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A distributed fuzzy adaptive control with similar parameters is constructed for a class of heterogeneous multiagent systems.
Unlike many existing works, the dimensions of each multiagent dynamic system are considered to be nonidentical in this paper.
Firstly, similar properties for different dimensions of multiagent systems are introduced, and some similar parameters among
multiagent systems are also proposed. Secondly, a distributed fuzzy adaptive control on the basis of similar parameters is designed
for the consensus of leader-follower multiagent systems. Following the graph theory and Lyapunov stability approach, it is
concluded that UUB (uniformly ultimately bounded) of all signals in the closed-loop system can be guaranteed, and the consensus
tacking error converges to a small compact zero set. Finally, a simulation example with different dimensions is provided to
illustrate the effectiveness of the proposed method.

1. Introduction

Multiagent systems have been widely utilized in various
fields such as remedial actions [1, 2], social engineering
systems [3], satellites engineering [4], and robots co-
operative [5, 6]. More and more researchers inclined to
design the fundamental collective controls for multiagent
systems to make sure that the consensus or synchronization
of leader-follower can be guaranteed, and many excellent
controls for linear and nonlinear multiagent systems were
proposed in recent years [7–10]. Generally speaking, the
main work in designing controls is that all agents in the
entire dynamic network must reach an agreement, and the
information of each agent only can be shared locally. Un-
fortunately, in lots of actual engineering systems, uncertain
nonlinear components existed such as electrical control
systems and mechanical control systems; hence, it is
a challenge to project appropriate control with limited
information.

Fuzzy logic system (FLS) and neural network (NN) are
two universal approximations to compensate uncertain
terms in all sorts of complexity fields [11–15], and a great
quantity of corresponding research works was derived by

scholars [16–21]. For example, aiming at the high-order
multiagent systems with unknown nonlinearities in [22], an
observer-based distributed fuzzy adaptive control was
designed to deal with the unknown nonlinear functions. For
a class of strict feedback form of multiagent systems, a novel
event-triggered control was presented for the consensus
tracking in [23]. Adaptive NN event-triggered control plan
was investigated for the nonstrict feedback multiagent
systems with sensor faults and input saturation in [24]. In
[25], a fuzzy observer was designed to evaluate the un-
measurable states of nonlinear multiagent systems, and an
event-triggered control approach was studied to make the
followers synchronize with leader’s trajectory. However,
these existing results only researched on the identity of each
agent, which means that the states of every agent have same
dynamical behaviors [22–25]. In order to break this limi-
tation, different dynamic behaviors of each agent that can be
called as heterogeneous multiagent systems have been
studied [26–28]. For instance, a distributed adaptive fuzzy
control combining with the backstepping technique was
addressed for a class of second-order heterogeneous mul-
tiagent systems in [29]. In [30], the output consensus of
multiagent systems was guaranteed by using the devised
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fuzzy adaptive control. A robust consensus protocol was
designed for essential heterogeneous multiagent systems in
[31]. In order to ensure the consensus of heterogeneous
multiagent systems, a distributed proportional integral
control based on sufficient conditions was derived in [32]. It
should be noted that the proposed control schemes in
[8, 10, 26–28] were only valid for linear multiagent systems.
(ese abundant research achievements provided well
guidance for some new design algorithm controls of het-
erogeneous multiagent systems. Nevertheless, the di-
mensions of every agent are completely congruent in these
literatures [8, 26–32], and the raised control schemes will be
invalided to settle the consensus or synchronization of
multiagent systems with different dimensions. Conse-
quently, it is necessary to exploit other original control
approaches to tackle the consensus of multiagent systems
with distinct dimensions.

Motivated by the similar properties of large-scale sys-
tems in [33–38], the definition of similar nodes was in-
troduced for large-scale composite systems with different
dimensions, and some effective controls with similar pa-
rameters were addressed. From the viewpoint of mathe-
matics, every agent can be defined as a series of nodes in
a network; hence, the character of similar nodes in these
excellent research works can be drawn to develop consensus
control with similar parameters.

