xupc � xupl ,
vc � vl.

(2.2.6) Set l � l + 1.
(2.3) Set T � βT.

(3) Verification:
(3.1) Evaluate fmin � minx∈D(xlow ,xup)f(x) by Algorithm 2 with the parameter setting Kmax � ⌊1000 ln 2m⌋.
(3.2) If fmin ≥fc, output the best solution (xlow, xup); Otherwise go to Step 1.

ALGORITHM 3: .e proposed simulated annealing DIRECT (SA-DIRECT) algorithm.
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in Algorithm 4..e dCMA-ES-DIRECT begins with generating
the initial mean, covariance matrix, and step size. Subsequently,
the new individual is randomly generated by sampling from a
multivariate normal distribution and is checked whether the
constraints are satisfied by the DIRECT algorithm. If the con-
straints are not satisfied, resampling is performed until the
generated individual becomes good. .e fitness, i.e., the volume
of the hyperbox in this paper, is calculated. .e next step in-
volves storing the individual with the maximum volume. .en,
the migration operator is performed. Next, the update schemes
by equations (A.2)–(A.6) in the appendix are applied to equip
the individuals for the next generation.

Finally, the dCMA-ES-DIRECT verifies whether the best
individual meets the constraints by the DIRECTalgorithm with
a relatively large maximum number of iterations. If the con-
straints are not met, the dCMA-ES-DIRECT goes back to
Step 1. Otherwise, the dCMA-ES-DIRECT outputs the best
individual (xlow, xup).

4.3. Characteristics of the Proposed Approach. As these two
metaheuristic algorithms are insensitive to initial solution,
derivative-free and global search [49], the DIRECT algo-
rithm with a large enough iteration number converges to the
global optimum with a high accuracy [31]; the proposed
methods which combine metaheuristic algorithms with the
DIRECT algorithm have the following good characteristics:

(1) .e quality of the hyperbox obtained finally is not af-
fected by the initial solution, except that the compu-
tational time may increase with improper starting
designs.

(2) .e proposed methods have the advantage of not
getting trapped in local optimum and have great
possibility to reach the globally maximum solution
hyperbox.

(3) Because of the discrete nature of the performance
function evaluations in the DIRECT algorithm, the

(0) Parameter setting:
Set the default strategy parameters according to Appendix A.

(1) Initialization:
(1.1) Set the lower and upper bounds of the design space, xl and xu, the best volume vb � 0, the maximum number of the outer

iterations gmax, and the threshold level fc.
(1.2) Set the deme size ds, the deme count dc, the migration rate migr, the migration interval migi.
(1.3) Set the initial covariance matrix C0j, the step-size σ0j, the evolution paths pσj and pcj, j � 1, . . . , dc (details in the appendix).
(1.4) Generate the initial mean m0j uniformly and randomly from the range [(xl, xl), (xu, xu)], j � 1, . . . , dc.

(2) For g � 0, . . . , gmax do:
(2.1) For j � 1, . . . , dc do:

(2.1.1) For i � 1, . . . , ds do:
(2.1.1.1) Set k � (j − 1) × ds + i, then generate a random number xboundk from normal distribution N(mgj, σ2gjCgj). Based on

equation (5), xlowk � (xbound
k1 , . . . , xbound

km ) and xupk � (xbound
k,m+1 , . . . , xbound

k,2m ).
(2.1.1.2) Evaluate fmin ,k � minx∈D(xlow

k
,xup

k
)f(x) by Algorithm 2 with parameter setting Kmax � ⌊100 ln 2m⌋.

(2.1.1.3) If all constraints are satisfied, i.e., xl ≤ xlowk ≤ x
up
k ≤ x

u, and fmin ,k ≥fc, then calculate the volume by equation (6), i.e.,
vk � v(xlowk , xupk ); Otherwise go to Step 2.1.1.1.

(2.1.2) Set k1 � (j − 1) × ds + 1 and k2 � j × ds. Sort ds individuals xboundk1
, . . . , xboundk2

based on the value of the volume from
largest to smallest. If vs(1) > vb, set vb � vs(1), xlow � xlows(1) and xup � xups(1), where s(i) denotes the index of ith ranked
individual.

(2.2) Migrate:
(2.2.1) If (g + 1) is divisible by migi do:
(2.2.1.1) For j � 1, . . . , dc do:
(2.2.1.1.1) Set k1 � (j − 1) × ds + 1 and k2 � j × ds. If j � dc, then set k3 � 1 and k4 � ds; Otherwise set k3 � j × ds + 1 and

k4 � (j + 1) × ds.
(2.2.1.1.2) Select migr × ds best individual out of xboundk1

, . . . , xboundk2
to replace migr × ds worst individual out of

xboundk3
, . . . , xboundk4

.
(2.3) For j � 1, . . . , dc do:

(2.3.1) Recombination:
(2.3.1.1) Update mg+1,j, according to equation (A.3) in the appendix.

(2.3.2) Step-size control
(2.3.2.1) Update pσ,j, according to equation (A.4) in the appendix.
(2.3.2.2) Update σg+1,j, according to equation (A.5) in the appendix.

(2.3.3) Covariance matrix adaptation
(2.3.3.1) Update pc,j, according to equation (A.6) in the appendix.
(2.3.3.2) Update Cg+1,j, according to equation (A.7) in the appendix.

(3) Verification:
(3.1) Evaluate fmin � minx∈D(xlow ,xup)f(x) by Algorithm 2 with the parameter setting Kmax � ⌊1000 ln 2m⌋.
(3.2) If fmin ≥fc, output the individual (xlow, xup); Otherwise go to Step 1.

ALGORITHM 4: .e proposed distributed covariant matrix adaptation evolution strategy DIRECT (dCMA-ES-DIRECT) algorithm.
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proposed methods can be used for both analytically
known and black-box performance functions.

(4) .e proposed methods guarantee that any point
selected within the hyperbox obtained finally satisfies
the performance criterion as long as the performance
function is continuous.

In the majority of practical engineering problems, the
continuity of the performance function is easily satisfied, no
matter it is analytically known or a black box. .erefore, the
proposed approach has strong applicability and is valuable
to practical engineering applications.

From Algorithms 3 and 4, we see that the DIRECT al-
gorithm with a relatively small maximum number of iter-
ations (i.e., Kmax � ⌊100 ln 2m⌋) is adopted in the iterative
optimization phase, while the DIRECT algorithm with a
relatively large maximum number of iterations (i.e.,
Kmax � ⌊1000 ln 2m⌋) is adopted in the verification phase.
.is setting reduces the computation time while ensuring
that any point selected within the obtained hyperbox satisfies
the performance criterion.

Due to the stochastic nature of metaheuristic algorithms,
it is important to show the robustness of the proposed
approaches. .erefore, as adopted in [15], the proposed
approach runs 20 times, and the best solution among the 20
runs is used in practice. In addition, the boxplot containing
the minimum, the maximum, the median, and the first and
third quartiles of the 20 runs is shown.

5. Numerical Examples and Comparisons

A stochastic approach (we denote this method by “GHZ”
hereafter) that computes the solution hyperbox has been
discussed in [11]. An approach (we denote this method by
“CES-IA” hereafter) based on the use of cellular evolutionary
strategies (CES) and interval arithmetic (IA) has been
proposed in [15].

