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+is paper aims to disclose the compound topological and directional relationships of three simple regions in the three-di-
mensional (3D) space. For this purpose, the directional model and the 8-intersection model were coupled into an R5DOS-
intersection model and used to represent three simple regions in the 3D space. +e matrices represented by the model were found
to be complete and mutually exclusive.+en, a self-designed algorithm was adopted to solve the model, yielding 11,038 achievable
topological and directional relationships. Compared with the minimum bounding rectangle (MBR) model, the proposed model
boasts strong expressive power. Finally, our model was applied to derive the topological and directional relationships between
simple regions A and C from the known relationships between simple regions A and B and those between B and C. Based on the
results, a compound relationship reasoning table was established for A and C. +e research results shed new light on the
representation and reasoning of 3D spatial relationships.

1. Introduction

+e reasoning of spatial relationship, a.k.a. spatial reasoning,
can be implemented quantitatively or qualitatively. Quali-
tative spatial reasoning, aiming to represent and analyze
spatial information, is an important tool in artificial intel-
ligence (AI), machine vision, robot navigation [1, 2], and
geographic information system [3].

Over three decades, many theories andmodels have been
developed for spatial reasoning. For instance, Randell et al.
[4, 5] put forward the region connection calculus (RCC)
theory. Egenhofer and Franzosa [6, 7] proposed the theory of
4-intersection model and 9-intersection model. Li [8] de-
rived a dynamic reasoning method for azimuth relationship.

In recent years, spatial reasoning has evolved rapidly,
thanks to the emerging AI applications in image processing
[9, 10], computer vision [11, 12], and model prediction [13].
However, most studies on spatial reasoning focus on the
spatial relationships on two-dimensional (2D) planes rather

than those in three-dimensional (3D) spaces. +e 3D space
contains too many information elements to be handled by
ordinary reasoning methods.

At present, the relationships between objects in the 3D
space are mostly solved by compound reasoning. +e
common approaches of compound reasoning include the
compound reasoning of directional and topological rela-
tionships [14, 15] and the compound reasoning of direc-
tional and distance relationships [16]. Liu et al. [17] designed
a 3D improved composite spatial relationship model (3D-
ICSRM) in a large-scale environment and proposed a rea-
soning algorithm to solve that model. +e accuracy of the
3D-ICSRM is very limited, and it considers the relationship
between qualitative distance and direction. In 2016, Hou
et al. [18] extended the convex tractable subalgebra into 3D
space and used the BCD algorithm to calculate it. In 2019,
Wang et al. [19] extended the oriented point relation algebra
(OPRAm)model to 3D and proposed oriented point relation
algebra in three-dimensional (OPRA3Dm) algorithm, which

Hindawi
Complexity
Volume 2020, Article ID 3849053, 15 pages
https://doi.org/10.1155/2020/3849053

mailto:huyating@jlau.edu.cn
https://orcid.org/0000-0002-0854-5051
https://orcid.org/0000-0003-2946-1006
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3849053


has certain practical significance. +ese two papers consider
the direction relationship. In recent years, the literature
mainly studies the relationship between the direction and
qualitative distance, while there is less research on the di-
rection and topological relationship. +is article will focus
on the direction and topological relationship to fill the gaps
in this field.

+is paper aims to disclose the compound topological
and directional relationships of three simple regions in the
3D space. Firstly, the RCC-5 model was combined with a
strong directional relationship model for two simple regions,
based on the extended 4-intersection theory and spatial
orientation relationship in RCC5. +e combined model was
used to identify the compound topological and azimuth
relationships between two simple regions, and solved by a
self-designed algorithm.+rough programming, a total of 65
topological and directional relationships were obtained in
the 3D space.

On this basis, the extended 4-intersection matrix was
replaced with an 8-intersection matrix to represent the 3D
spatial topological and directional relationships between
three simple regions. +en, it was found that the topological
and directional relationships between the R5DOS-inter-
section model of two regions and three regions are complete
and mutually exclusive. Further programming reveals a total
of 11,038 topological and azimuth relationships between
three simple regions in the 3D space and derives a simple

topological and directional relationship R (A, C) from two
sets of two simple regions R (A, B) and R (B, C).