(is paper attempts to investigate a novel consensus
fuzzy adaptive control for a class of multiagent systems
with different dimensions, in which the dimensions of each
agent are unequal, and the similar parameters of agents are
used for devising consistency control. Compared to recent
existing works on the consensus of heterogeneous mul-
tiagent systems, the principal contributions are three as-
pects: first, the dimensions of follower systems are
different with the dimensions of leader, and the similar
definition among multiagent systems is explored. Second,
a distributed fuzzy adaptive control methodology with
similar parameters is provided. Last, the control matrix
gain can be solved by the condition of proposed linear
matrix inequality (LMI).

(e remaining parts of this paper are organized as
follows. Interaction topology, the property of similar
composite structure, and FLS are displayed in Section 2.
Section 3 presents the fuzzy adaptive control and stability
analysis. A simulation example is given for the consensus of
multiagent system with nonidentical dimension in Section 4.
Finally, Section 5summarizes conclusions.

(roughout this paper, the following notations are hired.
Rn×n denotes the n × n dimensional Euclidean space;
diag A1 A2 · · · AN􏼈 􏼉 expresses the block-diagonal matrix
with matrices A1 A2 · · · AN on its principal diagonal;
the notation ‖·‖ refers to the vector-2-norm. AΤ and A− 1

denote the transpose matrix and inverse matrix of A, re-
spectively; In represents the identity matrix with n appro-
priate dimensions; and P> 0(<0) means that P is a positive
(negative) definite matrix. (e Kronecker product of ma-
trices A and P is symbolized by A⊗P; the maximum and
minimum eigenvalues matrix A are denoted corresponding
to λmax(A) and λmin(A).

2. Preliminaries and Problem Formulation

2.1. Graph)eory. A directed digraph G � V, E{ } is utilized
to describe the information exchange among each agent,
where V � v1 v2 · · · vN􏼂 􏼃 stands for the nonempty set of
nodes for each agent. (e edge set E contains an edge
(vj, vi) which means node vj is able to transfer the relative
state information to node vi; then, nodes i and j are called as
the neighbors when the edge (vj, vi) exists. Let Ni denote
the set of neighbors of node i(i � 1, 2, . . . , N). (e directed
digraph G can also be described by an adjacency matrix

[αij], where αij �
1, (vj, vi) ∈ E

0, otherwise􏼨 . In addition, it is as-

sumed that there are no repeated edges and no self-loops,
i.e., αii � 0.(e Laplacian matrix L � [lij] ∈ RN×N is defined

as lij �
− αij, i≠ j

􏽐
N
k≠i,k�1 αik, i � j

􏼨 .

A digraph is said to have a spanning tree, if there exists
a node that is called as the root such that the node has
directed paths to all other nodes in the graph. (e graph G

consists of G, node 0 (the leader), and the directed edges
from the node 0 to the followers in G, and only a small
percentage of the followers can receive the information from
the leader. (en, we get the following lemma.

Lemma 1 (see [8]). Let the matrix
L � L + diag α10 α20 · · · αN0􏼂 􏼃( 􏼁 is positive definite with
αi0 > 0, the ith agent has access to the leader’s state in-
formation, whereas αi0 � 0 if otherwise.

2.2. Preliminaries and Multiagent System. Consider a group
of agent system with a leader and N followers labeled as 0
and 1, 2, . . . , N, respectively. (e dynamics of the leader is
described as

_x0(t) � A0x0(t) + B0 u0(t) + s x0, t( 􏼁􏼂 􏼃, (1)

where A0(t) ∈ Rn0×n0 and B0 ∈ Rn0×m0 are the system matrix
and input matrix of leader, respectively. x0(t) ∈ Rn0×1 is the
state vector of leader. u0(t) denotes the input vector of
leader, and matrix K0 ∈ Rm0×n0 will be given in the process of
control design, which will make A0 + B0K0 be Hurwitz
stabilized. s(x0, t) is defined as an input bounded signal and
satisfies |s(x0, t)|≤ s for all t≥ t0, and s is a known constant.

(e dynamics of the followers are defined as follows:
_xi(t) � Aixi(t) + Bi ui(t) + gi xi( 􏼁􏼂 􏼃, i � 1, 2, . . . , N,

(2)

where Ai ∈ Rni×ni and Bi ∈ Rni×mi denote the system matrix
and input matrix in the ith followers system, respectively.
xi(t) ∈ Rni×1 and ui(t) ∈ Rmi×ni are corresponding to the
state vector and input vector of the ith follower, respectively.
gi(xi) represents the unknown nonlinear function.

