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Feature extraction is recognized as a critical stage in bearing fault diagnosis. Pattern spectrum (PS) and pattern spectrum entropy
(PSE) in recent years have been smoothly applied in feature extraction, whereas they easily ignore the partial impulse signatures
hidden in bearing vibration data. In this paper, the pattern gradient spectrum (PGS) and pattern gradient spectrum entropy
(PGSE) are firstly presented to improve the performance of fault feature extraction of two approaches (PS and PSE). Nonetheless,
PSE and PGSE are only able to evaluate dynamic behavior of the time series on a single scale, which implies there is no
consideration of feature information at other scales. To address this problem, a novel approach entitledmultiscale pattern gradient
spectrum entropy (MPGSE) is further implemented to extract fault features across multiple scales, where its key parameters are
determined adaptively by grey wolf optimization (GWO). Meanwhile, a Laplacian score- (LS-) based feature selection strategy is
employed to choose the sensitive features and establish a new feature set. Finally, the selected new feature set is imported into
extreme learningmachine (ELM) to identify different health conditions of rolling bearing. Performance of our designed algorithm
is tested on two experimental cases. Results confirm the availability of our proposed algorithm in feature extraction and show that
our method can recognize effectively different bearing fault categories and severities. More importantly, the designed approach
can achieve higher recognition accuracies and provide better stability by comparing with other entropy-based methods involved
in this paper.

1. Introduction

With the rapid progress and improvement of the level of
industrial modernization, large-scale mechanical equipment
has been widely used in electric power, petrochemical,
aerospace, marine, and other fields, including generator,
wind turbine, compressor, aeroengine, and hydroturbine [1].
Rolling bearings are regarded as an important joint of
modern mechanical equipment; due to the influence of
various factors (e.g., manufacturing error, material defect,
improper installation, inadequate lubrication, poor sealing,
high speed, and heavy load working), its running state will
inevitably change and even appear with various faults (e.g.,
wear, notch, scratch, smudginess, and fretting corrosion).
Microlesion emerged in rolling bearing will bring great
security risks to enterprises directly, light will cause some
economic losses and heavy will result in personnel casualties

[2–5]. On the one hand, owing to the unstable operation
condition of mechanical system and the impact of some
nonlinear elements (e.g., friction, clearance, and stiffness),
the practical bearing fault data has the properties of non-
linear, nonstationary, and low signal-to-noise ratio (SNR),
which implies that it is difficult to make effective diagnosis
directly through fast Fourier transform (FFT) and its var-
iants [6]. On the other hand, according to relevant data
statistics, in the key parts (e.g., bearing, gear, and rotor) of
mechanical equipment, the equipment failure rate caused by
the damage of bearing is up to 30%, about 20% of the faults
in the gearbox are caused by the damage of bearing, and the
damage rate of bearing in the motor is up to 40%, which
indicates that rolling bearing is considered to be one of the
most easily damaged parts in mechanical equipment. Ac-
cordingly, exploring efficient damage detection approach is
an urgent and challenging task in engineering application.
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Mathematical morphology (MM) is a nonlinear signal
processing algorithm and known for its simplicity and
practicality [7]. Currently, there are many applications of
morphological filter in mechanical condition monitoring,
including feature extraction and intelligent fault diagnosis,
where feature extraction is a critical stage in intelligent fault
diagnosis of rolling-element bearing. For instance, Bai and
Zhou [8] put forward a modified top-hat transformation to
capture periodic impulse characteristics related to bearing
fault. Dong et al. [9] proposed a modified morphological
method based on the average operator of opening and
closing and signal-to-noise ratio (SNR) to extract bearing
fault feature information. Li and Liang [10] presented a
continuous-scale mathematical morphology to identify
impulsive fault feature information located in the optimal
scale band. Shen et al. [11] presented a fast and adaptive
varying-scale morphological analysis approach, and an ef-
fective detection result can be obtained. Li et al. [12] pro-
posed a diagonal slice spectrum assisted optimal scale
morphological filter for bearing feature extraction and
achieved a good diagnosis result. Lv and Yu [13] proposed an
average combination difference morphological filter
(ACDIF) and combined Teager energy kurtosis to select the
length of structuring element (SE) to extract bearing fault
feature.

On the other hand, the studies of the MM-based in-
telligent fault diagnosis approach are also universal (e.g.,
one-dimensional adaptive rank-order morphological filter
[14], the combination of morphological filter and k-nearest-
neighbor classifier [15], the combination of morphological
operators and fuzzy inference [16], the combination of MM
and support vector machine [17], the combination of
morphological filter and local tangent space alignment [18],
and the combination of morphological filter and grey re-
lational degree [19]). Meanwhile, most MM-based fault
diagnosis studies focus on three aspects including mor-
phological fractal dimension [20], morphological particle
[21], and pattern spectrum (PS) [22]. (ereinto, PS can
reveal shape characteristics of bearing vibration signal based
on the morphological opening or closing operation with
multiscale SE, while pattern spectrum entropy (PSE) is
defined based on PS, which is regarded as a newly spawned
index of complexity estimation [23]. At present, some ap-
plications with respect to the PS and PSE in fault detection
have been conducted. Hao et al. [24] applied PSE to extract
the feature vectors from bearing fault signal, and then the
extracted fault feature is imported into support-vector
machine (SVM) to complete the identification of different
fault types of bearing. Zhang et al. [25] combined local mean
decomposition (LMD) and pattern spectrum to extract fault
signatures and recognize different health conditions of
bearings. Zheng et al. [26] firstly adopted ensemble empirical
mode decomposition (EEMD) to decompose vibration
signal into several components named intrinsic mode
function (IMF), then calculate PS of the first three IMF to
build a feature set, and finally apply the SVM classifier to

provide the identification results of different health condi-
tions of bearing. However, the traditional PS and PSE are
developed based on morphological opening or closing op-
eration. Obviously, morphological opening or closing op-
eration is very suitable for extracting unilateral fault pulse
characteristics of rolling bearing, but it is easy to neglect
feature information hidden on another side [27]. According
to theoretical knowledge of MM available, it can be known
that the morphological gradient operation (MGO) can ex-
tract effectively bilateral impulse signatures (the positive and
negative direction) from bearing fault signal [28, 29].
Meanwhile, MGO has the advantages of noise reduction and
detail preserving. (erefore, based on MGO and PSE, a
modified indicator called pattern gradient spectrum entropy
(PGSE) is introduced in this paper, which can improve fault
feature extraction performance of PSE andmeasure dynamic
change of various time series. Unfortunately, whether PSE or
PGSE, they assess the complexity of a time series within a
single scale, which indicates that the relevant characteristics
on other scales are ignored. Consequently, it is necessary to
design an effective nonlinear dynamic algorithm to address
this issue.

Multiscale entropy (MSE) proposed by Costa et al. [30]
is an effective algorithm for estimation of complexity of
signal, which can obtain different feature information
over multiple scales by applying a coarse-grained pro-
cedure and overcome the weakness of inadequate feature
extraction of single-scale entropy. Besides, MSE has been
utilized in various fields including biomedical engineering
[31], EEG data denoising [32], and mechanical fault de-
tection [33]. For instance, Zhang et al. [34] firstly applied
improved multiscale entropy to extract fault features, and
then the extracted features are taken as the input of SVM
classifier for achieving the identification of different health
conditions of bearing. Liu and Han [35] firstly adopted
LMD to separate bearing fault signal to a series of product
function (PF) and then take multiscale entropy of PF as
the inputs of BP neural network to recognize different
fault categories of rolling bearing. Hsieh et al. [36] firstly
used empirical mode decomposition (EMD) to decom-
pose a vibration signal into several IMF components and
then adopted the MSE curve of IMF component to identify
the local fault of high-speed spindle. Nevertheless, the
conventional MSE easily appears as an undefined entropy
value for short-term time series and possesses an un-
derlying instability with the increase of the scale factor.
Furthermore, computational efficiency of traditional MSE
is not high, so it will cost significantly for the application
of real-time condition monitoring of industrial scene [37].
Consequently, to solve these problems existing in tradi-
tional MSE and capture more comprehensively fault
symptoms over multiple scales, through the combination
of the coarse-grained procedure and two entropies (i.e.,
PSE and PGSE), two new multiscale entropies (i.e.,
multiscale pattern spectrum entropy (MPSE) and multi-
scale pattern gradient spectrum entropy (MPGSE)) are
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proposed in this paper to quantify the complexity of time
series, which has the performance of multiresolution
analysis and can extract fault characteristics over a range
of scales.