In order to compare the proposed SA-DIRECT and
dCMA-ES-DIRECT methods with the existing GHZ and
CES-IA methods, the following two numerical examples are
considered:

(i) Example 1 studies multiple performance functions.
Since each performance function is monotone, the
exact solution of the optimization problem (7) exists
and can be considered globally optimal.

(ii) Example 2 studies a performance function which has
multiple local minima. Unfortunately, the exact
solution of the optimization problem (7) does not
exist.

In addition, for comparison purpose, the solutions of the
dCMA-ES-IA method which combines the distributed co-
variance matrix adaptation evolution strategy (dCMA-ES)
with interval arithmetic (IA) is also shown.

5.1. Example 1: Multiple Performance Functions. Example 1
comes from [11], including multiple performance functions,
where xl � (0, 0) and xu � (4, 4) are the lower and upper
bounds of the design space, respectively, and

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f6(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

−
1
8
x1 −

1
4
x2

−
4
17

x1 −
2
17

x2

1
2
x1 −

1
2
x2

1
2
x1 +

1
3
x2

1
3
x1 +

2
3
x2

− x1 +
3
2
x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

fc
1

fc
2

fc
3

fc
4

fc
5

fc
6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

− 1

− 1

− 1

1

1

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

Since f
i(x) is monotone, as the definition

fmin ,i(xlow, xup) �
defminD(xlow ,xup)fi(x), we have

Complexity 9



fmin,1 xlow, xup( 

fmin,2 xlow, xup( 

fmin,3 xlow, xup( 

fmin,4 xlow, xup( 

fmin,5 xlow, xup( 

fmin,6 xlow, xup( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

−
1
8
x
up
1 −

1
4
x
up
2

−
4
17

x
up
1 −

2
17

x
up
2

1
2
x
low
1 −

1
2
x
up
2

1
2
x
low
1 +

1
3
x
low
2

1
3
x
low
1 +

2
3
x
low
2

− x
up
1 +

3
2
x
low
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

.at is, fmin,i(xlow, xup) has an explicit expression, for
i � 1, . . . , 6.

.erefore, the optimization problem (7) can be restated
as follows:

maxxlow ,xup 
2

i�1
x
up
i − xlow

i( 

subject to fmin,i xlow, xup( ≥fc
i , i � 1, . . . , 6.

(16)

Obviously, (16) is an optimization problem with in-
equality constraints. .e exact solution can be found by the
Lagrange multiplier method [50] and has the value tabulated
in the second column of Table 1.

.e result in [11] obtained by the GHZ method is listed
in the third column of Table 1. .e CES-IA method adopts
the same parameter setting as in [15] and the best solution
among its 20 runs is shown in the fourth column of Table 1.
.e best solution among 20 runs of the dCMA-ES-IA
method is listed in the fifth column of Table 1. .e row
entitled “Volume” contains the volume of the obtained
hyperbox, and the row entitled “Error” contains the relative
error between the volume and the exact volume.

In the proposed SA-DIRECT method, the initial tem-
perature T0 is set to 100, 150, and 200, and the cooling ratio β
is set to 0.94 and 0.98. In the proposed dCMA-ES-DIRECT
method, two sets of deme size and count values are chosen: 8
and 1 and 8 and 3, respectively. .e best solutions among
their respective 20 runs of the SA-DIRECT and CMA-ES-
DIRECTmethods are presented in Table 1. A visualization of
results of these methods in Table 1 is shown in Figure 4.
Moreover, we magnify the region A in Figure 4 and show it
in Figure 5.

According to Table 1, the volumes of the obtained
hyperboxes by the CES-IA, dCMA-ES-IA, SA-DIRECT, and
dCMA-ES-DIRECTmethods are approximately the same as
the exact value, whereas the volume of the obtained
hyperbox by the GHZ method has a somewhat large error.

Moreover, we can see that the SA-DIRECT method is in-
sensitive to parameter variations of simulated annealing.

From Figure 4, we observe that the obtained hyperboxes
by the SA-DIRECT and dCMA-ES-DIRECTmethods are in
close proximity to the exact solution. From Figure 5, it can be
seen that the green lines exceed the gray region, whichmeans
that the hyperbox obtained by the GHZ method contains
some design points which are not within the complete so-
lution space, and therefore is not a solution hyperbox.
However, the hyperboxes obtained by the CES-IA, dCMA-
ES-IA, SA-DIRECT, and dCMA-ES-DIRECT methods all
locate within the complete solution space and therefore are
solution hyperboxes.

Consequently, the hyperboxes obtained by the CES-IA,
dCMA-ES-IA, SA-DIRECT, and dCMA-ES-DIRECT
methods not only are close to the exact hyperbox but also
guarantee that any point selected within those hyperboxes
satisfies the performance criterion.

Furthermore, we sketch the boxplots using the volume of
the hyperbox of 20 runs, which are presented in Figure 6.
From Figure 6, we observe that, in each case of parameter
setting, the volumes of the obtained hyperboxes are all above
2.2000 after eliminating outliers, and the range of the vol-
umes is relatively small; therefore, the two proposed ap-
proaches are robust.

5.2. Numerical Example 2: Multiple Local Minima. .e
maximization of the solution hyperbox is considered in case
of the Michalewics function:

f(x) � − 
2

i�1
sin xi(  sin

ix2
i

π
  

20

. (17)

Stripinis et al. [51] have pointed out that the Michalewics
function has two local minima and one global minimum. In
this example, the lower and upper bounds of design space
are xl � (1, 1) and xu � (π, π), respectively, and the
threshold value is fc � − 1.5.

Unfortunately, the bound-constrained optimization
problem minD(xlow ,xup)f(x) has no explicit expressions;
therefore, we cannot obtain the exact solution for the op-
timization problem (7) in this example. However,
minD(xlow ,xup)f(x) can be solved by the FMINCON function
of MATLAB. For comparison purpose, an approach (we
denote this method by “SA-FMINCON” hereafter) which
combines simulated annealing and FMINCON function is
presented to solve problem (7).

.e best solutions of their respective 20 runs of the GHZ,
CES-IA, dCMA-ES-IA, SA-DIRECT, dCMA-ES-DIRECT,
and SA-FMINCON methods are shown in Table 2. A vi-
sualization of these results is shown in Figure 7. According to
Table 2 and Figure 7, the hyperbox obtained by the SA-
FMINCON method is the maximum and the hyperboxes
obtained by the SA-DIRECT and dCMA-ES-DIRECT
methods are much larger than those by the GHZ, CES-IA,
and dCMA-ES-IA methods. Besides, we see that the SA-
DIRECT method is relatively insensitive to the initial pa-
rameters of simulated annealing.
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.e values of the performance function f(x) on the
obtained hyperboxes by the GHZ, CES-IA, dCMA-ES-IA,
SA-DIRECT, dCMA-ES-DIRECT, and SA-FMINCON
methods are shown in Figure 8. We can see that the values of

the performance function f(x) on the hyperboxes by the
CES-IA, dCMA-ES-IA, SA-DIRECT, and dCMA-ES-DI-
RECTmethods are all above the performance criterion while
some values of the performance function f(x) on those by
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Figure 5: Magnification of region A in Figure 4.
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Figure 4: Example 1: the gray region is the complete solution space. .e regions are obtained by the following methods: the exact (red),
GHZ (green), CES-IA (yellow), dCMA-ES-IA (cyan), SA-DIRECT with T0 � 100 and β � 0.94 (blue), SA-DIRECT with T0 � 150 and β �

0.94 (gold), SA-DIRECT with T0 � 150 and β � 0.98 (pink), SA-DIRECT with T0 � 200 and β � 0.98 (orange), dCMA-ES-DIRECT with
ds � 8 and dc � 1 (magenta), and dCMA-ES-DIRECT with ds � 8 and dc � 3 (black).