Assumption 1 (see [38]). Consider N agent systems as given
in (2), and the follower system (2) is called similar to the
leader system (1), if there exists N matrices Ki ∈ Rmi×ni ,
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matrix K0 ∈ Rm0×n0 , and N matrices Ti ∈ Rn0×ni satisfying the
following condition:

Ti Ai + BiKi( 􏼁 � A0 + B0K0( 􏼁Ti,

TiBi � B0.
􏼨 (3)

Definition 1. In Assumption 1, Ti and Ki and K0 are called
as similar parameters with different dimensions.

Remark 1. Assumption 1 ensures that the matrices Ai +

BiKi and A0 + B0K0 possess some common eigenvalues.
(us, Assumption 1 implies that the agent systems as given
in (1) and (2) contain certain similar inner dynamical be-
havior, and these agent systems are named as similar
structure agents with similar parameters.

Remark 2. From a mathematical point of view, Assumption
1 admits that the state dimensions can be different or
identical in multiagent systems. Especially, if Ai � A0 and
ni � n0 in (1) and (2), then the agent system (1) and (2)
coincides with the system in [26–32].

In order to address the unknown nonlinear function, the
following fuzzy logic system (FLS) is utilized in this paper. It
mainly includes four parts: fuzzifier, fuzzy rule base, fuzzy
inference engine, and defuzzifier. (e fuzzifier is a mapping
from the input space and state space to the fuzzy sets. (e
fuzzy rule base contains several linguistics rules. (e fuzzy
rules are represented as follows:
pth: If x1 isF

p
1 , x2 isF

p
2 , . . . , xn isF

p
n , theny isGp, p � 1, 2, . . . , h,

(4)

where x � (x1, x2, . . . , xn)Τ and y are the input and output
of the FLS, respectively. μF

p

i
(xi) and μGp

(y) are the mem-
bership functions of fuzzy sets F

p
i and Gp, respectively. By

employing singleton fuzzifier, center average defuzzifier, and
product inference, the output of FLS can be expressed as

y(x) �
􏽐

h
p�1 θp 􏽑

n
i�1 μF

p

i
xi( 􏼁

􏽐
h
p�1 􏽑

n
i�1 μF

p

i
xi( 􏼁􏼕,􏼔

(5)

where θp � argmaxy∈RμGp
(y). If we denote θΤ �

[θ1, θ2, . . . , θh] and ψ(x) � [ψ1(x),ψ2(x), . . . ,ψn(x)]Τ,
then the fuzzy logical systems can be rewritten as

y(x) � θΤψ(x). (6)

Lemma 2 (see [39]). For any given two vectors x, y ∈ Rn and
a scalar a> 0, the following inequality holds:

2x
Τ
y≤ ax

Τ
x + a

− 1
y
Τ
y. (7)

Lemma 3 (see [11]). For any given uncertain continuous
function g(x) on a compact set Ω and an arbitrary

approximation accuracy ε> 0, there exists a FLS such as (4)
such that the following universal approximation holds:

sup
x∈Ω

θΤψ(x) − g(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε. (8)

According to Lemma 3, we know that the unknown
nonlinear function gi(xi) in the ith follower system can be
approximated by

gi xi( 􏼁 � θΤi ψi xi( 􏼁 + εi(t), (9)

where θi(t) � [θi1(t), θi2(t), . . . , θimi
(t)]Τ is unknown pa-

rameter vector that will be designed by adaptive laws and
ψi(xi) � [ψi1,ψi2, . . . ,ψimi

]Τ is the fuzzy basis function as
shown in (6). In this paper, approximation accuracy εi(t) is
a time-varying function and satisfies |εi(t)|≤ εi for all t≥ t0,
where εi is a known constant.

Control Purpose. (e aim of this paper is to design a dis-
tributed fuzzy adaptive control by using similar parameter
such that the consensus errors are UUB.