As is known to all, because the large feature dimension
easily leads to the low computational efficiency and even
brings about dimension disaster, it is required for feature
selection after using entropy-based method to extract
multiscale features [38]. Laplacian score (LS) is a new-
fangled feature selection approach [39], which estimates
the importance of different features according to the score
of the alternative features and then complete effective
selection of sensitive features. Compared with some other
feature selection approaches (e.g., Fisher score [40] and
data variance [41]), the LS approach is simpler and easier
to understand and has advantages of reserving immensely
local and global structure information. Hence, the LS
approach in this paper is employed to feature selection,
which is aimed at reducing information redundancy and
improving calculating efficiency of the whole fault diag-
nosis. A novel sensitive feature set can be obtained after
using the LS algorithm for feature selection. Ultimately, in
order to realize automatically the health status identifi-
cation of bearings, an appropriate classification model
needs to be employed. Existing classification models are
divided into supervised and unsupervised approaches.
Generally speaking, the supervised method with the
mapping relation between the sample and label can achieve
better classification results than the unsupervised method
without the label information [42]. Various supervised
classifiers in recent years are devoted to fault detection in
rolling bearing, such as artificial neural network (ANN)
[43], SVM [44], and Bayesian classification model [45].
However, these approaches are equipped with some
shortcomings. For example, the ANN is easy to result in a
local minimum, slow convergence speed, and overfitting
due to the empirical risk minimization principle. Two
important parameters (i.e., penalty factor c and kernel
parameter g) of SVM are demanded to be defined in
advance and have the very tremendous influence on its
classification ability. (e Bayesian classification model
needs to assume that the distribution is independent, but
complete independence distribution is difficult to satisfy in
reality. Compared with the supervised approach above,
extreme learning machine (ELM) has some advantages,
including the higher computational efficiency, stronger
generalization ability, and lesser human intervention [46].
Hence, in this paper, the selected new feature set is
regarded as the input of ELM to identify different fault
patterns of rolling bearing. In a word, the main contri-
butions and originality of this paper are to put forward a
novel bearing intelligent diagnosis scheme based on
MPGSE and LS. Compared with the previous MSE, the
proposed MPGSE method has some merits, which are
mainly expressed in three aspects. Firstly, because of the
simpleness of morphological operation, the calculation of
MPGSE is faster than MSE, especially for long-term time
series. Secondly, MPGSE can avoid the undefined entropy
value existing in MSE and provide a more reliable and

accurate estimation of complexity of the nonlinear signal.
(irdly, MPGSE is relatively insensitive to noise and is
more stable than MSE in assessing the irregularity of the
signal. Of course, the proposed MPGSE also has some
areas for improvement. (e biggest drawback is that its
computational efficiency still needs to be improved if
MPGSE is applied to real-time health monitoring of
mechanical equipment under variable conditions, which is
planned for the focus of future research work. Specific
novelties of this paper are summarized as follows:

(1) A modified method called PGSE is introduced for
improving dynamic change detection of the signal

(2) A neoteric approach termed as MPGSE is developed
to extract more abundant features over multiple
scales

(3) (e LS-based feature selection strategy is employed
to choose sensitive characteristics with a higher
discrimination

(4) Simulation data and experimental examples are
performed to verify the feasibility of our presented
approach

(e remainder of this paper is organized as follows.
Section 2 reviews the theory of PS and PSE. Besides, the
concept of PGS and PGSE is presented in Section 2 and
simulation analysis is conducted to compare their perfor-
mance. In Section 3, a new method named MPGSE in which
coarse-grained procedure and PGSE are combined is pro-
posed. Section 4 describes the flowchart of the proposed
approach in detail. In Section 5, two experimental cases are
analyzed to show the effectiveness of the proposed approach.
Finally, conclusions and some future works are given in
Section 6.

2. Theory Background

2.1. Multiscale Morphological Operation. For a given signal
f(n), set morphological operation g as a unit SE; λg is the SE
at scale λ and is defined as

λg � g⊕g⊕ · · · ⊕g
√√√√√√√√√√√√

λ− 1 times

� ((g⊕ · · · ⊕g)⊕g)⊕g
√√√√√√√√√√√√√√√√√√

λ− 1 times

,
(1)

where ⊕ represents dilation operation. Multiscale dilation
and erosion are expressed as

(f⊕ λg)(n) � f⊕ (g⊕g⊕ · · · ⊕g)
√√√√√√√√√√√√√√

λ− 1 times

,

(fΘλg)(n) � fΘ (gΘgΘ · · · Θg)
√√√√√√√√√√√√

λ− 1 times

,
(2)

where Θ denotes erosion operation. Multiscale opening or
closing operation can be obtained by

(f ∘ λg)(n) � ((fΘλg)⊕ λg)(n),

(f · λg)(n) � ((f⊕ λg)Θλg)(n).
(3)

Correspondingly, multiscale morphological gradient
operation (MGO) can be written as [47]

Complexity 3



MGO f(n)λg  � (f⊕ λg)(n) − (fΘλg)(n). (4)

2.2. PS and PSE. If f(n) is a given one-dimensional signal
and g(m) is the SE, PS is defined as

PS(f, λ, g) �

−
dA(f ∘ λg)

dλ
, λ≥ 0,

−
dA(f • (− λ)g)

dλ
, λ< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where λ is the SE scale, A(f) is a finite area in the domain of
definition, and ∘ and • are the opening and closing op-
eration, respectively. When λ≥ 0, equation (5) is called as PS
for the open operation and denoted by PS+(f, λ, g), while
when λ< 0, equation (5) is called as PS for the closing
operation and denoted by PS− (f, λ, g). PS is usually com-
posed of the positive and negative intervals, where
PS+(f, λ, g) represents intrinsic information of the signal
and PS− (f, λ, g) represents background information of the
signal. Because the positive and negative intervals are
consistent, PS− (f, λ, g) is usually used for calculating the PS.
If f(n) is an one-dimensional discrete signal, equation (5) is
rewritten as

PS+(λ, g) � A[(f ∘ λg) − (f ∘ (λ + 1)g)], 0≤ λ≤ λmax,

PS− (λ, g) � A[(f • (− λ)g) − (f • (− λ + 1)g)], λmin ≤ λ≤ 0,


(6)

where A(f) � nf(n). According to the definition of
Shannon entropy, PSE is defined as

PSE(f/g) � − 

λmax

λ�λmin

q(λ)In q(λ). (7)

2.3. PGS and PGSE. PS and PSE are defined based on the
opening or closing operation, whereas the opening or
closing operation only can extract negative impulses, which
is easy to ignore some key information. Because MGO can
disclose simultaneously the positive and negative impulse
sequences, PGS and PGSE are presented in this section by
combining MGO and two methods (PS and PSE). If f(n) is
an one-dimensional signal and g(m) is the SE, PGS is
expressed as

PGS(f, λ, g) �

−
dA(f⊕ λg − fΘλg)

dλ
, λ≥ 0,

−
dA(fΘ(− λ)g − f⊕ (− λ)g)

dλ
, λ< 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

If f(n) is an one-dimensional discrete signal, equation
(8) is rewritten as

PGS+(λ, g) � A[(f⊕ (λ + 1)g) − (fΘ(λ + 1)g) − (f⊕ λg − fΘλg)], 0≤ λ≤ λmax,

PGS− (λ, g) � A[(fΘ(− λ + 1)g) − (f⊕ (− λ + 1)g) − (fΘ(− λ)g − f⊕ (− λ)g)], λmin ≤ λ≤ 0,
 (9)

where A(f) � nf(n). According to the definition of
Shannon entropy, PGSE is defined as

PGSE(f, λ) � − 

λmax

λ�λmin

q1(λ)In q1(λ). (10)

Apparently, the larger the PGSE is, the more the com-
plexity and uncertainty of the signal is.

2.4. Simulation Analysis. To verify the effectiveness of PGS
and PGSE, a simplified model with bearing local fault is
established as follows:

x(t) � exp − αt0(  cos 2πfct( (  + r(t), (11)

where t0 � mod(k/fs, 1/fm), k � 0, 1, 2, . . . , 4999, α andfc

denote attenuation coefficient and carrier frequency of the
system, respectively, and fs and fm denote sampling fre-
quency and fault frequency of the signal, respectively. Be-
cause the noise contained in the practical measured data is
often colored noise, r(t) in the above fault model should be
considered as a nonwhite noise (i.e., pink noise). To study

more comprehensively the efficacy of the proposed method,
here we investigate two cases (i.e., simulation signal con-
taining a white noise/nonwhite noise (pink noise)). Specifi-
cally, in equation (11), the sampling frequency fs � 10 kHz,
the sampling length L� 5000 points, the attenuation coeffi-
cient α � 800 rad/s, the carrier frequency fc is set to be
2000Hz, 3000Hz, and 4000Hz, respectively, r(t) is a white
noise/nonwhite noise, and the fault frequency fm is set to
be 60 Hz, 120 Hz, and 180Hz, respectively. Hence, three
simulation signals containing a white or nonwhite noise
can be obtained, which are, respectively, considered as the
vibration signal generated by the outer race fault (ORF),
inner race fault (IRF), and ball fault (BF) of rolling
bearing. Figure 1 shows temporal waveform of three
simulation signals under two noises (i.e., white noise and
pink noise).