Table 1: ..e exact, GHZ, CES-IA, dCMA-ES-IA, SA-DIRECT, and dCMA-ES-DIRECT solutions of Example 1.

Exact GHZ CES-IA dCMA-ES-IA
SA-DIRECT dCMA-ES-

DIRECT
T0 � 100 T0 � 150 T0 � 150 T0 � 200 ds � 8 ds � 8
β � 0.94 β � 0.94 β � 0.98 β � 0.98 dc � 1 dc � 3

xlow
1 1.1800 1.1740 1.1804 1.1826 1.1805 1.1876 1.1744 1.1957 1.1790 1.1799

x
up
1 2.8500 2.7350 2.8196 2.8392 2.8432 2.8298 2.8547 2.8111 2.8473 2.8453

xlow
2 1.2300 1.2350 1.2298 1.2262 1.2294 1.2206 1.2384 1.2081 1.2316 1.2302

x
up
2 2.5800 2.6330 2.5902 2.5802 2.5770 2.5850 2.5727 2.5943 2.5763 2.5773

Volume 2.2545 2.1823 2.2396 2.2432 2.2408 2.2406 2.2419 2.2398 2.2436 2.2436
Error (%) — 3.20 0.66 0.50 0.60 0.62 0.56 0.65 0.48 0.48
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the GHZ and SA-FMINCON methods are below the per-
formance criterion. .is indicates that the obtained
hyperboxes by the CES-IA, dCMA-ES-IA, SA-DIRECT, and
dCMA-ES-DIRECT methods only include good design

points while those by the GHZ and SA-FMINCONmethods
include some bad design points.

.e boxplots of the volume of the hyperbox of 20 runs
are given in Figure 9. From Figure 9, we see that, in each case
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Figure 6: Example 1: the boxplots of the volume of the obtained hyperbox. (a) SA-DIRECTmethod and (b) dCMA-ES-DIRECTmethod.

Table 2: .e best GHZ, CES-IA, dCMA-ES-IA, SA-DIRECT, dCMA-ES-DIRECT, and SA-FMINCON solutions of Example 2.

GHZ CES-IA dCMA-ES-IA
SA-DIRECT dCMA-ES-

DIRECT
SA-FMINCON

T0 � 100 T0 � 150 T0 � 150 T0 � 200 ds � 8 ds � 8
β � 0.94 β � 0.94 β � 0.98 β � 0.98 dc � 1 dc � 3

xlow
1 1.5095 1.2388 1.0001 1.0002 1.0007 1.0007 1.0007 1.0000 1.0000 1.0009

x
up
1 2.6406 2.2659 1.9619 3.1403 3.1406 3.1414 3.1410 3.1416 3.1415 3.1412

xlow
2 1.6520 1.8628 1.8756 1.6622 1.6625 1.6633 1.6625 1.6620 1.6620 1.0037

x
up
2 3.1415 2.5521 2.5673 3.1410 3.1414 3.1414 3.1408 3.1416 3.1416 3.1415

Volume 1.6849 0.7080 0.7426 3.1649 3.1648 3.1647 3.1640 3.1687 3.1685 4.5755

1

1.5

2

2.5

3

x 2

1 2 31.5 2.5
x1

Figure 7: Example 2: the regions obtained by the following methods: the GHZ (green), CES-IA (yellow), dCMA-ES-IA (cyan), SA-DIRECT
with T0 � 100 and β � 0.94 (blue), dCMA-ES-DIRECT with ds � 8 and dc � 1 (magenta), and SA-FMINCON (red).
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Figure 8: Continued.
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of parameter setting, the volumes of the obtained hyper-
boxes are all above 3.1400 after eliminating outliers, and the
range of the volumes is relatively small; therefore, the ro-
bustness of the proposed approaches are verified.

5.3. Discussion. .e CES-IA, dCMA-ES-IA, and SA-
FMINCON methods require an analytically known per-
formance function, while GHZ, SA-DIRECT, and dCMA-
ES-DIRECT methods can be used for both analytically
known and black-box performance functions.

.e hyperboxes obtained by the CES-IA and dCMA-ES-
IA methods in Example 1 are very close to those obtained by
the proposed SA-DIRECTand dCMA-ES-DIRECTmethods
while the hyperboxes obtained by the CES-IA and dCMA-
ES-IA methods in Example 2 are much smaller than those
obtained by the proposed SA-DIRECT and dCMA-ES-

DIRECTmethods. .is is mainly caused by the dependency
problem of the interval arithmetic. In the CES-IA and
dCMA-ES-IA methods, the range of the performance
function inside the generated hyperbox is calculated by the
interval arithmetic. In Example 1, each design parameter
appears only once in the performance function fi(x); thus,
the interval arithmetic can determine the range of the
performance function very accurately. However, in Example
2, the performance function f(x) is unable to be described
by the output interval directly, instead the Taylor interval
extension [52] is used. In this case, the design parameters
occur several times in the calculation, and each occurrence is
taken independently. Consequently, the range of the per-
formance function inside the generated hyperbox is over-
estimated and the actually solution hyperbox is discarded.
Rocco et al. [15] have pointed out that the main drawback of
the interval arithmetic adopted in the CES-IAmethod is that
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Figure 8: .e values of the performance function f(x) on the hyperboxes obtained by the following methods: (a) GHZ, (b) CES-IA, (c)
dCMA-ES-IA, (d) SA-DIRECT with T0 �100, β= 0.94 , (e) SA-DIRECT with T0 �150, β� 0.94, (f ) SA-DIRECT with T0 �150, β� 0.98, (g)
SA-DIRECT with T0 � 200, β� 0.98, (h) dCMA-ES-DIRECT with ds � 8, dc � 1, (i) dCMA-ES-DIRECT with ds � 8, dc � 3, and (j) SA-
fmincon.

3.135

3.14

3.145

3.15

3.155

3.16

3.165

3.17

T0 = 150,
β = 0.94

T0 = 150,
β = 0.98

T0 = 200,
β = 0.98

T0 = 100,
β = 0.94

(a)

3.135

3.14

3.145

3.15

3.155

3.16

3.165

3.17

ds = 8, dc = 3ds = 8, dc = 1

(b)

Figure 9: Example 2: the boxplots of the volume of the obtained hyperbox. (a) SA-DIRECTmethod and (b) dCMA-ES-DIRECTmethod.
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results can be overestimated due to the dependency prob-
lem, and overestimation cannot be estimated and could
cause that no solution hyperbox is found.

Numerical examples show that the hyperboxes obtained
by the GHZ method may include some bad design points.
.is is mainly because the GHZ method uses Monte Carlo
sampling to estimate locations of good and bad designs.
Monte Carlo sampling cannot guarantee that each design
point in the obtained hyperbox is good for even a large
number of samples, especially when the performance
function has multiple local minima. In addition, numerical
examples show that the hyperboxes by the GHZ method are
smaller than those by the proposed SA-DIRECTand dCMA-
ES-DIRECT methods. .is is because the GHZ method
removes bad sample points sequentially in only one order.
.e order, however, has an effect on the result. Zimmer-
mann and von Hoessle [10] have concluded that the GHZ
method is not necessarily globally optimal, even not locally
optimal.