3. Main Results

To solve the consensus problem of the leader-follower system
(1) and (2), the following control strategy is proposed:

ui(t) � cF 􏽘

n

j�1
αij Tixi(t) − Tjxj(t)􏼐 􏼑 + Kixi(t)

+ K Tixi(t) − T0x0(t)( 􏼁 − θ
Τ
i (t)ψi xi( 􏼁,

(10)

where F � − 0.5BΤ0P and the control gain matrix K � YX− 1

can be proposed by solving the following LMI:

Δ XT

∗ − Q
⎡⎣ ⎤⎦≤ 0, (11)

where Δ � A0X + XAT
0 + B0X + XB

T

0 + B0Y + YTBT
0 − cλB0

BT
0 , X> 0, Q> 0, and parameter 0< λ< λmin(L).
In control (10), parameters θi(t) denote the estimation

values of θi(t) and 􏽥θi(t) are their errors, and the relation
between them is defined as 􏽥θi(t) � θi(t) − θi(t). (e esti-
mation θi(t) can be designed as

_θi(t) � − κθi
θi(t) + ρθi

ψi xi( 􏼁 PB0( 􏼁
Τ
ei(t), (12)

where κθi
� κθi1

κθi2
· · · κθimi

􏽨 􏽩 is a vector consisting of
some known positive constants given by designer,
θi(t) � [θT

i1(t), θT
i2(t), . . . , θT

imi
(t)]T, ρθi

> 0.

Theorem 1. Suppose that Assumption 1 is satisfied, and at
least one agent system in connected graph G has access to
the state information of the leader system (1). With the
action of control (10), the consensus error between leader
system (1) and follower system (2) is UUB and belongs to
the following set:

Complexity 3



D :� e(t) � eΤ1(t) eΤ2(t) · · · eΤN(t)􏽨 􏽩
Τ
: ‖e(t)‖􏼚

≤
������������

σ
λmin IN ⊗P( 􏼁c

􏽳
⎫⎬

⎭,

(13)

where σ and c will be given later.

Proof. Let consensus error as ei(t) � Tixi(t) − T0x0(t) and
T0 � In0×n0 is an identity matrix. By applying Assumption 1,
it becomes

Ti _xi(t) � A0 + B0K0( 􏼁Tixi(t) − B0θ
Τ
i (t)ψi xi( 􏼁

+ B0gi(x) + c 􏽘
n

j�1
αijB0F Tixi(t) − Tjxj(t)􏼐 􏼑

+ B0Kei(t).

(14)

(e leader system is transformed as

T0 _x0(t) � A0 + B0K0( 􏼁T0x0(t)

+ cαi0B0F Tixi(t) − T0x0(t)( 􏼁 + B0s x0, t( 􏼁,

(15)

and then, the error system can be transformed as

_ei(t) � A0 + B0K0 + B0K( 􏼁ei(t)

+ B0 − 􏽥θ
Τ
i (t)ψi xi( 􏼁 + εi(t) + s x0, t( 􏼁􏼔 􏼕

+ cB0F 􏽘

n

j�1
αij ei(t) − ej(t)􏽨 􏽩

⎧⎪⎨

⎪⎩

− αi0 Tixi(t) − T0x0(t)􏼂 􏼃􏼉.

(16)

For brevity, (16) is equal to
_e(t) � IN ⊗ A0 + B0K0 + B0K( 􏼁 − (cL)⊗ B0F( 􏼁􏼂 􏼃e(t)

+ IN ⊗B0( 􏼁 − 􏽥θ
Τ
(t)ψ(x) + ε(t) + s x0, t( 􏼁􏼔 􏼕,

(17)

where e(t) � [eT
1 (t), eT

2 (t), . . . , eT
N(t)]T, 􏽥θ(t) � [􏽥θ

T

1 (t),
􏽥θ

T

2 (t), . . . , 􏽥θ
T

N(t)]T, ψ(x) � [ψT
1 (x1),ψT

2 (x2), . . . ,ψT
N

(xN)]T, ε(t) � [εT
1 (t), εT

2 (t), . . . , εT
N(t)]T, and − Le(t) �

􏽐
n
j�1 αij[ei(t) − ej(t)] − αi0[Tixi(t) − T0x0(t)]