Apparently, the familiar SE includes the flat, triangle, and
semicircle. (e flat SE is simple in structure and its computing
time is lesser compared with the triangle and semicircle SE, so
the flat SE g � [0, 0, 0] is selected directly to perform PGS and
PGSE. In the process of calculating the PGS and PGSE, the
largest SE scale λmax is set as 20. Figures 2(a)–2(d) plot the PS,
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PGS, PSE, and PGSE of three simulation signals under white
noise, respectively. Note that 20 data samples of each simulation
signal are selected in the process of calculating PSE and PGSE.
As shown in Figure 2(a), PS has inferior smoothness and up-
and-down fluctuating phenomenon, whereas PGS has good
smoothness and distinction degree, as shown in Figure 2(b). As
seen in Figures 2(c) and 2(d), the stability of PGSE is better than
that of PSE. Besides, PGSE has better differentiation among
different simulation signals comparedwith PSE, which indicates
feature extraction performance of PGSE is better than that of
PSE. Figures 3(a)–3(d) show the PS, PGS, PSE, and PGSE of
three simulation signals under pink noise, respectively. By
comparing Figures 3(a) and 3(b), we can observe that the
smoothness of PGS is also better than that of PS when the
colored noise is added into the fault model. Besides, it can be
seen clearly from Figures 3(c) and 3(d) that the separability and
stability of using PGSE for three simulation signals is superior to
that of using PS. (is further verifies the effectiveness of the
proposed PGS and PGSE methods. To observe the computa-
tional efficiency, CPU running time of different methods under
white noise and pink noise is listed in Table 1. All methods are
conducted on a computer with Intel Pentium CPU G3420 @
3.20GHz/4.00GB RAM. As given in Table 1, whether white
noise or nonwhite noise, computation time of PGS and PGSE is
slightly lower than that of PS and PSE. Generally speaking,
because four algorithms (i.e., PS, PSE, PGS, and PGSE) are
implemented on the basis of dilation and erosion operation,
their computational efficiency is very close inmost applications.

3. MPSE and MPGSE

3.1. Multiscale Entropy. MSE presented by Costa et al. [30]
can generate a sequence of scale time series and effectively
describe the irregularity of the nonstationary signal. To be
specific, MSE is considered as the set of sample entropy of a
time series at different scales, but MSE easily cause the

undefined value for short-term time series. (e concept of
MSE is summarized as follows:

(1) For a given time series x(i): 1≤ i≤N{ }, the coarse-
grained time series at different scale factors τ can be
obtained by equation (12). Taking scale factor τ � 2
and τ � 3 as an example, the corresponding coarse-
grained procedure is displayed in Figure 4. As shown
in Figure 4, coarse-grained procedure of MSE is
briefly interpreted as the process of averaging the raw
time series in the window with a length of τ, and the
downsampling is subsequently carried out at a scale
factor of τ:

y
(τ)
j �

1
τ



jτ

i�(j− 1)τ+1
x(i), 1≤ j≤

N

τ
 , (12)

where τ � 1, 2, . . . denotes the scale factor. Specifically,
when τ � 1, the coarse-grained time series is equivalent
to the raw signal. For τ > 1, the raw signal is separated
into τ coarse-grained time series with a length of ⌊N/τ⌋,
where ⌊ • ⌋ denotes the round-off number.

(2) Computing sample entropy of each coarse-grained
time series y

(τ)
j (1≤ j≤N/τ) and then plotting whole

sample entropy as a function of scale factor τ,

MSE(x, m, r, τ) � SE y
(τ)
j , m, r , (13)

where m means the embedding dimension, r rep-
resents the similarity tolerance, and τ denotes the
scale factor. (e flowchart of the MSE algorithm is
shown in Figure 5, where τm represents the maxi-
mum scale factor.

3.2. MPSE and MPGSE. To extract different fault features
over multiple scales and avoid the drawbacks of the un-
defined entropy value existing in MSE, two new multiscale
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Figure 1: Temporal waveform of three simulation signals under different noises: (a) white noise and (b) pink noise.
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entropies (i.e., MPSE and MPGSE) are proposed by com-
bining the coarse-grained process and two entropies (i.e.,
PSE and PGSE), which are defined as follows:

(1) For a time series x(i): 1≤ i≤N{ }, the coarse-grained
time series at different scale factors τ is obtained
using the following formula:

y
(τ)
j �

1
τ



jτ

i�(j− 1)τ+1
x(i), 1≤ j≤

N

τ
, τ � 1, 2, . . . , τmax,

(14)

where τmax stands for the defined largest scale factor.
Note that τmax coarse-grained time series with the
length of ⌊N/τ⌋ are obtained when τ � τmax, where
⌊ • ⌋ denotes the round-off number.

(2) Compute PS and PGS of each coarse-grained time
series y

(τ)
j (1≤ j≤N/τ), that is,

PS+ y
(τ)
j , λ, g  � A y

(τ)
j ∘ λg  − y

(τ)
j ∘ (λ + 1)g  ,

PGS+ y
(τ)
j , λ, g  � A y

(τ)
j ⊕ (λ + 1)g  − y

(τ)
j Θ(λ + 1)g 

− y
(τ)
j ⊕ λg − y

(τ)
j Θλg ,

(15)

where λ � 0, 1, . . . , λmax and λmax is the largest SE
scale.

(3) According to the definition of Shannon entropy,
PSE and PGSE of each coarse-grained time series y

(τ)
j

can be obtained, and then plotting whole PSE and PGSE
as a function of scale factor τ, we obtain the following:
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Figure 2: (e analysis results of different simulation signals under white noise: (a) PS, (b) PGS, (c) PSE, and (d) PGSE.
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MPSE(x, λ, τ) � PSE y
(τ)
j , λ, τ ,

MPGSE(x, λ, τ) � PGSE y
(τ)
j , λ, τ ,

(16)

where λ means the SE scale and τ denotes the scale
factor. Figures 6(a) and 6(b) describe the flowchart of
two methods (MPSE and MPGSE), respectively. Ap-
parently, the key idea of MPSE and MPGSE is the
coarse-grained procedure and the morphological op-
eration containing the SE scale, which indicates MPSE
andMPGSE do not yield the undefined value for short-
term time series.(at is, compared with MSE, MPGSE

has some superiority in avoiding the undefined entropy
value and can provide a more reliable and accurate
estimation of dynamic change. Nonetheless, two new
multiscale entropies (i.e.,MPSE andMPGSE) andMSE
are similar in theory. Firstly, two new multiscale en-
tropies (i.e., MPSE and MPGSE) and MSE have the
same coarse-grained process. Secondly, the SE scale λ
of two multiscale entropies (i.e., MPSE and MPGSE)
can be interpreted as embedding dimensionm ofMSE.
(at is,MSE can obtain ten-dimensional reconstructed
vector when embedding dimension m� 10, while two
multiscale entropies (i.e., MPSE and MPGSE) can
acquire different temporal components on 10 scales
when the SE scale λ� 10.

3.3. Parameter Selection of MPSE and MPGSE. Two im-
portant parameters (i.e., SE scale λ and scale factor τ) are
required to be set beforehand when two multiscale entropies
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Figure 3: (e analysis results of different simulation signals under pink noise: (a) PS, (b) PGS, (c) PSE, and (d) PGSE.

Table 1: CPU running time of different methods under white noise
and pink noise.

Noise type PS PSE PGS PGSE
White noise 3.3335 s 3.3808 s 3.1778 s 3.2130 s
Pink noise 4.1667 s 4.2376 s 4.1083 s 4.1392 s
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(i.e., MPSE and MPGSE) are introduced to deal with
nonlinear and nonstationary data.

Firstly, because the flat SE is simple in structure and its
computational efficiency is higher than that of the triangle
and semicircle SE, we select the flat SE in this study.
Moreover, according to properties of multiscale morpho-
logical analysis, for the selection of SE scale λ, if λ is selected
as too large, two multiscale entropies (i.e., MPSE and
MPGSE) have a good noise immunity, but they will have
poor capability of preserving detailed information and are

more time-consuming. Conversely, if λ is selected as too
small, two multiscale entropies (i.e., MPSE and MPGSE)
have a superior detail-preserving ability and high calculating
efficiency, but their antinoise property is inferior. Hence,
based on these facts, we suggest the flat SE scale
λ � 1 ∼ fs/fg − 2 for two multiscale entropies (i.e., MPSE
and MPGSE), where ⌊ • ⌋ is the round-off number, and fs

and fg are sampling frequency and fault frequency, re-
spectively. Here, there are several reasons for the choice of
the flat SE scale. On the one hand, according to Dong’s
suggestion [9], the maximal analysis length of flat SE is
normally set as fs/fg, which is meaningful and can cover
feature information of one fault repetition period com-
pletely. On the other hand, according to [48, 49], the re-
lationship between the length and scale of flat SE satisfies
L � λ + 2.(at is, the maximal analysis scale of flat SE can be
set as fs/fg − 2. (erefore, we recommend the range of
the flat SE scale is located between 1 and fs/fg − 2, which
can achieve a tradeoff between noise reduction and detail
preserving.