2. Materials and Methods

2.1. RCC"eory. In 1992, Randell et al. [4, 5] proposed the
RCC theory and established the RCC-8 intersection model,
which is a boundary-sensitive model. Based on the
boundary-sensitive conditions, the RCC-5 intersection
model can be derived (Figure 1).

In 1991 and 1995, Egenhofer et al. constructed an ex-
tended 4-intersection matrix, which covers two space objects
A and B, with A° being the interior of A:
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+e value of each position set is either empty or non-
empty. +en, the five kinds of relationships in the RCC-5
intersection model can be represented as the matrix in
Table 1 and expressed as a setR5 � 0 1 1 1( 􏼁,􏼈 1 1 1 1( 􏼁,

1 0 1 1( 􏼁, 1 0 0 1( 􏼁, 1 1 0 1( 􏼁}.
For three simple areas A, B, and C, R2 − zA ∪ zB ∪ zC{ }

can be partitioned into 8 parts (Figure 2).
+e eight parts can be illustrated by an 8-intersection

matrix:
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+eRCC theory fuels the research on spatial relationship
models in the past three decades, giving birth to many new
theories. Nonetheless, most of these theories target the 2D
plane rather than the 3D space. Recently, there is a growing
interest in the spatial relationship models of the 3D space,
especially the compound reasoning of directional and to-
pological relationships, and that of directional and distance
relationships.

2.2. Orientation Model. Minimum bounding rectangle
(MBR) is a commonly used model for directional rela-
tionship in space [18–20]. +e MBR model, 8-direction
model, and 16-direction model are shown in Figure 3 below.
+e MBR model is not consistent with human cognition of
directions.

In 2010, He and Bian [21] came up with a special 8-
direction cone model (Figure 4), which divides the space
into eight regions: NW, NE, EN, ES, SE, SW, WS, and
WN. Among them, NW and NE belong to the N direction,
EN and ES belong to the E direction, SE and SW belong to
the S direction, and WS and WN belong to the W
direction.

+e 8-direction cone model is easy to describe and
recognize and is flexible in dealing with relationships in

multiple dimensions. Compared with the 8-direction cone
model, the16-direction cone model is also consistent with
the human cognition of directions, but too complicated to
express. Hence, the 8-direction cone model is more suitable
for the reasoning of spatial relationships.

Considering its excellence in spatial segmentation, the 8-
direction cone model was coupled with the RCC-5 inter-
section model for compound reasoning of topological and
azimuth relationships in the 3D space.

2.3. Model Construction. Any object in space is wrapped by
an outer sphere ⊙A with a radius rA (Figure 5), that is,
∀(xA, yA, zA) ∈⊙A.

Taking the center of ⊙A as the origin of the rectangular
coordinate system in space, the spatial Cartesian coordinate
system can be established and the reference space can be
divided into eight intervals by the x-, y-, and z-axes. Each
interval is called a hexagram limit Oct � 1, 2, 3, 4, 5, 6, 7, 8{ }

(Figure 6).
Suppose n points Bi(xi, yi, zi) ∈ (i � 1, 2, . . . , n) are

scattered in the space. +e centroid b(xb, yb, zb) of the point
set B � B1, B2, . . . , Bn􏼈 􏼉 can be obtained by k-means clus-
tering (KMC) [20] and treated as the center of the sphere of
point set B:

2 Complexity



NW N NE

W O E

SW S SE

(a)

N
NENW

W O E

SW

S
SE

(b)

O

NWN N NEN
NE

NEE

E

SEE

SE
SES

S
SWS

SW
SWW

NWW

NW

W

(c)

Figure 3: (a) +e MBR model, (b) 8-direction model, and (c) 16-direction model.
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Figure 1: +e relationships between RCC-8 and RCC-5 intersection models.
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Figure 2: +e spatial partition of three simple areas.

Table 1: Matrix representation of the RCC-5 relationships.

RCC5 relationships DR (A, B) PO (A, B) PP (A, B) EQ (A, B) PPI (A, B)

Extended 4-intersection matrix representation 0 1
1 1􏼠 􏼡

1 1
1 1􏼠 􏼡

1 0
1 1􏼠 􏼡

1 0
0 1􏼠 􏼡

1 1
0 1􏼠 􏼡
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+e outer sphere B completely covers the n points:
∀(xBi, yBi, zBi) ∈⊙B. Similarly, the outer sphere C for point
set C can be defined as follows:
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∀ xCi, yCi, zCi( 􏼁 ∈ ⊙C, (4)

If it is impossible to find the outer sphere of the space
object, the object can be treated as an irregular convex
object. +en, five planes π1: y � 0, π2: x � 0, π3: z � 0,

π4: y � z, and π5: y � −z, can be inserted into the rectan-
gular coordinate system in space (Figure 7).