(e following candidate Lyapunov function is
considered:

V(t) �
1
2
e
Τ
(t) IN ⊗P( 􏼁e(t) +

1
2
􏽥θ
Τ
(t)ρ− 1

θ
􏽥θ(t). (18)

(e derivative of V(t) along system (17) is

_V(t) �
1
2
e
Τ
(t) IN ⊗ P A0 + B0K0 + B0K( 􏼁􏼂􏼈

+ A0 + B0K0 + B0K( 􏼁
Τ
P􏼕 − (cL)⊗ PB0B

Τ
0P􏼐 􏼑􏼛e(t)

+ 􏽥θ
Τ
(t)ρ− 1

θ
_θ(t) + e

Τ
(t) IN ⊗ PB0( 􏼁􏼂 􏼃

· − 􏽥θ
Τ
(t)ψ(x) + ε(t) + s x0, t( 􏼁􏼔 􏼕

≤
1
2
e
Τ
(t) IN ⊗ P A0 + B0K0 + B0K( 􏼁􏼂􏼈

+ A0 + B0K0 + B0K( 􏼁
Τ
P􏼕 − cλ PB0B

Τ
0P􏼐 􏼑􏼛e(t)

+ e
Τ
(t) IN ⊗ PB0( 􏼁􏼂 􏼃[ε(t) + s] −

κθ
ρθ

􏽥θ
Τ
(t)θ(t)

� −
1
2
e
Τ
(t) IN ⊗Q( 􏼁e(t) −

κθ
ρθ

􏽥θ
Τ
(t)θ(t)

+ e
Τ
(t) IN ⊗ PB0( 􏼁􏼂 􏼃[ε(t) + s].

(19)

Based on Lemma 3, one obtains that

− 􏽥θ
Τ
(t)θ(t) � − 􏽥θ

Τ
(t)(􏽥θ(t) + θ(t))

≤ −
1
2
􏽥θ
Τ
(t)􏽥θ(t) +

1
2
θΤ(t)θ(t).

(20)

Combining with (19) and (20), it becomes

_V(t)≤ −
1
2
e
Τ
(t) IN ⊗Q( 􏼁e(t) −

1
2
κθ
ρθ

􏽥θ
Τ
(t)􏽥θ(t)

+
1
2
κθ
ρθ
θΤ(t)θ(t) + e

Τ
(t) IN ⊗ PB0( 􏼁􏼂 􏼃[ε(t) + s]

≤ −
1
2
λmin IN ⊗Q( 􏼁e

Τ
(t)e(t) −

1
2
κθ
ρθ

􏽥θ
Τ
(t)􏽥θ(t)

+‖e(t)‖ · IN ⊗ PB0( 􏼁
����

���� · (ε+ s) +
1
2
κθ
ρθ
θΤ(t)θ(t)

≤ − cV(t) + σ.

(21)

If denoting c � min (λmin(IN ⊗Q)/λmax(IN ⊗P)), κθ􏼈 􏼉,
σ � ‖e(t)‖ · ‖IN ⊗ (PB0)‖ · [ε + s] + (1/2)(κθ/ρθ)θ

Τ(t)θ(t),
then it follows
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V(t)≤ V(0) −
σ
c

􏼢 􏼣e
− ct

+
σ
c

. (22)

Inequality (22) shows that the consensus error e(t) can
be guaranteed to be UUB with

‖e(t)‖≤
1

�����������
λmin IN ⊗P( 􏼁

􏽱

����������������

V(0) −
σ
c

􏼢 􏼣e− ct +
σ
c

􏽳

. (23)

Accordingly, the conclusion is

lim
t⟶∞

‖e(t)‖≤
������������

σ
λmin IN ⊗P( 􏼁c

􏽳

. (24)

(24) means that the consensus error e(t) converges to the set
D, which is defined in (13). (is completes the proof. □

Remark 3. (e inequality P(A0 + B0K0 + B0K) + (A0+

B0K0 + B0K)ΤP − cλPB0B
T
0 P≤ − Q is a nonlinear matrix

inequality; through multiplying by P− 1 on the left and right
sides of this inequality and defining B0K0 � B0, P− 1 � X,
and Y � KX, the inequality (11) can be obtained.