In Example 2, although the hyperbox obtained by the
SA-FMINCON method is larger than those by the proposed
SA-DIRECT and dCMA-ES-DIRECT methods, it includes
some bad design points, and therefore is not a solution
hyperbox. .is demonstrates that it is improper to use the
FMINCON function of MATLAB to solve the optimization
problem (7) especially when the performance function has
multiple local minima.

From the “quantitative” viewpoint, the solution hyper-
boxes obtained by the proposed SA-DIRECT and dCMA-
ES-DIRECTmethods are nearly the same as the exact result
in Example 1, and the solution hyperboxes obtained by the
SA-DIRECT and dCMA-ES-DIRECT methods are much
larger than those obtained by the CES-IA and GHZmethods
in Example 2 without exact result. From the “feasible”
viewpoint, no matter Example 1 or Example 2, any design
point selected within the solution hyperboxes obtained by
the SA-DIRECT and dCMA-ES-DIRECT methods satisfies
the performance criterion. .erefore, numerical examples
prove that the proposed global search is effective.

Moreover, from Figures 6 and 9, we observe that the SA-
DIRECT and dCMA-ES-DIRECT methods are robust. As
the SA-DIRECT method with T0 � 150 and β � 0.98 has a
relatively large maximum value and a relatively small
interquartile range, we therefore setT0 � 150 and β � 0.98 in
the remainder of paper. Similarly, the d-CMA-ES-DIRECT
method with ds � 3 + ⌊3 + ln 2m⌋(i.e., ds � 8 in Examples 1
and 2) and dc � 3 has a relatively large maximum value and a
relatively small interquartile range; we therefore set ds �

3 + ⌊3 + ln 2m⌋ and dc � 3 in the rest of the paper.

6. Case Studies

.e first case is the life-support system in a space capsule
which has been studied by Rocco et al. [15] and is rein-
vestigated by the proposed approach. .e second case is the
power-shift steering transmission control system (PSSTCS)
which is a typical mechatronics complex control system with
a price of approximately 500,000 USD. .erefore, it is

importantly significant to improve the robustness of the
PSSTCS.

6.1. Life-Support System in a Space Capsule

6.1.1. Life-Support System in a Space Capsule: Reliability
Constraint. .e complex system (life-support system in a
space capsule) in [15], as shown in Figure 10, consists of four
components. .e reliability of the system is given by

Rs � f(R) � 1 − R3 R1R4( 
2

− R3 1 − R2 1 − R1R4(  
2
,

(18)

where R � (R1, R2, R3, R4) and Ri � 1 − Ri for i � 1, . . . , 4.
Rocco et al. [15] have applied the CES-IA method to find

a largest symmetric hyperbox using a specified point as
symmetry center, whereby any point selected within this
hyperbox satisfies the performance criterion. Particularly,
the center point is Rc � (0.90, 0.90, 0.90, 0.90), the lower and
upper bounds of the design space are Rl � 0 and Ru � 1,
respectively, and the performance criterion is Rs ≥ 0.99. .e
best solution among the 20 runs of the CES-IA method
shown in [15] is given in the fourth column of Table 3 in
terms of the intervals of design parameters.

For comparison purpose, the optimization problem
considered in this paper is the same as that considered in
[15], and it is stated similarly to the optimization problem
(7):

maxRup 
4

i�1
2 R

up
i − Rc

i( ,

subject to minR∈ Rlow ,Rup[ ]f(R)≥ 0.99,

Rc ≤Rup ≤Ru,

(19)

where Rlow � 2Rc − Rup.
.e best solutions among the 20 runs of the GHZ, SA-

DIRECT, and dCMA-ES-DIRECTmethods are shown in the
third, fifth, and sixth columns of Table 3, respectively. To
show how close to the global solution are the results obtained
by the proposed methods, the second column of Table 3
presents the exact solution obtained by the Lagrange mul-
tiplier method. To show whether the obtained hyperboxes
satisfy the performance criterion, the intervals of the per-
formance function Rs on the hyperboxes obtained by the
exact, GHZ, CES-IA, SA-DIRECT, and dCMA-ES-DIRECT
methods are, respectively, calculated and listed in Table 4.

Based on Tables 3 and 4, the SA-DIRECTand dCMA-ES-
DIRECT methods outperform the GHZ and CES-IA
methods in which the volume errors are smaller and the
minimum values of the system reliability on their obtained
hyperboxes are above the reliability criterion (0.99). Al-
though the hyperbox obtained by the GHZ method is
maximum, from the third column of Table 4, we can see that
it includes some design points whose corresponding reli-
abilities are below the reliability criterion. Although the
hyperbox obtained by the CES-IA method only includes
good design points, its volume is smaller than those by the
SA-DIRECT and dCMA-ES-DIRECT methods.
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Besides, the average volumes are, respectively, 1.2111 ×

10− 3 and 1.2115 × 10− 3 in 20 runs of the SA-DIRECT and
dCMA-ES-DIRECT methods, and the standard deviations
are, respectively, 1.2184 × 10− 6 and 1.2745 × 10− 6. .is
implies that the proposed methods are robust.

6.1.2. Life-Support System in a Space Capsule: Additional
Cost Constraint. Normally, the design problem also seeks to
minimize the cost function Cs:

Cs � 2
4

i�1
KiR

αi

i . (20)

In [15], K1 � 100, K2 � 100, K3 � 100, K4 � 150, and
αi � 1 for all i. Using the above values and the previous SA-
DIRECT ranges of Ri, the corresponding range of Cs is
[724.8847, 895.1153]. Using the exact results of Ri, the
corresponding range of Cs is [724.8300, 895.1000].

Rocco et al. [15] studied the problem to derive the ranges
for each Ri subject to Rs ≥ 0.99 and 750≤Cs ≤ 850. We solve
the same problem by the proposed methods for comparison.
.e best solution shown in [15] by the CES-IA method is
given in the fourth column of Table 5.

Since the cost function Cs is monotone, the exact so-
lution can be obtained by the Lagrange multiplier method
and is shown in the second column of Table 5. .e best
solutions among the 20 runs of the GHZ, SA-DIRECT, and
dCMA-ES-DIRECT methods are also shown in the third,
fifth, and sixth columns of Table 5, respectively..e intervals
of Rs and Cs on the obtained hyperbox, denoted by Rs,bounded
and Cs,bounded, respectively, are shown in Table 6. From
Tables 5 and 6, we can see that the proposed methods are
better than the GHZ and CES-IA methods because the
volume errors are smaller and the performance criterion is
satisfied in the obtained hyperboxes.

.e relative errors between the exact solution and the
best solutions of the proposed SA-DIRECT and dCMA-ES-
DIRECT methods are both 0.02. .is indicates that the
results are globally optimal.