Secondly, according to related properties of MSE, for the
selection of scale factor τ, if τ is set as too small, two
multiscale entropies (i.e., MPSE and MPGSE) will not be
able to extract complete and comprehensive fault feature
signatures [50]. On the contrary, if τ is set as too big, two
multiscale entropies (i.e., MPSE andMPGSE) will give rise to
the instability entropy value at the larger scale factor. Be-
sides, the bigger τ will increase computation time of two
multiscale entropies (i.e., MPSE and MPGSE). Conse-
quently, according to the recommendation of [51], the
maximum scale factor τmax is usually chosen as 20, which
can achieve an accurate evaluation of complexity of the
signal and is sufficient to handle the actual data.

3.4.ComparisonbetweenMPGSEandMPSEUsingSimulation
Signal. To validate the efficacy of the presented MPGSE
algorithm, two stochastic signals (white noise and 1/f noise)
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Figure 4: Exhibition of coarse-graining procedure for scale factor τ � 2 and τ � 3.
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Figure 5: Flowchart of the MSE method.
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containing 2000 data points are used to compare the per-
formance of MPGSE and MPSE. In the process of com-
parison, we select the parameters λ� 4 and τ � 20.
Figures 7(a) and 7(b) depicts temporal waveform of the
white noise and 1/f noise, respectively. Figures 7(c) and 7(d)
plots the FFT spectrum of the white noise and 1/f noise,
respectively. As shown in Figure 7, the 1/f noise has stronger
complexity compared with white noise due to the long-range
correlation properties. Meanwhile, white noise is more
uncertain compared with 1/f noise. In other words, the
entropy value of white noise is theoretically larger than that
of 1/f noise.

Firstly, the MPGSE and MPSE are applied to deal with
the white noise and 1/f noise over 20 scales and the acquired
results are displayed in Figure 8. It can be found from
Figure 8 that the entropy curve obtained using MPGSE is
more stable and smoother than that obtained using MPSE.
In addition, for MPGSE and MPSE, the entropy curve of 1/f
noise is greater than that of white noise across most scales,
which are consistent with the intuitive result of spectrum
analysis. Preliminary results of the comparison show that
MPGSE can give a stable estimation of complexity of
nonlinear and nonstationary time series, which indicates
MPGSE is suitable for detecting dynamic variation of the
complex signal.

To further compare the performance of the MPGSE and
MPSE, we apply the MPGSE and MPSE to analyze 100
independent white noise and 1/f noise, each of which
contains 2000 data points. Figure 9(a) shows the error bar of
white noise for two entropies (MPGSE and MPSE), while
Figure 9(b) shows the error bar of 1/f noise for two entropies

(MPGSE and MPSE). As can be seen from Figures 9(a) and
9(b), the mean value curve of MPSE has bigger fluctuations
than MPGSE. In addition, the standard deviation (SD) of
MPGSE at each scale is smaller than that of MPSE, which
implies MPGSE can offer a more accurate and stable esti-
mation of entropy.

To investigate the impact of the SE scale λ onMPGSE, we
calculate two entropies (MPGSE and MPSE) of two noise
signals (white noise and 1/f noise) on different SE scales λ,
and Figure 10 shows the obtained results. It is obvious in
Figure 10 that the MPSE curve of two noise signals fluctuates
significantly, whereas the MPGSE curve of two noise signals
has a stabilization changing trend, which indicates that
MPGSE overmatches the MPSE method in estimation ac-
curacy of entropy. Besides, as the SE scale increases, the
entropy value of two noise signals at the same scale factor
gradually grows larger. According to multiscale morpho-
logical theory, the larger SE scale implies the more com-
puting time. Consequently, to make a tradeoff between
reliable estimation and computing efficiency, according to
[48], the SE scale λ should not be set as too large or too small
and its value is commonly recommended as 1 to
fs/fg − 2, where ⌊ • ⌋ is the rounding operation and fs

and fg are the sampling frequency and fault frequency,
respectively.

To study the effect of data size of the signal on MPGSE,
we apply MPGSE and MPSE, respectively, to analyze two
noise signals (white noise and 1/f noise) containing five data
sizes (i.e., N� 2000, 4000, 6000, 8000, and 10000). Figure 11
reveals the analyzed results of two noise signals under
different data sizes. As shown in Figure 11, as the data size
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Figure 6: Flowchart of (a) MPSE and (b) MPGSE.
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increases, the results of MPGSE basically remain unchanged,
which indicates MPGSE is barely affected by data size of the
signal. (us, in this case, the signal with a data size of 4000
points is usually sufficient for the implementation and
calculation of MPGSE. However, in practice, it should be
noted that we may need more data size for more accurate
estimation of complexity of the signal. Considering that
there are no specific criteria to accurately determine the data
size of the signal, we intend to choose different data sizes to
evaluate the complexity of signals according to the specific
signals, which is seen as the focus of our future research.

Besides, it can be observed in Figure 11 that the results of
MPGSE have better stability than MPSE. Namely, MPGSE
has more superior performance in complexity estimation of
signal compared with MPSE.

To evaluate the computational efficiency of two entropies
(MPGSE and MPSE), Tables 2 and 3 list the CPU running
time of MPGSE and MPSE for two noise signals containing
different data sizes, respectively. As shown in Tables 2 and 3,
the CPU time of MPGSE is slightly smaller than that of
MPSE. In addition, when using MPGSE and MPSE to detect
the dynamic mutation of the signal, the bigger data length in
Tables 2 and 3 implies the more CPU time and a smaller
CPU time indicates the better feature extraction ability.
Hence, according to the overall comparison result above, in
this paper, MPGSE is utilized to extract multiscale fault
features from the raw vibration data in priority.

4. The Proposed Fault Detection Scheme

4.1. LaplacianScore forFeatureSelection. As is well known, a
high-dimensional feature space will be constructed when
MPGSE is applied to excavate the fault signatures across 20
scales. Nevertheless, the more features represent the more
information redundancy and the lower computing effi-
ciency. Laplacian score (LS) is an effective feature selection
algorithm which can refine the sensitive feature infor-
mation from the acquired multiscale features and improve
fault classification accuracy. Hence, this paper selects LS
for feature selection. (eories of LS are summarized as
follows.
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Figure 7: Waveform and spectrum of the simulation signal. (a) Temporal waveform of white noise, (b) temporal waveform of 1/f noise, (c)
FFT spectrum of white noise, and (d) FFT spectrum of 1/f noise.
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Figure 9: (a) MPGSE and MPSE curves of white noise and (b) MPGSE and MPSE curves of 1/f noise.
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Figure 10: MPGSE and MPSE of the noise signal under different SE scales. (a) MPGSE of white noise, (b) MPSE of white noise, (c) MPGSE
of 1/f noise, and (d) MPSE of 1/f noise.
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Figure 11: MPGSE andMPSE of the noise signal under different data sizes. (a) MPGSE of white noise, (b) MPSE of white noise, (c) MPGSE
of 1/f noise, and (d) MPSE of 1/f noise.

Table 2: CPU running time of MPGSE and MPSE for white noise.

Methods
(e CPU time of two entropies under different data sizes

2000 4000 6000 8000 10000
MPGSE 0.4471 s 0.9166 s 1.3082 s 1.7549 s 2.2377 s
MPSE 0.4624 s 0.9368 s 1.3813 s 1.8932 s 2.4232 s

Table 3: CPU running time of MPGSE and MPSE for 1/f noise.

Methods
(e CPU time of two entropies under different data sizes

2000 4000 6000 8000 10000
MPGSE 0.4376 s 0.8352 s 1.2991 s 1.7751 s 2.2995 s
MPSE 0.4716 s 0.8919 s 1.3792 s 1.9065 s 2.4881 s
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Assume that m data samples are collected and each data
sample containsn features. Suppose that Lr indicates the Laplace
score of the r-th feature, where r � 1, 2, . . . , n, and fri indi-
cates the r-th feature of the i-th sample, where i � 1, 2, . . . , m.
Specific procedure of LS for feature selection is as follows:

(1) Establish a nearest neighbor graph G with m nodes,
where the i-th node is corresponding to xi. If xi and
xj are “close,” such as xi is among k-nearest
neighbors of xj or xj is among k-nearest neighbors
of xi, there are edge joins; otherwise, there is no edge
join. When the node label is known, one can connect
a line between two nodes of the same label.