(e multiagent system with similar composite structure
and proposed control scheme is explained as the block
diagram in Figure 1

4. Simulation Example

In this section, a simulation example is given to prove the
effectiveness of the proposed control. Six agent systems are
considered including one leader labeled 0 and five followers
labeled 1, 2, 3, 4, and 5. Figure 2 shows the communication
between the leader and each follower, it is easy to know that
only the first agent can obtain the state information of the
leader.

From Figure 2, the Laplacian matrix of the follower
system and the degree matrix of the leader system can be
calculated as follows:

L �

2 − 1 − 1 0 0

− 1 2 0 − 1 0

− 1 0 3 − 1 − 1

0 − 1 − 1 2 0

0 0 − 1 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

diag α10 α20 · · · α50􏼂 􏼃( 􏼁 �

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

Matrices in the leader-follower system are represented
by

A0 �

1 − 7 − 3 − 1 − 1 2 − 2 − 4
5 2 − 4 2 − 7 − 8 9 − 1
0 0 − 1 0 0 0 0 0
0 0 0 − 2 0 0 0 0
0 0 0 0 − 3 0 0 0
0 0 0 0 0 − 6 0 0
0 0 0 0 0 0 − 8 0
0 0 0 0 0 0 0 − 9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 �

1 − 7 − 3 − 1 − 1 2 − 2
2 7 3 − 2 − 8 − 10 2
0 0 − 1 0 0 0 0
0 0 0 − 2 0 0 0
0 0 0 0 − 3 0 0
0 0 0 0 0 − 6 0
0 0 0 0 0 0 − 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B0 �

0
1

O1×6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A2 �

1 − 7 − 3 − 1 − 1 2
3 7 − 2 − 1 − 6 − 9
0 0 − 1 0 0 0
0 0 0 − 2 0 0
0 0 0 0 − 3 0
0 0 0 0 0 − 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1 �

0
1

O1×5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A3 �

1 − 7 − 3 − 1 − 1
5 3 − 5 2 3
0 0 − 1 0 0
0 0 0 − 2 0
0 0 0 0 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A4 �

1 − 7 − 3 − 1
1 3 2 7
0 0 − 1 0
0 0 0 − 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A5 �

1 − 7 − 3
5 2 1
0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B2 � 0 1 O1×4􏼂 􏼃
Τ
,

B3 � 0 1 O1×3􏼂 􏼃
Τ
,

B4 � 0 1 O1×2􏼂 􏼃
Τ
,

B5 � 0 1 0􏼂 􏼃
Τ
.

(26)

By using the similar condition in Assumption 1, the
similar parameters can be obtained as
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K � − 0.5909 − 0.0964 − 12.7679 − 0.9654 − 0.0483 − 0.2017 − 0.3305 − 0.2047􏼂 􏼃,

P �

0.4057 − 0.1665 − 0.1051 − 0.0329 − 0.0324 0.0673 − 0.0684 − 0.1369
− 0.1665 0.4504 0.1632 0.0545 0.0553 − 0.1180 0.1225 0.2487
− 0.1051 0.1632 0.3894 0.0388 0.0379 − 0.0726 0.0708 0.1398
− 0.0329 0.0545 0.0388 0.3294 0.0120 − 0.0233 0.0229 0.0453
− 0.0324 0.0553 0.0379 0.0120 0.4195 − 0.0229 0.0226 0.0449
0.0673 − 0.1180 − 0.0726 − 0.0233 − 0.0229 0.8276 − 0.0457 − 0.0914

− 0.0684 0.1225 0.0708 0.0229 0.0226 − 0.0457 1.1140 0.0923
− 0.1369 0.2487 0.1398 0.0453 0.0449 − 0.0914 0.0923 1.4012

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T0 � I8,

T1 � I7 O7×1􏼂 􏼃
Τ
,

T2 � I6 O6×2􏼂 􏼃
Τ
,

T3 � I5 O5×3􏼂 􏼃
Τ
,

T4 � I4 O4×4􏼂 􏼃
Τ
,

T5 � I3 O3×5􏼂 􏼃
Τ
,

K0 � 3 − 6 14 − 2 6 11 − 12 − 6􏼂 􏼃,

K1 � 6 − 11 7 2 7 13 − 5􏼂 􏼃,

K2 � 5 − 11 12 1 5 12􏼂 􏼃,

K3 � 3 − 7 15 − 2 − 4􏼂 􏼃,

K4 � 7 − 7 8 − 7􏼂 􏼃,

K5 � 3 − 6 9􏼂 􏼃.