6.2. 9e Power-Shift Steering Transmission Control System
(PSSTCS). .e power-shift steering transmission control
system (PSSTCS) is a key complex system with

multicharacteristics of heavy vehicle to achieve the control of
the steering, speed changing, fan driving, and lubricating.
.e PSSTCS is composed of a hydraulic oil supply system, an
integration pump-motor system, a fan control system, an
electronic control system, and a hydraulic control system.
.e hydraulic oil supply system consists of a fill oil and
constant pressure system of pressure oil tank, a pump group,
and a fill oil system of transmission control and fan control.
.e function constitutes and the structure principle drawing
of PSSTCS are shown in Figures 11 and 12, respectively. .e
PSSTCS is a nonmonotonic coherent system; therefore, its
reliability function is not analytically known and is evaluated
by a graphical inductive analysis method based on the
principles of the decision tree, i.e., the goal-oriented (GO)
reliability assessment method, as illustrated in the appendix.

As shown in Table 7, the number of design parameters is
86. .e optimization problem (7) is given as follows:

max
Rup,Rlow


86

i�1
log R

up
i − Rlow

i( 

subject to minR∈ Rlow ,Rup[ ]f(R)≥fc

Rl ≤Rlow ≤Rup ≤Ru,

(21)

where Rl � 0.9990, Ru � 1.0000, fc � 0.9900, and f is the
reliability function and is evaluated by the goal-oriented
(GO) reliability assessment method. Note that the volume
here is replaced by the log-volume (logarithmic transfor-
mation of the volume) in order to calculate conveniently.

Since the reliability function of the PSSCTS is not analyti-
cally known, the CES-IAmethod is not suitable for this complex
system. .e best solutions among the 20 runs of the GHZ, SA-
DIRECT, and dCMA-ES-DIRECT methods are shown in the
third, fourth, and fifth columns of Table 7, respectively..e log-
volumes of the GHZ, SA-DIRECT, and dCMA-ES-DIRECT
hyperboxes are listed in Table 8. We see that the log-volumes of
the SA-DIRECT and dCMA-ES-DIRECT hyperboxes are all
much larger than that of the GHZ hyperbox.

To show whether the obtained hyperboxes satisfy the
performance criterion, N sample design points are ran-
domly chosen from each of the obtained hyperbox by using
the Latin hypercube sampling; then, the rate of good sample
design points (the performance criterion satisfaction
probability for the hyperbox) is calculated as follows:

In Out

2

3

2

1

4

4

1

Figure 10: Example of the reliability system.
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rate �
1
N



N

i�1
# f Ri( ≥f

c
( , (22)

where #(·) is the indicator function, i.e., #(f(Ri)≥

fc) �
1, f(Ri)≥fc

0, f(Ri)<fc .

.e performance criterion satisfaction probabilities of
the obtained hyperboxes by the GHZ, SA-DIRECT, and

dCMA-ES-DIRECT methods are shown under different
sample sizes in Figure 13. It can be observed that the
performance criterion satisfaction probabilities for the
SA-DIRECT and dCMA-ES-DIRECT hyperboxes are all 1
while those for the GHZ hyperbox are below 1. .is
implies that the obtained hyperboxes by the SA-DIRECT
and dCMA-ES-DIRECT methods are solution hyper-
boxes. .erefore, our approach is superior to the GHZ
method.

Table 5: Comparison II: the exact, GHZ, CES-IA, SA-DIRECT, and dCMA-ES-DIRECT solutions.

Exact GHZ CES-IA SA-DIRECT dCMA-ES-DIRECT
R1 [0.8500, 0.9500] [0.8549, 0.9451] [0.8482, 0.9517] [0.8502, 0.9498] [0.8502, 0.9498]
R2 [0.8500, 0.9500] [0.8553, 0.9447] [0.8519, 0.9480] [0.8498, 0.9502] [0.8498, 0.9502]
R3 [0.8500, 0.9500] [0.8538, 0.9462] [0.8522, 0.9477] [0.8503, 0.9497] [0.8503, 0.9497]
R4 [0.8667, 0.9333] [0.8551, 0.9449] [0.8652, 0.9347] [0.8664, 0.9336] [0.8664, 0.9336]
Volume 6.6667e-05 6.6977e-05 6.6016e-05 6.6656e-05 6.6661e-05
Error (%) _______ 0.46 0.97 0.02 0.02

Table 6: .e intervals for Rs and Cs, denoted by Rs,bounded and Cs,bounded, respectively, based on the exact, GHZ, CES-IA, SA-DIRECT, and
dCMA-ES-DIRECT hyperboxes.

Exact GHZ CES-IA SA-DIRECT dCMA-ES-DIRECT
Rs,bounded [0.9955, 0.9998] [0.9958, 0.9998] [0.9956, 0.9998] [0.9954, 0.9999] [0.9958, 0.9999]
Cs,bounded [770.0100, 849.9900] [769.3231, 850.6769] [770.0810, 849.9189] [770.0000, 849.9999] [770.0000, 849.9999]

Engine Coupling
Hydraulic torque

converter

Pump
group

Fill oil and constant pressure
system of pressure oil tank

Integration pump-
motor system 

Fill oil system of transmission
control and fan control

Hydraulic control
system

Fan control system Electronic control
system

Oil

Oil

Power Power Power of P4 and P5

Power

Oil of P4

Oil

Control

Control

Power

Oil of P1

Oil of P2 and P3

Figure 11: Function constitutes of PSSTCS.

Table 3: Comparison I: the exact, GHZ, CES-IA, SA-DIRECT, and dCMA-ES-DIRECT solutions.

Exact GHZ CES-IA SA-DIRECT dCMA-ES-DIRECT
R1 [0.8000, 1.0000] [0.8058, 0.9942] [0.8010, 0.9980] [0.8000, 1.0000] [0.8000, 1.0000]
R2 [0.8245, 0.9755] [0.8068, 0.9932] [0.8220, 0.9770] [0.8241, 0.9759] [0.8246, 0.9754]
R3 [0.8000, 1.0000] [0.8065, 0.9935] [0.8010, 0.9980] [0.8001, 0.9999] [0.8000, 1.0000]
R4 [0.8000, 1.0000] [0.8059, 0.9941] [0.8010, 0.9980] [0.8000, 1.0000] [0.8000, 1.0000]
Volume 1.2134e − 03 1.2354e − 03 1.1786e − 03 1.2114e − 03 1.2120e − 03
Error (%) — 1.81 2.90 0.16 0.12

Table 4: .e intervals of Rs on the exact, GHZ, CES-IA, SA-DIRECT, and dCMA-ES-DIRECT hyperboxes, denoted by Rs,bounded.

Exact GHZ CES-IA SA-DIRECT dCMA-ES-DIRECT
Rs,bounded [0.9900, 1.0000] [0.9892, 1.0000] [0.9900, 0.9999] [0.9900, 1.0000] [0.9900, 1.0000]
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Figure 12: Structure principle drawing of PSSTCS.

Table 7: .e GHZ, SA-DIRECT, and dCMA-ES-DIRECT solutions.