+en, the 3D space can be represented as
Dic � NE,EN,ES, SE, SW,WS,WN,NW{ }. +e angle cor-
responding to each region can be described as follows:

θNE ∈ 0,
π
4

􏼔 􏼓,

θEN ∈
π
4

,
π
2

􏼔 􏼓,

θES ∈
π
2

,
3π
4

􏼔 􏼓,

θSE ∈
3π
4

, π􏼔 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θSW ∈ π,
5π
4

􏼔 􏼓,

θWS ∈
5π
4

,
3π
2

􏼔 􏼓,

θWN ∈
3π
2

,
7π
4

􏼔 􏼓,

θNW ∈
7π
4

, 2π􏼔 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where θ is the dihedral angle of the plane πi(i � 1, 2, 3, 4, 5).
Adding the set of hexagram limits Oct � 1, 2, 3, 4, 5, 6, 7, 8{ },
the space can be divided into 16 regions:
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where DO is the set of 3D regions and their hexagram limits.
If the center of outer sphere B exists in region 1NE, then B
strongly exists in that region, denoted as s1NE. If outer
sphere B partly exists in region 2NE, then B weakly exists in
that region, denoted as w2NE. We let “0” indicate that there
is no object in the area, “1” indicates that the object “strongly
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Figure 4: +e 8-direction cone model.

Figure 5: +e outer sphere.
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Figure 6: +e hexagram limits.
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exists” in this area, and “2” indicates that the object “weakly
exists” in this area. An example is shown in Figure 8:
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For simplicity, only strong existence scenarios were
considered. +en, the set of regions, where B strongly exists,
can be defined as follows:
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Figure 7: +e insertion of five planes.
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Figure 9: +e dihedral angle.
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where θob the dihedral angle formed by planes πob and π1,
which is perpendicular to the x-axis and passes the straight
line ab (Figure 9).

For two regions, the extended 4-intersection matrix can
be introduced to the DOS:
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For three regions, the 8-intersection matrix can be in-
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Our model consists of two layers: the first layer is the
topological relationship R5 layer, and the second layer is the
orientation relationship DOS layer. +en, the following
definition can be derived.

Definition 1. For the orientation relationship layer, there is
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ε(s5SE) ε(s6SE) ε(s7SW) ε(s8SW)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

For any two simple regions A and B, it is possible to
obtain a 5× 4‘0-1 matrix. In theory, a total of 220 matrices

could be acquired, which correspond to 220 topological and
directional relationships in the 3D space:

R53DOS �

ε A
o ∩B

o ∩C
o

( 􏼁 ε A
o ∩B

o ∩ C
c

( 􏼁
o

( 􏼁 ε A
o ∩ B

c
( 􏼁

o ∩C
o

( 􏼁 ε A
o ∩ B

c
( 􏼁

o ∩ C
c

( 􏼁
o

( 􏼁

ε A
c

( 􏼁
o ∩B

o ∩C
o

( 􏼁 ε A
c

( 􏼁
o ∩B

o ∩ C
c

( 􏼁
o

( 􏼁 ε A
c

( 􏼁
o ∩ B

c
( 􏼁

o ∩C
o

( 􏼁 ε A
c

( 􏼁
o ∩ B

c
( 􏼁

o ∩ C
c

( 􏼁
o

( 􏼁

ε(s1NE) ε(s2NE) ε(s3NW) ε(s4NW)

ε(s1EN) ε(s2EN) ε(s3NW) ε(s4NW)

ε(s5ES) ε(s6ES) ε(s7WS) ε(s8WS)

ε(s5SE) ε(s6SE) ε(s7SW) ε(s8SW)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)
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Based on the topological relationship between outer
spheres B and C, the existence of the centers of the two
spheres can be described in two cases.

Case 1. Only the center of one outer sphere exists in the
current region:

ε(DOS) �

0, no center exists in the current region,

1, the center of outer sphereB exists in the current region,

2, the center of outer sphereC exists in the current region.