(2) If nodes i and j are connected, weight matrix Sij of
the graph models is defined as

Sij � e
− xi − xj‖ ‖

2/t
, (17)

where t represents a befitting constant. Otherwise,
Sij � 0.

(3) For the r-th feature, define fr as

fr � fr1, fr2, . . . , frm 
T
,

D � diag(SI),

I � [1, 1, · · · , 1]
T
,

L � D − S,

(18)

where the matrix L is known as the Laplacian matrix of
the graph G. To avoid the influence of some dimen-
sional data with significant difference on construction
of the neighbor graph, each feature is averaged by

fr � fr −
fT

r DI

ITDI
I. (19)

(4) Obtain Laplacian score of the r-th feature as

Lr �
ij fri − frj 

2
Sij

Var fr( 
�

f
T

r Lfr

f
T

r Dfr

, (20)

where Var(fr) represents the variance of the r-th
feature.

According to a previous research study, the greater the Sij

value is, the smaller (fri − frj)
2 value is and the smaller the

Laplacian score Lr is, which indicates the smaller the difference
between adjacent samples in this feature is, the stronger the
local information preserving ability of this feature is. Besides,
the greater Var(fr) value represents the smaller Laplacian
score Lr, which means the larger the difference between dif-
ferent samples of this feature is, the better the classification
performance of this feature is. In concrete terms, a superior and
important feature is equipped with a small LS value. Hence, for
feature selection, we first calculate the LS value of each feature,
then rank these LS values from low to high, and finally choose
the first several features containing smaller LS values as the
sensitive features to fault pattern identification.

4.2. ELM for Fault Pattern Identification. After using the LS
algorithm for feature selection, an appropriate method needs

to be adopted to identify automatically fault categories and
severities of bearing. ELM proposed by Huang et al. [52] is
an effective pattern recognition method, which can avoid
some shortcomings (e.g., the local minimum, improper
learning rate, and overfitting) of the conventional feed-
forward neural network. Hence, this paper selects ELM for
bearing fault pattern identification. (eories of ELM are
summarized as follows.

Suppose that N different training samples xj, yj , j �

1, 2, . . . , N are available, where xj � [xj1, xj2,

. . . , xjd]T ∈ Rd is the network input vector and
tj � [tj1, tj2, . . . , tjs] ∈ Rs denotes the target output vector.
(e mathematical model of the ELM model containing L

single hidden layer nodes is expressed as



L

i�1
βig ωi · xj + bi  � oj, (j � 1, 2, . . . , N, i � 1, 2, . . . , , L),

(21)

where g(·) represents the sigmoid activation function, ωi �

[ωi1,ωi2, . . . , ωi d]T indicates the weight vector between the
input layer and the i-th hidden layer neuron,
βi � [βi1, βi2, · · · , βis]

T represents the connection weight of
the i-th hidden node to the output layer, bi denotes the bias
of the i-th hidden node, and oj implies the output of the
ELM model of the j-th sample. Another form of equation
(21) can be described as the following equality:

Hβ � T, (22)

where β � [β1, β2, . . . , βL]T represents the output weight
matrix, T � [t1, t2, . . . , tN]T denotes the target matrix, and
H indicates the hidden layer output matrix of network,
which is given by

H �

g ω1 · x1 + b1(  · · · g ωL · x1 + bL( 

⋮ ⋱ ⋮

g ω1 · xN + b1(  · · · g ωL · xN + bL( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×L

. (23)

(e purpose of training of the ELM model is to find the
parameters β which can reduce the error between output
matrix and target matrix to minimum. (e output weight β
is also expressed as

β � H
+
T, (24)

where H+ is the Moore–Penrose generalized inverse matrix
of H. It can be seen that there is no need to select the input
weight and bias of the hidden layer in ELM. Moreover, in
ELM, the problem of local optimal solution will not appear.
Hence, in this paper, it is feasible to adopt ELM for pattern
recognition after feature extraction and selection.

4.3. 7e Proposed Fault Detection Scheme. To identify dif-
ferent health status of rolling bearing accurately, a novel fault
diagnosis scheme based on MPGSE and LS is presented. (e
flowchart of our algorithm is illustrated in Figure 12, which
mainly consists of three steps (i.e., multiscale fault feature
extraction, feature selection, and fault classification). Overall
procedures of our algorithm are given as follows:
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Step 1: bearing vibration data are collected from a
mechanical fault simulator by using a data col-
lection unit

Step 2: the MPGSE algorithm is proposed to obtain
multiscale fault signatures from the collected bearing
vibration data. Concretely, in this step, to overcome the

Vibration data collection

Mechanical fault simulator Data collection unit The original data sample

Fault feature extraction using MPGSE

MPGSE (x, λ, τ) = PGSE (yj
(τ), λ, τ)

Feature selection using LS algorithm

Lr =

Calculate the Laplacian
score of each feature Select the first four features

and build a new feature set

Calculate MPGSE of the
selected data sample

Plot all PGSE as a
function of scale factor

ORF
IRF

ORBF
OIRF

ORF
IRF

ORBF
OIRF

Train ELM model and test the
performance of trained ELM model

Output the recognition result

LS3 < LS8 < LS1 < LS7
< LS2 < LS9 < LS4 < LS5

< LS6 < LS20 < LS12 < LS18
< LS11 < LS19 < LS15 < LS10
< LS16 < LS17 < LS14 < LS13

Sort each feature

Calculate the coarse-
grained time series

Condition 1

Condition 2

Condition K

Fault condition identification using ELM

Use GWO to determine the parameters of MPGSE

j(τ)
i=(j–1)τ+1x (i)1yj

(τ) = τ

(fri – frj)2Sij/Var (fr)ij

Figure 12: Flowchart of the proposed algorithm.
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disadvantage of relying on experience to select the
parameters of MPGSE, a novel intelligent optimization
algorithm termed as grey wolf optimization (GWO) is
firstly employed to determine self-adaptively two im-
portant parameters (i.e., SE scale λ and scale factor τ) of
MPGSE. Subsequently, MPGSE with the optimized
parameters is applied for multiscale feature extraction.
Figure 13 shows the flowchart of parameter optimi-
zation of MPGSE. A specific optimization procedure is
described as follows:

(1) Input data sample, initialize the population
Xi(i � 1, 2, . . . , m), and set the parameters of
GWO. Concretely, define population size of wolves
m� 30 and maximum iterations T�10. Because the
preoptimization parameters only involve two vari-
ables (λ, τ), each wolves are expressed as
Xi � (xλ, xτ), i � 1, 2, . . . , m, where xλ and xτ
represent the SE scale and scale factor, respectively.

(2) Calculate and compare the fitness value according to
the misclassification rate between the number of
misclassified samples and the amount of training
samples, find the optimal position Xi

best of the in-
dividual grey wolf, and determine the global optimal
position X

g

best of whole wolves.
(3) Update the position of each wolf in terms of grey

wolf movement pattern shown in the following
equation:

Xi(t + 1) �
Xi,α(t) + Xi,β(t) + Xi,δ(t)

3
, (25)

Xi,α(t + 1) � Xα(t) − A · C · Xα(t) − Xi(t)


,

Xi,β(t + 1) � Xβ(t) − A · C · Xβ(t) − Xi(t)


,

Xi,δ(t + 1) � Xδ(t) − A · C · Xδ(t) − Xi(t)


,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

where A denotes the convergence factor and meets
A � 2d · r1 − d, C denotes the swing factor and meets
C � 2 · r2, d denotes the range control parameter
which linearly decays from 2 to 0 over whole iter-
ation, and r1 and r2 are the random numbers between
0 and 1.

(4) Determine whether the stopping condition is sat-
isfied. Concretely, judge whether the current it-
erations are less than maximum iterations (i.e.,
t≤T) or whether the minimum error is small
enough. If iteration conditions are satisfied, stop
the iteration and output the best wolves Xbest (i.e.,
the best parameters xbest

λ and xbest
τ of MPGSE).

Otherwise, let t � t + 1 and go back to Step 2 to
continue to run until the iteration condition is
satisfied.
Step 3: the LS method is applied to calculate the
score of each feature and sort the obtained fault
feature according to the size of Laplacian score of
each feature, and then establish a new low-di-
mensional eigenvector on the basis of the first four
sensitive features containing the lower Laplacian
score.

Step 4: the obtained low-dimensional eigenvector is
fed into the ELM for recognizing different fault
categories and severities of rolling bearing, and the
final diagnosis results and reports are given
automatically.