No. (variable) Unit GHZ SA-DIRECT dCMA-ES-DIRECT
1 Oil pan [0.9996, 0.9999] [0.9996, 1.0000] [0.9997, 1.0000]
2 Filter LF1 [0.9996, 0.9998] [0.9992, 1.0000] [0.9994, 1.0000]
3 Filter LF1 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
4 Pump P1 [0.9995, 0.9998] [0.9991, 1.0000] [0.9993, 1.0000]
5 Pump P1 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
6 Power of P1, P2, and P3 [0.9996, 0.9998] [0.9996, 1.0000] [0.9995, 1.0000]
7 Filter LF2 [0.9995, 0.9997] [0.9993, 1.0000] [0.9993, 1.0000]
8 Filter LF2 [0.9995, 0.9998] [0.9995, 1.0000] [0.9994, 1.0000]
9 Bypass-valve LF2B [0.9995, 0.9997] [0.9992, 1.0000] [0.9993, 1.0000]
10 Pressure oil tank [0.9996, 0.9999] [0.9993, 1.0000] [0.9997, 1.0000]
11 Pump P3 [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
12 Pump P2 [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
13 One-way valve CV1 [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
14 Filter LF3 [0.9996, 0.9999] [0.9997, 1.0000] [0.9997, 1.0000]
15 One-way valve CV2 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
16 Bypass-valve LF3B [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
17 Constant pressure valve RV1 [0.9996, 0.9999] [0.9996, 1.0000] [0.9996, 1.0000]
18 Power P4 and P5 [0.9997, 0.9999] [0.9999, 1.0000] [0.9998, 1.0000]
19 Pump P4 [0.9996, 0.9999] [0.9998, 1.0000] [0.9997, 1.0000]
20 Filter LF4 [0.9996, 0.9999] [0.9999, 1.0000] [0.9997, 1.0000]
21 Constant pressure valve RV2 [0.9996, 0.9999] [0.9996, 1.0000] [0.9997, 1.0000]
22 Steering wheel signal [0.9996, 0.9999] [0.9996, 1.0000] [0.9995, 1.0000]
23 Closed-loop feedback link [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
24 Valve body of SDV1 [0.9996, 0.9998] [0.9997, 1.0000] [0.9997, 1.0000]
25 Piston valve block [0.9996, 0.9999] [0.9998, 1.0000] [0.9996, 1.0000]
26 Hydraulic cylinder DLU [0.9996, 0.9999] [0.9997, 1.0000] [0.9995, 1.0000]
27 Swash plate pump of P5 [0.9996, 0.9999] [0.9995, 1.0000] [0.9997, 1.0000]
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Table 7: Continued.

No. (variable) Unit GHZ SA-DIRECT dCMA-ES-DIRECT
28 Two-way variable displacement pump P5 [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
29 Overflow valve OV1 [0.9996, 0.9999] [0.9995, 1.0000] [0.9996, 1.0000]
30 One-way valve CV4 [0.9996, 0.9999] [0.9998, 1.0000] [0.9995, 1.0000]
31 Overflow valve OV2 [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
32 One-way valve CV3 [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
33 Group valve RVG [0.9997, 0.9999] [0.9998, 1.0000] [0.9996, 1.0000]
34 Reversing motor M [0.9996, 0.9999] [0.9998, 1.0000] [0.9997, 1.0000]
35 Power of electronic control system [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
36 Control panel [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
37 Panel switch [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
38 Handle signal [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
39 State signal sensor [0.9990, 1.0000] [0.9990, 1.0000] [0.9990, 1.0000]
40 Switch D1 [0.9996, 0.9999] [0.9994, 1.0000] [0.9996, 1.0000]
41 Switch D2 [0.9996, 0.9999] [0.9993, 1.0000] [0.9997, 1.0000]
42 Pilot valve PV2 [0.9997, 0.9999] [0.9998, 1.0000] [0.9998, 1.0000]
43 Liquid viscous clutch cylinder of left fan [0.9996, 0.9999] [0.9995, 1.0000] [0.9996, 1.0000]
44 Active friction plate of left pan [0.9996, 0.9999] [0.9996, 1.0000] [0.9997, 1.0000]
45 Friction plate of left pan [0.9997, 0.9999] [0.9993, 1.0000] [0.9997, 1.0000]
46 Power of liquid viscous clutch [0.9996, 0.9999] [0.9995, 1.0000] [0.9997, 1.0000]
47 Liquid viscous clutch cylinder of right fan [0.9996, 0.9999] [0.9999, 1.0000] [0.9996, 1.0000]
48 Active friction plate of right fan [0.9996, 0.9999] [0.9998, 1.0000] [0.9997, 1.0000]
49 Friction plate of right fan [0.9996, 0.9999] [0.9997, 1.0000] [0.9996, 1.0000]
50 Overflow valve OV3 [0.9996, 0.9999] [0.9999, 1.0000] [0.9997, 1.0000]
51 .rottle valve TV1 [0.9995, 0.9998] [0.9992, 1.0000] [0.9993, 1.0000]
52 .rottle valve TV2 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
53 Overflow valve RV3 [0.9996, 0.9999] [0.9997, 1.0000] [0.9997, 1.0000]
54 Overflow valve RV4 [0.9996, 0.9999] [0.9998, 1.0000] [0.9997, 1.0000]
55 Signal of SDV [0.9996, 0.9999] [0.9999, 1.0000] [0.9997, 1.0000]
56 Hand valve SDV [0.9996, 0.9999] [0.9995, 1.0000] [0.9996, 1.0000]
57 Electric controllable valve DV1 [0.9995, 0.9998] [0.9991, 1.0000] [0.9993, 1.0000]
58 Manual hydraulic control valve SV1 [0.9995, 0.9998] [0.9990, 1.0000] [0.9993, 1.0000]
59 Liquid control valve HV1 [0.9995, 0.9998] [0.9994, 1.0000] [0.9993, 1.0000]
60 Constant pressure throttle valve EV1 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
61 Oil cylinder E1 [0.9995, 0.9998] [0.9995, 1.0000] [0.9993, 1.0000]
62 Electric controllable valve DV2 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
63 Manual hydraulic control valve SV2 [0.9995, 0.9998] [0.9993, 1.0000] [0.9995, 1.0000]
64 Liquid control valve HV2 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
65 Constant pressure throttle valve EV2 [0.9992, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
66 Oil cylinder F1 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
67 Electric controllable valve DV3 [0.9996, 0.9998] [0.9994, 1.0000] [0.9993, 1.0000]
68 Manual hydraulic control valve SV3 [0.9995, 0.9998] [0.9994, 1.0000] [0.9993, 1.0000]
69 Liquid control valve HV3 [0.9995, 0.9998] [0.9990, 1.0000] [0.9993, 1.0000]
70 Constant pressure throttle valve EV3 [0.9992, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
71 Oil cylinder E2 [0.9995, 0.9998] [0.9994, 1.0000] [0.9993, 1.0000]
72 Electric controllable valve DV4 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
73 Manual hydraulic control valve SV4 [0.9995, 0.9998] [0.9993, 1.0000] [0.9995, 1.0000]
74 Liquid control valve HV4 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
75 Oil cylinder F2 [0.9995, 0.9998] [0.9990, 1.0000] [0.9993, 1.0000]
76 Electric controllable valve DV5 [0.9995, 0.9998] [0.9991, 1.0000] [0.9993, 1.0000]
77 Manual hydraulic control valve SV5 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
78 Liquid control valve HV5 [0.9995, 0.9998] [0.9991, 1.0000] [0.9994, 1.0000]
79 Constant pressure throttle valve EV5 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
80 Oil cylinder E3 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
81 Electric controllable valve DV6 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
82 Manual hydraulic control valve SV6 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
83 Liquid control valve HV6 [0.9995, 0.9998] [0.9993, 1.0000] [0.9993, 1.0000]
84 Constant pressure throttle valve EV6 [0.9995, 0.9998] [0.9994, 1.0000] [0.9993, 1.0000]
85 Oil cylinder F3 [0.9995, 0.9998] [0.9992, 1.0000] [0.9993, 1.0000]
86 Pilot valve PV1 [0.9996, 0.9999] [0.9995, 1.0000] [0.9997, 1.0000]

Table 8: .e log-volumes of the GHZ, SA-DIRECT, and dCMA-ES-DIRECT hyperboxes.