⎧⎪⎪⎨

⎪⎪⎩
(15)

Case 2. +e centers of both outer spheres exist in the current
region:

ε(DOS) �
0, no center exists in the current region,

1, the centers of both outer spheres exist in the current region.
􏼨 (16)

According to the above conditions, 28 × 316 matrices
could be obtained theoretically, which correspond to 28 × 316
topological and directional relationships in the 3D space.

2.4. Model Properties

Definition 2. In layer R5, any m× n -order 0-1 matrices A �

(aij)m×n and B � (bij)m×n can be defined as A∪B �

(aij∨bij)m×n. +en, a 0-1 diagonal matrix can be established
as Table 2.

+e following proposition can be derived from Table 2:

Proposition 1. ε(A∪B) � ε(A)∨ε(B).
For R5 � 0 1 1 1( 􏼁, 1 1 1 1( 􏼁, 1 0 1 1( 􏼁,􏼈

1 0 0 1( 􏼁, 1 1 0 1( 􏼁}, R (A, B) is the element that cor-
responds to the topological relationship R5 between any two
simple regions A and B.

+en, the following theorem can be obtained.

Theorem 1. For simple regions A, B, and C, there exists
ε(A

o ∩B
o
) ε(A

o ∩ (B
c
)
o
)

ε((A
c
)
o ∩B

o
) ε((A

o
)
C ∩ (B

c
)
o
)

􏼠 􏼡 � R(A, B) ∈ R5.

Similarly, there exists
ε(A

o ∩C
o
) ε(A

o ∩ (C
c
)
o
)

ε((A
c
)
o ∩C

o
) ε((A

o
)
C ∩ (C

c
)
o
)

􏼠 􏼡 � R(A, C) ∈ R5.

Theorem 2. In the 3D space given by the R5DOS-intersection
matrix, the topological relationship between the three simple
regions is mutually exclusive and complete. "e DOS space of
the R5DOS-intersection matrix, which consists of 16 regions,
is a half-open, half-closed interval with mutual exclusion.
"at is, for any three simple regions A, B, and C in the 3D
space, there exists only one relationship satisfied by the or-
dered pair <A, B, C>.

Proof. For any three simple regions A, B, and C, the 8 and 16
regions divided by the 8-interesection matrix are disjoint. +e

0-1matrix of three simple regions uniquely corresponds to the
matrix derived from the R5DOS-intersection model. In other
words, the three regions have the relationship represented by
this matrix so that the R5DOS-intersectionmatrixmodel gives
a complete topological relationship in the 3D space.

+en, it is assumed that the topological relationship
between A, B, and C corresponds to two matrices R53DOSa
and R53DOSb and can be induced by the R53DOS-inter-
section model. +en, there exists 1≤ i≤ 24 such that
R53DOSai ≠R53DOSbi. If i � 1, R53DOSai � 0 andR5
3DOSbi � 1, A° ∩ B° ∩ C° is both empty and nonempty, which
is obviously contradictory. Hence, the above theorem was
proved valid.

2.5. Constraints on Two Simple Regions. +eoretically, two
simple regions might correspond to 220 matrices, but there
must be 0-1 matrices that cannot be realized. +erefore, the
following constraints were designed on two simple regions.

Constraint 1: to correspond to a real-world topological
relationship, the 0-1 matrix of layer R5 must belong to
one of the five cases: R5 � 0 1 1 1( 􏼁,􏼈

1 1 1 1( 􏼁, 1 0 1 1( 􏼁, 1 0 0 1( 􏼁, 1 1 0 1( 􏼁}.

Constraint 2: if layer R5 satisfies R5 � 1 0 0 1( 􏼁, that
is, outer spheres A and B are equal, then the 0-1 matrix

of the DOS layer is DOS �

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. +is means,

when outer spheres A and B are equal, the center b of
outer sphere B is G, which coincides with that of outer
sphere A: b(xb, yb, zb) � (0, 0, 0).

Constraint 3: since the 16 regions are disjoint, they
must be mutually exclusive and complete. If R (A, B)
does not fall at the center of outer sphere B, it can only
exist in one of these regions. In the DOS layer, an outer
sphere only exists in one of the 16 intervals. In this way,

Complexity 7



a total of 65 directional and topological relationships
can be obtained (Table 3).