5. Experimental Investigation

As everyone knows, each algorithm has advantages and
disadvantages. In other words, each algorithm has certain
limitations in the application scenario and sphere. Given
this, in this subsection, two experimental cases are con-
ducted, respectively, to show the effectiveness of our pro-
posed algorithm in detecting different working conditions of
rolling bearing. Meanwhile, the proposed algorithm is also
compared with other entropy-based methods to reveal the
benefits of our proposed algorithm.

5.1. Case 1: Benchmark Data from CWRU

5.1.1. Description of the Dataset. (e presented algorithm is
first used to process bearing vibration data collected fromCase
Western Reserve University (CWRU) [53]. Laboratory
equipment and its sketch are displayed in Figure 14, which is
mainly composed of a three-phase induction motor (left), a
torque transducer (middle), and a load motor (right). During
this experiment, four loads (0, 1, 2, and 3hp) are added

Start

Input sample dataset

Initialize the population and
set the parameters of GWO

Calculate and compare the fitness
value of each wolves

Find the individual optimal position and the
global optimal position of wolves

Update the positions of each wolf according to the
gray wolf movement pattern shown in equation (29)

Judge whether the stop
condition is satisfied?

Output the optimal parameters of MPGSE

Obtain the optimized MPGSE

End

Yes

No

t = t + 1

Figure 13: Flowchart of parameter optimization of MPGSE.

Complexity 15



separately to the test bearing. Single-point faults with four sizes
(0.007, 0.014, 0.021, and 0.028 inches) were manufactured,
respectively, on normal bearing by using electric discharge
machining. Figure 15 is the description of data type of bearing
under different health conditions. As shown in Figure 15, the
inner race, outer race, and ball fault is abbreviated to “IR,”
“OR,” and “B,” respectively.(e number after the abbreviation
indicates the fault size, for example, “7” in IR7 denotes the
damage size of 0.007 inches. (e test bearing is located at the
motor drive end. (e accelerometer is mounted on the 12
o’clock position of the drive end of motor housing for col-
lecting the vibration data. All data samples were obtained at a
sampling frequency of 12 kHz. Table 4 lists the detailed
specification of testing bearing.

In order to verify the recognition effect of our algorithm on
bearing fault type and degree, three datasets (A, B, and C) under
1797 rpm are investigated, which are illustrated detailedly in
Table 5. Concretely, in this case, we only investigated three kinds
of bearing faults (i.e., bearing inner race, outer race, and ball
fault). Each fault is manufactured on normal bearing by using
electric discharge machining. (e fault size of each fault is
divided into three kinds (i.e., 0.007, 0.014, and 0.021 inches),
where 1 inch roughly equals 25.4mm. Besides, the bearing outer
race fault is fixed, so the bearing outer race faults located at 6
o’clock (orthogonal to the load zone) are only analyzed in this
experiment. Amore specific description of the bearing fault can
be found in [53]. For data collection, 200 samples for each
dataset are obtained through a 2048-point nonoverlapping
window. For each working state (i.e., normal, IR fault, OR fault,
and ball fault), there are total 50 samples, where 25 data samples
under each working status are selected randomly for training
and the remainder 25 samples are taken as testing.(erefore, for
each dataset, 100 training samples and 100 test samples are
established. TakingAdataset as an example, Figure 16 shows the
temporal waveforms and their corresponding frequency spectra
of four running status. As shown in Figure 16, although fault
type of bearing can be identified using time domain and fre-
quency domain analysis, this approach is not automatic and has
high requirements for professional knowledge. (us, it is
necessary to apply the intelligence identification method to
process these vibration data.

5.1.2. Experimental Results and Analysis. Taking the A
dataset as an example, the presented algorithm is firstly

applied to analyze the A dataset. In the first step, the GWO
method is firstly employed to select automatically the pa-
rameters of MPGSE and MPSE as λ� 4 and τ � 20.
Meanwhile, MPGSE with the optimized parameters is used
to extract the multiscale fault feature of the A dataset and
obtain a high-dimensional feature matrix with a size of
200 × 20. Figure 17 shows the PS and PGS curve of bearing
vibration signal under different health conditions. It is
obvious from Figure 17 that the PGS curve of four working
conditions possesses higher distinguish degree than the PS
curve. Besides, the PGS curve has better stability in feature
extraction. (en, the LS algorithm is employed to sort the
obtained fault feature from a low score to a high score, and
the rank situations of the obtained features are shown in
equation (27). According to equation (27), the first four
features τ � 2, 1, 4, and 3 with lower score are selected as
important features to establish a new fault feature set.
Figures 18(a) and 18(b), respectively, show the two-di-
mensional distribution of MPGSE of different health con-
ditions before and after applying LS. Finally, the selected new
feature set is fed into the ELM to identify different health
conditions of bearings. Figure 19 gives the diagnosis results
of our method for the A dataset. As can be seen in Figure 19,
our method can achieve an accuracy rate of 100%, which
validates the feasibility and effectiveness of our method in
intelligent fault detection of bearings.

LS2 < LS1 < LS4 < LS3 < LS5 < LS14 < LS15 < LS16 < LS13
< LS12 < LS17 < LS9 < LS8 < LS11 < LS10 < LS7
< LS6 < LS18 < LS19 < LS20.

(27)

To illustrate the superiority of our proposed approach,
the comparisons among three methods (MPGSE and LS;
MPSE and LS; and MSE and LS) are performed by analyzing
the same experimental data. For each algorithm, 20 trials are
conducted to avoid the randomness of diagnostic results. For
the sake of fairness of comparison, the important parameters
of MSE are also determined by the GWOmethod, which are,
respectively, determined as m� 4, τ � 20, and r � 0.15σ,
where σ is the standard deviation of the original signal.
Figure 20 plots the identification results obtained by dif-
ferent methods, and the detailed diagnosis results are listed
in Table 6, including the maximum, minimum, mean, and
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Figure 14: (e experimental device and its sketch.
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Figure 15: Detailed description of bearing fault states.

Table 4: (e specification of test bearing.

Bearing type Roller diameter (mm) Pitch diameter (mm) Number of the roller Contact angle (°)
SKF6205-2RS 7.94mm (0.3126 inches) 39.04mm (1.537 inches) 9 0

Table 5: Description of three datasets.

Dataset Working state Damage size (inches) Number of training samples Number of testing samples Category labels

A

Normal 0 25 25 1
IR fault 0.007 25 25 2
OR fault 0.007 25 25 3
Ball fault 0.007 25 25 4

B

Normal 0 25 25 1
IR fault 0.014 25 25 2
OR fault 0.014 25 25 3
Ball fault 0.014 25 25 4

C

Normal 0 25 25 1
IR fault 0.021 25 25 2
OR fault 0.021 25 25 3
Ball fault 0.021 25 25 4
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Figure 16: Temporal waveform and FFT spectrum of bearing vibration data under different health conditions.
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Figure 17: Curves of different bearing vibration signal in case 1. (a) PS and (b) PGS.
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Figure 18: (a) (e original distribution of MPGSE and (b) the new distribution of MPGSE after applying the LS method in case 1.
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Figure 19: Classification results of the first trial of the proposed approach in case 1.
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standard deviation (SD) of accuracies and the average CPU
time. As can be seen, our method has the highest recognition
accuracy (100%). Besides, the proposed approach has the
lowest SD and CPU time, which indicates our method has
better stability and higher computing efficiency. Experi-
mental results show that our method is effective in identi-
fying different fault patterns of bearing.

To validate the effectiveness of combining MPGSE and
LS, Figures 21(a)–21(c) show plotting of the first two most
important features obtained by the three methods (MPGSE
and LS; MPSE and LS; andMSE and LS), respectively. As can
be seen, the sensitive features selected by the LS method are
discriminated clearly. Besides, feature aggregation and dif-
ferentiation of the proposed algorithm are superior to that of
other two methods, which means that the LS algorithm can
select fault features with higher discrimination. As a com-
parison, two randomly selected features in the three methods
(MPGSE, MPSE, and MSE) are shown in Figures 22(a)–
22(c), respectively. From Figure 22, we can find that dis-
tinguish ability of the features selected randomly is not good
enough, which indicates that it is essential to apply LS to
refine the sensitive features.