Method GHZ SA-DIRECT dCMA-ES-DIRECT
Log-volume − 686.1204 − 646.3142 − 646.8860
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Figure 13: .e performance criterion satisfaction probabilities for the obtained hyperboxes. (a) GHZ method, (b) SA-DIRECT
method, and (c) dCMA-ES-DIRECT method.

Table 9: Default strategy parameters values.

Selection and recombination:
Number of parents for recombination μ � ds/2

Normalized array for weighted recombination: wi�1,...,μ � (ln(μ + 1) − ln(i)/
μ
j�1 ln(μ + 1) − ln(j))

Step-size control:
Reciprocal of the backward time horizon of the evolution path cσ � ((μw + 2)/(n + μw + 3))

Damping parameter dσ � 1 + 2max(0,
���������������
((μw − 1)/(n + 1))


− 1) + cσ

Covariance matrix adaptation:
Reciprocal of the backward time horizon of the evolution path cc � (4/(n + 4))

Relative weighting μcov � μw

Learning rate ccov � (1/μcov)(2/(n +
�
2

√
)2) + (1 − (1/μcov))min(1, ((2μw − 1)/((n + 2)2 + μw)))

Table 10: Function GO operator in the GO model of PSSTCS.

Unit No. (operator) Type (operator)
Oil pan 1 5
Pump P1 5, 6 6
Filter LF2 9, 10 1
Pressure oil tank 15 1
Pump P2 17 6
Filter LF3 20 1
Bypass-valve LF3B 23 1
Power P4 and P5 26 Virtual 5
Filter LF4 28 1
Steering wheel signal 31 Virtual 5
Valve body of SDV1 32 1

20 Complexity



Table 10: Continued.

Unit No. (operator) Type (operator)
Hydraulic cylinder DLU 34 1
Two-way variable displacement pump P5 36 6
One-way valve CV4 38 1
One-way valve CV3 41 1
Reversing motor M 44 21
Control panel 47 6
Handle signal 49 Virtual 5
Switch D1 52 1
Pilot valve PV2 55 22
Active friction plate of left fan 58 6
Power of liquid viscous clutch 60 Virtual 5
Active friction plate of right fan 63 6
Overflow valve OV3 67 1
.rottle valve TV2 69 1
Overflow valve RV4 72 1
Hand valve SDV 74 6
Manual hydraulic control valve SV1 77 6
Constant pressure throttle valve EV1 79 1
Electric controllable valve DV2 82 6
Liquid control valve HV2 85 1
Oil cylinder F1 87 1
Manual hydraulic control valve SV3 91 6
Constant pressure throttle valve EV3 93 1
Electric controllable valve DV4 96 6
Liquid control valve HV4 99 1
Electric controllable valve DV5 102 6
Liquid control valve HV5 105 1
Oil cylinder E3 107 1
Manual hydraulic control valve SV6 111 6
Constant pressure throttle valve EV6 113 6
Pilot valve PV1 116 6
Filter LF1 2, 3 1
Power of P1, P2, and P3 7 Virtual 5
Bypass-valve LF2B 13 1
Pump P3 16 6
One-way valve CV1 18 1
One-way valve CV2 21 1
Constant pressure valve RV1 25 19
Pump P4 27 6
Constant pressure valve RV2 29 19
Closed-loop feedback link 30 24
Piston valve block 33 1
Swash plate pump of P5 35 1
Overflow valve OV1 37 1
Overflow valve OV2 40 1
Group valve RVG 43 21
Power of electronic control system 46 5
Panel switch 48 5
State signal sensor 50 5
Switch D2 53 1
Liquid viscous clutch cylinder of left fan 56 1
Friction plate of left fan 59 1
Liquid viscous clutch cylinder of right fan 61 1
Friction plate of right fan 64 1
.rottle valve TV1 68 1
Overflow valve RV3 71 1
Signal of SDV 73 Virtual 5
Electric controllable valve DV1 75 6
Liquid control valve HV1 78 1
Oil cylinder E1 80 1
Manual hydraulic control valve SV2 84 6
Constant pressure throttle valve EV2 86 1
Electric controllable valve DV3 89 6
Liquid control valve HV3 92 1
Oil cylinder E2 94 1
Manual hydraulic control valve SV4 98 6
Oil cylinder F2 100 1
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Table 11: Logical GO operator and auxiliary GO operator in the GO model of PSSTCS.

Logical relationship No. (operator) Type (operator)
OR 4, 8, 11, 19, 66, 70, 39, 42, 51, 57, 62, 65, 117, 118 2
AND 119, 120, 121, 122, 123, 124, 125, 126, 129 10
Condition signal flow 12, 22 20
Standby 14, 24 18A
Auxiliary operator for combinational signal 54 15B
Auxiliary operator for GO operation 76, 83, 90, 97, 103, 110 25A
Auxiliary operator for GO operation 81, 88, 95, 101, 108, 115 25B
Multi-function integration control logic 45, 127, 128 23

Table 10: Continued.

Unit No. (operator) Type (operator)
Manual hydraulic control valve SV5 103 6
Constant pressure throttle valve EV5 106 6
Electric controllable valve DV6 109 6
Liquid control valve HV6 112 1
Oil cylinder F3 114 1