Case 1

DRs1NE,DRs2NE,DRs1EN,DRs2EN,DRs5ES,DRs6ES,DRs5SE,

DRs6SE,DRs8SW,DRs7SW,DRs8WS,DRs7WS,DRs4WN,DRs3WN,DRs4NW,DRs3NW
􏼨 􏼩 ∈ DRall,

POs1NE, POs2NE,POs1EN,POs2EN,POs5ES,POs6ES,POs5SE,

POs6SE,POs8SW, POs7SW,POs8WS, POs7WS,POs4WN,POs3WN,POs4NW,POs3NW
􏼨 􏼩 ∈ POall,

PPs1NE,PPs2NE, PPs1EN, PPs2EN,PPs5ES, PPs6ES,

PPs5SE, PPs6SE,PPs8SW,PPs7SW, PPs8WS,PPs7WS,PPs4WN, PPs3WN,PPs4NW, PPs3NW
􏼨 􏼩 ∈ PPall,

PPIs1NE,PPIs2NE, PPIs1EN, PPIs2EN,PPIs5ES, PPIs6ES,

PPIs5SE,PPIs6SE,PPIs8SW, PPIs7SW,PPIs8WS,PPIs7WS,

PPIs4WN, PPIs3WN,PPIs4NW, PPIs3NW

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∈ PPIall.

(17)

Case 2

DRall,POall,PPall,EQ, PPIall{ } ∈ Φ. (18)

2.6. Constraints on "ree Simple Regions. +e following
constraints were designed on three simple regions.

Constraint 1: to uniquely correspond to the topological
and directional relationships in the 3D space, a R53DOS
matrix must satisfy the following conditions.