To show the efficacy of applying the LS method, 20 trials
are conducted in the three methods (MPGSE, MPSE, and
MSE) without LS-based feature selection. Specifically, four
random features (τ � 1, 3, 7, and 9) in a multiscale feature

set are directly inputted to an ELM classifier to identify
different fault patterns of bearing. Table 7 shows the clas-
sification results of the three methods (MPGSE, MPSE, and
MSE). As can be seen in Table 7, the average accuracy of
MPGSE without using LS is 99%, which is slightly lower than
the average accuracy obtained using MPGSE and LS, which
indicates the advantage of applying the LS method is not
obvious. Here, we give a specific explanation for this issue.
Concretely, in case 1, the difference between benchmark
bearing data under different fault patterns is relatively ob-
vious, which indicates the complexity of bearing vibration
data under different fault patterns is diverse from each other
(i.e., MPGSE features of different bearing vibration data have
a great difference), so it becomes easier to distinguish. In
other words, for the benchmark bearing data, the inner-class
distance in the sample of the same category is small enough
and the between-class distance in the sample of the different
category is large enough, so the average accuracy obtained by
MPGSE with and without LS has a small difference. In
addition, it is important to note that benchmark bearing
vibration data in case 1 suffer from less noise interference
compared with the actual vibration data and MPGSE of
benchmark data can be identified effectively whether we use
LS or not. (is further verifies the powerful feature ex-
traction ability of MPGSE. Nonetheless, from another point
of view, the average accuracy (96.75%) of combining MPSE
and LS is apparently higher than that of the average accuracy
(73.55%) of using only MPSE, which indicates LS-based
feature selection is still a necessary step for improving di-
agnostic accuracy. Moreover, the average accuracy rate of
MPGSE is still higher than that of MPSE and MSE, which
further verify the advantage of the proposed method in fault
recognition.

To show the influence of feature dimension on the di-
agnosis result, Figure 23 plots the relation curve between
accuracy and feature dimension selected by LS. As shown in
Figure 23, as the feature dimension increases, accuracy of
different methods has an upward tendency. However, the
greater feature dimension implies the more computing time.
(us, to make a tradeoff between diagnosis accuracy and
computational efficiency, this paper selects the first four
most important features for fault identification, which meets
the engineering requirements.

Our approach is adopted to further analyze the B and C
dataset, and 20 trials are also performed. (e detailed di-
agnosis results of the three methods (MPGSE and LS; MPSE
and LS; andMSE and LS) are given in Table 8. As can be seen
in Table 8, mean accuracies of our approach reach 94.70%
and 100% for the B and C dataset, respectively, which is
higher than that of other two methods. (is indicates that
our approach can effectively recognize different fault pat-
terns of bearing.

Similarly, for the B and C dataset, classification per-
formance of three methods (MPGSE, MPSE, and MSE) is
investigated when LS is not used for feature selection. Table 9
lists the detailed diagnostic results. As shown in Table 9,
whether B or C dataset, the average accuracy obtained
without using LS is less than that of using LS. (at is, the LS
method is effective in improving fault identification rate.
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Figure 20: Diagnostic accuracy of 20 trials of three methods in case 1.

Table 6: Diagnostic results of different methods with LS feature
selection for the A dataset in case 1.

Different
methods

Diagnostic accuracy obtained using different
methods (%)

Maximum Minimum Mean SD CPU time
(s)

MPGSE and
LS 100 100 100 0 90.04

MPSE and LS 98 95 96.75 0.7164 97.77
MSE and LS 98 90 95.50 1.9868 132.78
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5.2. Case 2: Experimental Data from Laboratory

5.2.1. Description of the Dataset. (e presented method is
utilized to deal with bearing vibration data from Research
Center of Condition Monitoring and Fault Diagnosis
(RCCMFD), Southeast University. Figure 24 displays
global picture of the experimental bench, which primarily
consists of loading equipment, bearing test module,
driving system, electrical control system, and computer
monitoring equipment. In this experiment, four kinds of
faults are separately manufactured on normal bearing by
using spark machining, including outer race fault (ORF),
inner race fault (IRF), outer race-ball compound fault
(ORBF), and outer-inner race compound fault (OIRF).
Specifically, whether bearing inner race or outer race, their
single local fault size is 0.5mm in depth and 0.1mm in
width. Besides, a scratch fault is machined on the ball
surface of bearing. Figure 25 shows bearing with different
defects. (e specific size of the testing bearing is displayed
in Table 10. A PCB accelerometer with a sensitivity of
100mV/g was installed near the testing bearing block to

gather the bearing fault signal. For each fault pattern,
motor speed is stable at 1050 rpm, and bearing fault data
are sampled with a sampling frequency of 10240Hz.

In this experiment, for every failure state, 50 samples
with the data length of 2048 points are selected, whichmeans
that a total of 200 data samples are generated. More spe-
cifically, in the process of verification of the algorithm, 25
samples for every failure state are randomly chosen as the
training data and the remainder 25 samples are regarded as
the testing data. Apparently, 100 training samples and 100
testing samples can be acquired to show the effectiveness of
our algorithm, respectively. It is essentially a four-classifi-
cation problem to be addressed. Figure 26 plots the time-
domain graph of different fault signals and their corre-
sponding FFT spectrum. As illustrated in Figure 26, because
the collected bearing vibration signal contains heavy
background noise and other external interference and the
raw bearing vibration data under different fault patterns
have some similarity in their waveform and spectrum, the
bearing fault pattern cannot be exactly recognized directly
through the waveform and the spectrum, which implies that
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Figure 21: (e plotting of the best two features selected by LS in case 1. (a) MPGSE and LS, (b) MPSE and LS, and (c) MSE and LS.
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an appropriate technology should be introduced to complete
the efficient recognition of each fault pattern.

5.2.2. Experimental Results and Analysis. (e proposed
approach is utilized to analyze the abovementioned fault
data. Firstly, we apply GWO-based parameter-optimized
MPGSE to extract multiscale fault features over different
scales. Note that the optimal parameters of MPGSE are
selected as λ � 4 and τ � 20, respectively. Figures 27(a) and

27(b) show the PS and PGS curves of bearing fault data
under four states, respectively. As can be seen in Figure 27,
discrimination degree of PGS under different fault status is
better than that of PS. Meanwhile, as the SE scale increases,
the PGS value of fault data tends to stabilization, whereas the
PS value of fault data fluctuates largely, which has a negative
influence on fault classification and complexity estimation.
Secondly, the LS algorithm is employed to rank the extracted
multiscale features according to their importance and
sensitivity. (e new order of multiscale features is shown in
equation (28). According to equation (28), the first four
features (τ � 3, 8, 1, and 7) containing the richest fault in-
formation are selected to build a new feature set with the size
of 200 × 4. Figures 28(a) and 28(b) display the distribution of
multiscale features after and before applying LS, respectively.
Finally, the new feature set is regarded as the input of ELM to
recognize fault categories of bearings. Figure 29 plots the
diagnostic results of our method. As can be seen in Figure 29,
our method can obtain an accuracy rate of 100%, which
verifies the validity of our method.
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Figure 22: (e plotting of the two randomly selected features in case 1. (a) MPGSE, (b) MPSE, and (c) MSE.

Table 7: Diagnostic results of different methods without LS feature
selection for the A dataset in case 1.

Different methods
Diagnostic accuracy obtained using

different methods (%)
Maximum Minimum Mean SD

MPGSE 100 96.00 99 1.026
MPSE 76.00 70.00 73.55 1.394
MSE 91.00 85.00 88.55 1.905
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LS3 < LS8 < LS1 < LS7 < LS2 < LS9 < LS4 < LS5 < LS6
< LS20 < LS12 < LS18 < LS11 < LS19 < LS15 < LS10
< LS16 < LS17 < LS14 < LS13.

(28)

To highlight the advantages of the proposed approach,
the same fault data are analyzed on two comparisonmethods
(MPSE and MSE). Note that the important parameters of
MPSE and MSE are also determined by the GWO method,
which are optimized as m� 4 and τ � 20. To reduce the

contingency of the diagnosis results, 20 trials are conducted
on each method. (e identification results obtained using
different methods are shown in Figure 30, and the detailed
results are given in Table 11. As you can see, the proposed
method (MPGSE and LS) achieves the highest average ac-
curacy (100%), the second method (MPSE and LS) has a
diagnostic accuracy of 95% to 98%, and the third method
(MSE and LS) has a diagnostic accuracy of 90% to 98%. In
addition, SD of recognition results of the proposed approach
is lower than those in the second and third methods, which
means that the recognition rate of MPGSE has better sta-
bility than that of MPSE and MSE. Meanwhile, (e CPU
running time of the proposed MPGSE is lesser than that of
MPSE andMSE. Hence, superiority of the presentedMPGSE
method in fault classification is demonstrated by the
comparative analysis.

To show the necessity of integrating the LS method,
Figures 31(a)–31(c) plot the first two elements of the new
feature obtained by three methods (i.e., MPGSE and LS;
MPSE and LS; and MSE and LS), respectively. For com-
parison, in the three methods (MPGSE and LS; MPSE and
LS; and MSE and LS), two randomly selected features
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Figure 23: Diagnostic accuracy of three methods under different feature dimension in case 1.

Table 8: Diagnostic results of different methods with LS feature selection for the B dataset and C dataset in case 1.