Vitual
5 – 26 

Vitual
5 – 31 

26

6 – 27 1 – 28 19 – 29 24 – 3027 28 29

31

34
33

32 30 35 36

37
39

41

67

42

38

1 – 34

1 – 32 1 – 33 1 – 35 6 – 36

1 – 40

1 – 37 10 – 39

10 – 42

1 – 38

1 – 67 21 – 43

43 – 39

43 – 42

21 – 44

44 – 39

44 – 42

23 – 45

1 – 41
40

45

5 – 1
1

1 – 2

2 – 4

1 – 3

2

3

4
Vitual
5 – 7

7

5

6

6 – 5

6 – 6

2 – 8
8

1 – 9

1 – 10

20 – 12
12

10

9

2 – 11

1 – 13
13

11

18A – 14

1 – 15

14

15

6 – 16

6 – 17

16

17

1 – 18 18

2 – 19

19 1 – 20

20 – 22

1 – 69

20

22

69

1 – 21

1 – 23

2 – 70

21

23

24

68

18A – 24 19 – 25

1 – 68

25

Vitual
5 – 49 49

48

46

51

50

6 – 47

10 – 51

5 – 48

5 – 50

5 – 46
47

1 – 52

1 – 53

52

54

53

15B – 54 22 – 55

55 – 52

55 – 53

1 – 56 10 – 57 6 – 58

1 – 59

1 – 64
10 – 65

6 – 6310 – 621 – 61
61

56 57 58

65

70

59

64

63

60

62

Vitual
5 – 60

47
71

1 – 71 1 – 72
71 72

23

6 – 74

6 – 75

6 – 82

6 – 89

6 – 96

6 – 102

6 – 109

6 – 116

73

74

75

82

89

96

102

109

Vitual
5 – 73

25A – 
76

25A – 
83

25A – 
90

25A – 
97

25A – 
103

25A – 
110

76

83

90

97

6 – 77

6 – 84

6 – 91

6 – 98

6 – 104

6 – 111

103 104

98

91

84

77

110 111

116

1 – 78

1 – 85

1 – 92

1 – 99

1 – 105

1 – 112

78

85

92

105

112

1 – 79

1 – 86

1 – 93

6 – 106

6 – 113

79

86

93

99

106

113

1 – 80

1 – 87

1 – 94

1 – 100

1 – 107

1 – 114
114

107

100

94

87

80 25B –
81

25B –
88

25B –
95

25B –
101

25B –
108

25B –
115

81 – 75

81 – 74
88 – 82

88 – 74
95 – 89

95 – 74
101 – 96

101 – 74
108 – 102

108 – 74

115 – 74

115 – 109

10 –117

10 –118

10 –119

10 –120

10 –121

10 –122

10 –123

10 –124
23 –128

2 – 66

23 – 127

10 –129

10 –125

10 –126

117

118

119

120

121

122

123

66

129

124

126

125

System
output

127

128

F

C

Figure 14: GO model of PSSTCS.
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7. Conclusions

To improve the design robustness, rather than optimizing
one single design point, the approach presented in this paper
maximizes the region in the design space where all design
points meet the required performance goal. Moreover, re-
gions expressed by hyperboxes are considered in order to
decouple parameters.

To this end, an innovative global approach that combines
metaheuristic algorithms and the DIRECT algorithm is
proposed to seek a maximum solution hyperbox. .e met-
aheuristic algorithm is used to obtain a maximum hyperbox
and the DIRECTalgorithm is used as a checking technique to
guarantee that the obtained hyperbox is a solution hyperbox.
More specifically, the SA-DIRECT and dCMA-ES-DIRECT
methods are presented in detail. .e results of studies on
complex numerical examples and engineering cases have
shown that these two methods have better performance than
the GHZ and CES-IA methods. Since the DIRECTalgorithm
only requires evaluating the values of the performance
function at the sample points, the proposed approach can be
used for both analytically known and black-box performance
functions. .e performance function is continuous in most
engineering problems; therefore, the proposed approach is a
powerful tool that engineering designers can use to obtain a
maximum solution hyperbox.

.e optimality of the proposed approach mainly de-
pends on the properties of the metaheuristic algorithms..e
twometaheuristic algorithms we adopt are global search and
have great possibility to reach the globally optimal solution.
Our work can be further improved provided that more
advanced global search algorithms are developed.

Appendix

A. Covariance Matrix Adaptation
Evolution Strategy

An in-depth discussion on initial values of parameters of
covariant matrix adaptation evolution strategy is given in
[53]. In the jth deme, j � 1, . . . , dc, evolution path pσj � 0
and pcj � 0, the initial distribution mean m0j is chosen
randomly and uniformly in the design space [xl, xu], and the
step-size σ0j � 0.3. However, the initial covariance matrix
C0j is problem dependent. Specifically, if the design interval
is [ai, bi], different design intervals for different variables can
be reflected by an initialization of C0j, in which the main
diagonal elements of C0j obey cii � (bi − ai)

2 and the entries
outside the main diagonal are all zero. Note that bi − ai’s
should not disagree by several orders of magnitude. Oth-
erwise, a scaling of the variables should be applied. .ere-
fore, in this paper, we set C0j � diag((xu

1 − xl
1)

2, . . . ,

(xu
m − xl

m)2, (xu
1 − xl

1)
2, . . . , (xu

m − xl
m)2).

.e termination condition for dCMA-ES-DIRECT is the
number of generations. .e total number of generations
gmax for the dCMA-ES-DIRECTmethod is the same as the
number of the outer iterations for the SA-DIRECTmethod.

In the covariance matrix adaptation evolution strategy, a
population of new individuals is generated by sampling from

a multivariate normal distribution. In the optimization
problem (7), the basic equation for sampling ds individuals,
for the generation number g and the jth deme, is

xboundk ∼ N mgj, σ
2
gjCgj , k � (j − 1) × ds + 1, . . . , j × ds,

(A.1)

where N(mgj, σ2gjCgj) is a normal distribution with mean
mgj and covariance matrix σ2gjCgj. As defined in Section 2.2,
xbound � (xlow, xup)..e dCMA-ES depends on selection and
recombination and step-size control, as well as covariance
matrix adaptation, i.e., how to calculate mg+1,j, Cg+1,j, and
σg+1,j for the next generation g + 1 and the jth deme.

.e new mean value is computed as

mg+1,j � 

μ

i�1
wix

bound
i: ds

� mgj + 

μ

i�1
wi xboundi: ds

− mgj , (A.2)

where wi is the recombination weight, 
μ
i�1 wi � 1, xboundi: ds

denotes the ith best individual out of xboundk1
, . . . , xboundk2

,
k1 � ds × (j − 1) + 1, and k2 � ds × j.

.e step-size σgj is updated using the cumulative step-
size adaptation (CSA). .e evolution path pσj is updated
first:

pσj %← 1 − cσ( pσj +

�����������

cσ 2 − cσ( μw



C
− 1/2
gj

mg+1,j − mgj

σgj

,

(A.3)

σg+1,j � σgj exp
cσ

dσ

pσj

�����

�����

E‖N(0, I)‖
− 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (A.4)

where μw � (
μ
i�1 wi)

− 1 is the variance effective selection
mass, E‖N(0, I)‖ � (

�
2

√
Γ((2m + 1)/2)/Γ(m)) ≈

���
2m

√
(1 −

(1/8m) + (1/84m2)), I denotes the identity matrix, and dσ is
the damping parameter.

Finally, the covariance matrix Cgj is updated. .e
evolution path pcj is updated first:

pcj← 1 − cc( pcj + hσ

��������

cc 2 − cc( 


���
μw

√ mg+1,j − mgj

σgj

,

(A.5)

Cg+1,j � 1 − ccov( Cgj +
ccov

μcov
pcjp

T
cj + δ hσ( Cgj 

+ ccov 1 −
1

μcov
  

μ

i�1
wi

xi: ds
− mgj

σgj

xi: ds
− mgj

σgj

 

T

,

(A.6)

where T denotes the transpose, δ(hσ) � (1 − hσ)cc(2 − cc) is
minor relevance, and

hσ �

1, if
pcj

1 − 1 − cσ( 
2(g+1)
< 1.4 +

2
2m + 1

 E‖N(0, I)‖,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(A.7)
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.e default strategy parameters are μ, wi�1,...,u, cσ , dσ , cc,
μcov, and ccov. Default strategy parameters values are given in
[53] and shown in Table 9. Hansen [53] has pointed out these
default parameters are in particular chosen to be a robust
setting, and thus are not recommended to be changed.

B. The Goal-Oriented (GO) Reliability
Assessment Method

.e goal-oriented (GO) reliability assessment method for
the power-shift steering transmission control system
(PSSTCS) is given in [54] in detail.

.e function GO operators, logical GO operators, and
auxiliary GO operators are selected to describe the unit itself,
its logical relationships, and auxiliary GO operation in the
PSSTCS, respectively, as presented in Tables 10 and 11.

.e GO model of the PSSTCS is developed by using the
signal flows to connect the above GO operators, as shown in
Figure 14. .e signal flow 129 is the system’s reliability
output.
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