Definition 3

ε A
o ∩B

o ∩C
o

( 􏼁 ε A
o ∩ B

c
( 􏼁

o ∩C
o

( 􏼁

ε A
c

( 􏼁
o ∩B

o ∩C
o

( 􏼁 ε A
c

( 􏼁
o ∩ B

c
( 􏼁

o ∩C
o

( 􏼁

⎛⎝ ⎞⎠∨
ε A

o ∩B
o ∩ C

c
( 􏼁

o
( 􏼁 ε A

o ∩ B
c

( 􏼁
o ∩ C

c
( 􏼁

o
( 􏼁

ε A
c

( 􏼁
o ∩B

o ∩ C
c

( 􏼁
o

( 􏼁 ε A
C

􏼐 􏼑
o
∩ B

c
( 􏼁

o ∩ C
c

( 􏼁
o

􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠,

R(A, B) �
ε A

o ∩B
o

( 􏼁 ε A
o ∩ B

c
( 􏼁

o
( 􏼁

ε A
c

( 􏼁
o ∩B

o
( 􏼁 ε A

o
( 􏼁

C ∩ B
c

( 􏼁
o

􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠ ∈ R5,

ε A
o ∩B

o ∩C
o

( 􏼁 ε A
o ∩B

o ∩ C
c

( 􏼁
o

( 􏼁

ε A
c

( 􏼁
o ∩B

o ∩C
o

( 􏼁 ε A
c

( 􏼁
o ∩B

o ∩ C
c

( 􏼁
o

( 􏼁

⎛⎝ ⎞⎠∨
ε A

o ∩ B
c

( 􏼁
o ∩C

o
( 􏼁 ε A

o ∩ C
c

( 􏼁
o ∩ C

c
( 􏼁

o
( 􏼁

ε A
c

( 􏼁
o ∩ B

c
( 􏼁

o ∩C
o

( 􏼁 ε A
c

( 􏼁
o ∩ B

c
( 􏼁

o ∩ C
c

( 􏼁
o

( 􏼁

⎛⎝ ⎞⎠,

R(A, C) �
ε A

o ∩C
o

( 􏼁 ε A
o ∩ C

c
( 􏼁

o
( 􏼁

ε A
c

( 􏼁
o ∩C

o
( 􏼁 ε A

o
( 􏼁

C ∩ C
c

( 􏼁
o

􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠ ∈ R5,

ε A
o ∩B

o ∩C
o

( 􏼁 ε A
o ∩B

o ∩ C
c

( 􏼁
o

( 􏼁

ε A
o ∩ B

c
( 􏼁

o ∩C
o

( 􏼁 ε A
o ∩ B

c
( 􏼁

o ∩ C
c

( 􏼁
o

( 􏼁

⎛⎝ ⎞⎠∨
ε A

c
( 􏼁

o ∩B
o ∩C

o
( 􏼁 ε A

c
( 􏼁

o ∩B
o ∩ C

c
( 􏼁

o
( 􏼁

ε A
c

( 􏼁
o ∩ B

c
( 􏼁

o ∩C
o

( 􏼁 ε A
C

􏼐 􏼑
o
∩ B

c
( 􏼁

o ∩ C
c

( 􏼁
o

􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠,

R(B, C) �
ε B

o ∩C
o

( 􏼁 ε B
o ∩ C

c
( 􏼁

o
( 􏼁

ε B
c

( 􏼁
o ∩C

o
( 􏼁 ε B

o
( 􏼁

C ∩ C
c

( 􏼁
o

􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠ ∈ R5.

(19)

Table 2: +e 0-1 diagonal matrix.

∨ 0 1
0 0 1
1 1 1

8 Complexity



Constraint 2: since all three simple regions are boun-
ded, (AC)° ∩ ​ (BC)° ∩ ​ (CC)° is always 1.
From Constraints 1 and 2, it can be inferred that layer
R5 has109 topological relationships for any three simple
regions in the 3D space.
Constraint 3: after adding the orientation relationship,
some topological relationships are not satisfied in the
orientation regions. In some topological relationships,
the center of an outer sphere will change with that of
the other outer spheres. For instance, if layer

R5 �
0 1 0 1
1 0 0 1􏼠 􏼡, the outer sphere B will change with

the overlap between outer spheres A and C (Figure 10).
Case 1: if theA, B, and C are equal, they can be regarded
as one area:

DOS �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

Case 2: if any two of the three simple regions are equal,
the ternary region can be regarded as a binary region
with only one 1 in the DOS layer.
Case 3: if any two of the three simple regions are in-
clusive or noninclusive, the ternary region can be
regarded as a binary region when any two regions
intersect and the sum of layer R5 is 4.
Case 4: if only one of the three simple regions is in-
clusive or noninclusive, the ternary region can be
regarded as a binary region when any two regions
intersect and the sum of layer R5 is 5.
Case 5: if the three simple regions are disjoint, the
ternary region can be regarded as a binary region when
any two regions intersect and the sum of layer R5 is 5.
Case 6: if simple regions B and C are inclusive or
noninclusive and separated from A, then the center of
the A can only fall within B and C:

xin, yin, zin( 􏼁 ∈ Pout. (21)

For a ternary reference object in the 3D space, there are
theoretically 28 × 316 matrices. Under the above constraints,
a total of 11,038 matrices were obtained after removing the
nonexistent scenarios.

2.7. Topological RelationshipAlgorithm for 3 SimpleRegions in
the 3D Space. +e topological relationship algorithm for 3
simple regions in the 3D space can be implemented in the
following steps.

Step 1: assign each object a row vector [a1, a2, . . ., a24].
Generate a theoretical object of the type 28 × 316, i.e., a
matrix A of 28 × 316 row vectors.
Step 2: scan each row of matrix A, and mark all row
vectors that satisfy the constraints.
Step 3: save all the marked row vectors as a matrix B and
output the matrix as the final result.

+e pseudocode of the algorithm is displayed as follows.
Topological and directional relationship:
Gen (null; R53DOSa)//Input: null; output: topological

relationship satisfying constraints (Algorithm 1).

3. Results and Discussion

3.1. Comparison between R53DOS-Intersection Model and
MBR Model. +is section proves that the R53DOS-inter-
section model has stronger expressive power than the MBR
model in the 3D space [21–23].

First, layer R5 was defined as R (A, B)�PPI, R (A, C)�

PPI, and R (B, C)�PPI, and the center of outer sphere B was
assumed to fall into 1NE or 2NE. +is situation does not
exist in the real world. Under Constraints 2 and 4, there is no
solution to this situation. However, the R53DOS-intersec-
tion model can explain the situation that cannot be realized
in the 3D space.

Next, the R53DOS-intersectionmodel was found capable
of expressing situation that cannot be illustrated by the MBR
model through the analysis of the following example. For
any three external spheresA–C in the 3D space, it is assumed
that the topological and azimuth relationships between them
are known, and these spheres are separated from each other.