Dataset
MPGSE and LS MPSE and LS MSE and LS

Accuracy (%)
CPU time (s)

Accuracy (%)
CPU time (s)

Accuracy (%)
CPU time (s)

Max Mean Max Mean Max Mean
B 98 94.70 84.88 95 91.75 88.49 92 89.20 128.28
C 100 100 87.04 100 98.95 90.45 100 98.65 127.54

Table 9: Diagnostic results of different methods without LS feature selection for the B dataset and C dataset in case 1.

Dataset
MPGSE MPSE MSE

Diagnostic accuracy (%) Diagnostic accuracy (%) Diagnostic accuracy (%)
Max Min Mean Max Min Mean Max Min Mean

B 93 92.25 92.95 77 71 73.85 75 67 70.35
C 97 94 96.40 95 89 92.15 97 90 94.00

Sensor position
Data collection
and record unitBearing test

module

Loading
equipment

Driving system

Electrical
control system

Figure 24: Structure of the experimental platform.
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without using LS are shown in Figures 32(a)–32(c), re-
spectively. As can be seen in Figure 31(a), features selected by
LS have a nice cluster and recognition degree, whereas the
randomly selected features in Figure 32(a) cannot be rec-
ognized clearly. (is implies that the combination of
MPGSE and LS is helpful in fault classification. Besides, by
comparing Figures 31(b) and 32(b), we can find that features
obtained by MPSE before and after applying LS have no
good differentiation. By comparing Figures 31(c) and 32(c),

it can also be found that features obtained by MSE before
and after applying LS are also not good enough.

To further show the effectiveness of using the LS ap-
proach, we randomly select four features (τ �1, 7, 9, 11) as
the input of the ELM classifier to identify different bearing
fault patterns. For each approach, 20 trials are also carried
out to avoid the randomness of their classification results.
Detailed diagnosis results of different approaches are given
in Table 12. It can be observed that our method can achieve

IRFORF OIRF 

Figure 25: (ree fault conditions of rolling bearing. (a) ORF, (b) IRF, and (c) OIRF.

Table 10: (e parameters of rolling bearing.

Bearing type Roller diameter (mm) Pitch diameter (mm) Number of the roller Contact angle (°)
HRB6205 7.94 39.04mm 9 0
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Figure 26: Temporal waveform and FFT spectrum of different bearing fault signals.
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Figure 27: Curves of different bearing fault signals in case 2: (a) PS and (b) PGS.
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Figure 28: (a) (e original distribution of MPGSE and (b) the new distribution of MPGSE after applying the LS method in case 2.
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Figure 29: Classification results of the first trial of the proposed approach in case 1.
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an average accuracy of 90.30%, which is higher than that of
MPSE and MSE. In other words, MPGSE has better per-
formance in feature extraction than MPSE and MSE.
However, it is very obvious that the average accuracy of
Table 12 is lower than those of Table 11, which validates the
efficacy of LS in feature selection.

5.3. Results and Discussion. According to the experimental
analysis results of two datasets above, the proposed fault di-
agnosis scheme is demonstrated to be effective for bearing fault
identification. Concretely, the proposed method (i.e., MPGSE
and LS) can achieve a classification accuracy of 99% and above
at the same time to ensure that its computational efficiency is
higher than that before improvement. In addition, various
combination comparisons are performed to verify the supe-
riority of the proposed diagnosis algorithm. Concretely, sev-
eral metrics (i.e., maximum, minimum, mean, and SD of
classification accuracy) and CPU running time are utilized to
compare the diagnosis performance of different methods,
which prove that the classification accuracy of the proposed
approach is larger than that of other comparisonmethods (i.e.,
MPSE and LS; MSE and LS). Meanwhile, the CPU running
time of the proposed approach is smaller compared with other
comparison methods (MPSE and LS; MSE and LS). Never-
theless, some challenges remain when the proposed diagnosis
approach is applied to address the problems of the identifi-
cation of different health conditions.

(1) Although the proposed MPGSE approach can
overcome the shortcomings of the undefined en-
tropy value existing in traditional multiscale entropy

and has superior feature extraction performance for
rolling element bearing, the selection of two pa-
rameters (i.e., SE scale λ and scale factor τ) of the
proposed MPGSE is still empirical. Hence, except for
GWO used in this paper, for the future work, we can
also adopt other swarm intelligent optimizers (e.g.,
genetic algorithm (GA), particle swarm optimization
(PSO), cuckoo search algorithm (CSA), firefly al-
gorithm (FA), fruit fly optimization algorithm
(FOA), and whale optimization algorithm (WOA))
to adaptively optimize the parameters of MPGSE.

(2) (e core idea of this paper is that the presented
MPGSE and LS are combined to achieve intelligent
fault diagnosis of rolling element bearing. (at is,
except for MPGSE-based feature extraction, feature
selection is also very important in the proposed
method. Hence, in the future research, it is necessary
to introduce other effective feature extraction tech-
niques to analyze and compare the experimental
data, such as hybrid feature selection scheme [54],
local and global principal component analysis
(LGPCA), minimum redundancy maximum rele-
vance (mRMR) [55], partial maximum correlation
information (PMCI) [56], and multicluster feature
selection (MCFS) [57]. (e research and comparison
of these methods are the focus of the follow-up
research.

(3) Another important point worth mentioning is that
the proposed fault diagnosis scheme increases run-
ning time due to the fusion of three stages (MPGSE-
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Figure 30: Diagnostic accuracy of 20 trials of three methods in case 2.

Table 11: Diagnostic results of different methods with LS feature selection in case 2.

Different methods
Diagnostic accuracy obtained using different methods (%)

Maximum Minimum Mean SD CPU time (s)
MPGSE and LS 100 100 100 0 106.272
MPSE and LS 92 81 88.15 2.5603 107.926
MSE and LS 98 84 91.45 3.8041 147.881
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Figure 31: (e plotting of the best two features selected by LS in case 2. (a) MPGSE and LS, (b) MPSE and LS, and (c) MSE and LS.
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Figure 32: Continued.
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based feature extraction, LS-based feature selection,
and ELM-based fault classification). Running time of
the algorithm is not a big issue, thanks to the de-
velopment of computer science; in order to make our
approach quickly applicable to the on-line condition
monitoring and diagnosis of machinery, the im-
provement of computational efficiency of our ap-
proach is regarded as our future research direction.

6. Conclusions

In this paper, a novel dynamical indicator named PGSE is
proposed for evaluating complexity and uncertainty of the
time series. To extract different fault signatures over multiple
scales, the coarse-grained procedure and PGSE are com-
bined to design a new algorithm called MPGSE, where its
key parameters are selected by GWO. Secondly, LS approach
is utilized to select the sensitive features and establish a new
feature set, which can remove the redundant or irrelevant
feature information and improve computational efficiency.
Ultimately, the acquired new feature dataset is entered into
the ELM classifier to identify automatically different health
conditions of rolling bearing. According to the experimental
analysis results from two examples above, our designed
algorithm is proved to be effective in identifying different
fault categories and severities of rolling element bearing.

Innovations and main contributions of this article are
summarized as follows:

(1) A modified method called PGSE is formulated,
which can improve detection of dynamic change of
time series

(2) A neoteric algorithm termed as MPGSE is developed
to extract abundant fault feature over multiple scale.

(3) (e LS method is employed to select several sensitive
characteristics with a higher discrimination

(4) (e advantages of our algorithm in fault classifica-
tion are validated by the application of two experi-
mental cases

(e abovementioned results show that our method is
satisfactory and promising in intelligent fault detection of
rolling bearing. However, performance of our method is
unknown for health status recognition of bearing under
variable speed. It will be very valuable to apply MPGSE to
diagnose different fault patterns of rolling bearing when
rolling bearing is running at variable speed. (is research
point will be carried out in the future work.

Nomenclature

SNR: Signal-to-noise ratio
FFT: Fast Fourier transform
MM: Mathematical morphology
PS: Pattern spectrum
SE: Structuring element
PSE: Pattern spectrum entropy
SVM: Support-vector machine
EEMD: Ensemble empirical mode decomposition
IMF: Intrinsic mode function
MGO: Morphological gradient operation
PGSE: Pattern gradient spectrum entropy
MSE: Multiscale entropy
LMD: Local mean decomposition
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Figure 32: (e plotting of the two randomly selected features in case 2. (a) MPGSE, (b) MPSE, and (c) MSE.

Table 12: Diagnostic results of different methods without LS
feature selection in case 2.

Different methods
Diagnostic accuracy obtained using

different methods (%)
Maximum Minimum Mean SD

MPGSE 99 83 90.30 4.2932
MPSE 84 60 74.00 4.9736
MSE 77 60 71.05 4.3465
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PF: Product function
EMD: Empirical mode decomposition
MPSE: Multiscale pattern spectrum entropy
MPGSE: Multiscale pattern gradient spectrum entropy
LS: Laplacian score
ANN: Artificial neural network
ELM: Extreme learning machine
GWO: Grey wolf optimization.
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