(1) R53DOSaALL⟵ 28∗ 316 basic topological relationships//All basic topological relationships
(2) R53DOSa⟵ null//TR empty Test
(3) for each x in R53DOSaALL
(4) if x satisfies Constraint 1//if t satisfies Constraint 1Test
(5) if x satisfies Constraint 2//if t satisfies Constraint 2Test
(6) if x satisfies Constraint 3//if t satisfies Constraint 3
(7) R53DOSa⟵ {R53DOSa, x}//If the constraint is satisfied, t is placed in TR
(8) end if
(9) end if
(10) end for
(11) return R53DOSa//Return result

ALGORITHM 1
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For the MBR model, Example 1: (a) dir (A, B)�(1, 1, 1)
and (b) dir (A, C)�(1, 1, 1) were obtained for the two ex-
amples (Figures 11 and 12).

For the R53DOS-intersection model, layer R5 can be
described as R (A, B)�DR, R (A,C)�DR, and R (B,C)�DR.
+en,
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⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ � 0 1 1 1( 􏼁,
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⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ � 0 1 1 1( 􏼁.

(22)

Without changing the positions of A–C, the images of
the R53DOS-intersection model in the two examples can be

obtained as Figures 13 and 14, where green, blue, and red
balls are the outer spheres A–C, respectively.

Figure 10: Special case.
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R53DOS1 �

0 0 0 1

0 1 1 1

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

R53DOS2 �

0 0 0 1
0 1 1 1
2 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

Example 2. (a) dir (A, B)�(0, 0, 1) and (b) dir (A, C)� (0, 1,
1) were obtained for the two examples (Figures 15 and 16).

In the same way, we can get the corresponding R53DOS-
intersection model (Figures 17 and 18):

R53DOS3 �

1 0 0 0

1 1 1 1

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

R53DOS4 �

1 0 0 0
1 1 0 1
2 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

+rough the above comparison, it can be seen that the
R53DOS-intersection model can represent the topological
relationship of space objects A, B, and C, and it can accu-
rately represent the spatial situation that the MBR model
cannot represent.

3.2. Comnd Relationship Reasoning Based on R53DOS-In-
tersection Model. +is section applies the R53DOS-Inter-
section Model to the reasoning of the compound
relationships between simple regions in the 3D space. It is
assumed that the topological and azimuth relationships
between simple regions A and B and those between simple
regions B and C are known in advance. +en, the goal is to
deduce the possible topological and azimuth relationships
between simple regions A and C.

According to Section 2.3, we have

Figure 11: MBR model in Example 1(a).

Figure 12: MBR model in Example 1(b).
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Figure 13: R53DOS-intersection model in Example 1(a).
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Figure 14: R53DOS-intersection model in Example 1(b).
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Figure 15: MBR model in Example 2(a).

Figure 16: MBR model in Example 2(b).
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Figure 17: R53DOS-intersection model in Example 2(a).
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Figure 18: R53DOS-intersection model in Example 2(a).
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R52DOS �

A
o ∩B

o
A

o ∩ B
c

( 􏼁
o

A
c

( 􏼁
o ∩B

o
A

c
( 􏼁

o ∩ B
c

( 􏼁
o

s1NE s2EN s3NW s4NW

s1EN s2EN s3NW s4NW

s5ES s6ES s7WS s8WS

s5SE s6SE s7SW s8SW

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(27)

Using the R53DOS-intersection model, a total of 65
topological and azimuth relationships were obtained from
the real world. Hence, it is possible to obtain 65 0-1 matrices

of 5 rows and 4 columns, which is denoted as
Ω1 � Ri; i � 1, . . . , 65􏼈 􏼉Ri. Targeting at region A, the topo-
logical and directional relationships between A and C and
those between B and C were taken into account.

Since the topological and azimuth relationships be-
tween simple regions A and B and those between simple
regions B and C are known in advance, we have
R(B, C) ∈ Ω1. +en, the possible topological and orienta-
tion relationships between A and C were derived from the
R53DOS-intersection model. According to Definition 2, we
have

Table 3: +e list of all directional and topological relationships.

Topological relationships Regions

DR DRs1NE,DRs2NE,DRs1EN,DRs2EN,DRs5ES,DRs6ES,DRs5SE,

DRs6SE,DRs8SW,DRs7SW,DRs8WS,DRs7WS,

DRs4WN,DRs3WN,DRs4NW,DRs3NW
PO POs1NE, POs2NE,POs1EN,POs2EN,POs5ES,POs6ES, POs5SE,POs6SE,

POs8SW, POs7SW,POs8WS,POs7WS,

POs4WN,POs3WN,POs4NW,POs3NW
PP PPs1NE,PPs2NE,PPs1EN,PPs2EN,PPs5ES, PPs6ES,PPs5SE,

PPs6SE,PPs8SW,PPs7SW,PPs8WS,

PPs7WS,PPs4WN,PPs3WN, PPs4NW, PPs3NWEQ Equal

PPI PPIs1NE,PPIs2NE,PPIs1EN,PPIs2EN,PPIs5ES,PPIs6ES,

PPIs5SE,PPIs6SE,PPIs8SW,PPIs7SW,PPIs8WS,

PPIs7WS,PPIs4WN,PPIs3WN, PPIs4NW, PPIs3NW

Table 4: Compound relationship reasoning table.

R (B, C) R (A, B) R (A, C)

DR (B, C)

all (A, B) Φ
POall (A, B) DRall (A, C); POall (A, C); PPIall (A, C)
PPall (A, B) all (A, C)
EQall (A, B) all (A, C)
PPIall (A, B) DRall (A, C); POall (A, C); PPIall (A, C)

PO (B, C)

DRall (A, B) DRall (A, C); POall (A, C); PPall (A, C)
POall (A, B) Φ
PPall (A, B) DRall (A, C); POall (A, C); PPall (A, C)
EQall (A, B) POall (A, C)
PPIall (A, B) POall (A, C); PPIall (A, C)

PP (B, C)

DRall (A, B) DRall (A, C); POall (A, C); PPall (A, C)
POall (A, B) POall (A, C); PPall (A, C)
PPall (A, B) PPall (A, C)
EQall (A, B) PPall (A, C)
PPIall (A, B) POall (A, C); EQall (A, C); PPall (A, C); PPIall (A, C)

EQ (B, C)

DRall (A, B) all (A, C)
POall (A, B) POall (A, C)
PPall (A, B) PPall (A, C)
EQall (A, B) EQall (A, C)
PPIall (A, B) PPIall (A, C)

PPI (B, C)

DRall (A, B) DRall (A, C)
POall (A, B) DRall (A, C); POall (A, C); PPIall (A, C)
PPall (A, B) Φ
EQall (A, B) PPIall (A, C)
PPIall (A, B) PPIall (A, C)
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(28)

Suppose the real-world 0-1 matrices satisfy

M � Mi � 1, . . . , n􏼈 􏼉, (29)

+en, all 0-1 matrices must meet:

mi � R(A, B)∨R(B, C), i � 1, . . . , n. (30)

Hence, the matrix that does not satisfy the condition
belongs to the empty set, namely, M ∈∅. +is shows the
topological and directional relationships R (A, B) and R (A,
C) cannot be compounded. +en, all 0-1 matrices repre-
sented in the R53DOS-intersection model were judged one
by one. +e duplicates in the set {Mi � 1, . . ., n} were re-
moved, leaving the possible topological and azimuth rela-
tionships between A and C.

In theory, there are a total of 65× 65� 4,225 topological-
azimuth relationships R (A, B) and R (B, C). On this basis,
the compound relationship reasoning table was set up
(Table 4).

4. Conclusions

+is paper extends the compound directional and to-
pological relationships on the 2D plane to the 3D space
and then creates the R53DOS-intersection model. Based
on the model, a total of 11,038 directional and topological
relationships were calculated. Compared with the MBR
model, the proposed model can describe the relationships
between simple regions accurately and express the re-
lationships with sufficient clarity. To further improve the
model, the future research will consider the impact of
simple area boundaries on the model and apply the
R5DOS model to the formation control of UAV
formations.
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Supplementary Materials

+is code is the screening algorithm of the R5DOS-inter-
section model. +e purpose is to screen several matrices
theoretically in the model according to the constraints and
finally get the algorithm of the matrix that meets the re-
quirements, the result of running the code needs simple
processing, not the result of the article.+e code is developed
based on MATLAB software. (Supplementary Materials)
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