(27)

Network communication topology

Leader
system

�e 1st
follower

�e 2nd
follower

�e Nth
follower

Fuzzy
control

Fuzzy
control

Fuzzy
control

Adaptive
laws

Adaptive
laws

Adaptive
laws

F0

F1

F2

Fn

–
+

–
+

–
+

Figure 1: (e block diagram of closed-loop multiagent systems.

0 1 2

3 45

Figure 2: (e communication topology.
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(e nonlinear functions are chosen as

fi � x
2
i1 sinxi2 cosxi3 − 0.5x

3
i2 sinxi2 − 2x

4
i3 cosxi3. (28)

(e solutions of the linear matrix inequality (11) are
shown as matrices K and P.

(e input bounded signal can be chosen as

s x0, t( 􏼁 �

60, 0< t≤ 1,

0, 1< t≤ 2,

60, 2< t≤ 3,

0, 3< t≤ 4,

60, 4< t≤ 5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

(e initial values of the states in the leader and five
followers are chosen as

x0(0) � [3.1, 3.5, 4.8, 4.7, 2.3, 2.5, 0.5, 4]
T
,

x1(0) � [− 4.8, − 2, − 0.8, − 3, − 2, − 3.7, − 1]
T
,

x2(0) � [3, 2, 1, 2.4, 3.6, 4.1]
T
,

x3(0) � [− 3, − 2, − 1, − 2.2, − 0.8]
T
,

x4(0) � [2, 3.3, 4.5, 1.6]
T
,

x5(0) � [− 1, − 2.5, − 3.8]
T
.

(30)

(e initial values of adaptive parameters θi(t) are given
as

0 1 2 3 4
Time (s)

–20

0

20
x 0

1, 
x i1

(a)

0 1 2 3 4
Time (s)

–10

0

10

x 0
2, 
x i2

(b)

0 1 2 3 4
Time (s)

–5

0

5

x 0
3, 
x i3

(c)

0 1 2 3 4
Time (s)

–5

0

5

x 0
4, 
x h

4

(d)

0 1 2 3 4
Time (s)

–5

0

5

x 0
5, 
x k

5

(e)

0 1 2 3 4
Time (s)

–5

0

5

x 0
6, 
x d

6

(f )

0 1 2 3 4
Time (s)

–1

0

1

x 0
7, 
x 1

7

(g)

0 1 2 3 4
Time (s)

0

2

4

x 0
8

(h)

Figure 3: Trajectories of the states of leader x0 and followers xi (i � 1, 2, 3, 4, 5; h � 1, 2, 3, 4; k � 1, 2, 3; d � 1, 2).
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θ1(0) � [0.13, 0.22, 0.10, 0.23, 0.18, 0.39]
T
,

θ2(0) � [0.24, 0.26, 0.11, 0.14, 0.15, 0.30]
T
,

θ3(0) � [0.16, 0.29, 0.17, 0.21, 0.35, 0.27]
T
,

θ4(0) � [0.20, 0.21, 0.11, 0.31, 0.29, 0.13]
T
,

θ5(0) � [0.34, 0.29, 0.38, 0.26, 0.35, 0.17]
T
.

(31)

(e parameters in the adaptive law (12) are chosen as

κθi � 9 5 7 8 6􏼂 􏼃,

ρθi � 0.003 0.002 0.002 0.003 0.001􏼂 􏼃.
(32)

(e simulation results of the leader system and follower
systems are shown as Figures 3–5.

As shown in Figure 3, although the dimensions of leader
system and follower systems are nonidentical, the trajec-
tories of xi in follower systems can synchronize to the state
of x0 in leader system with the proposed distributed fuzzy
adaptive control, and it can reach a consistent state in
a relatively fast time. Similarly, the norm of adaptive esti-
mated parameters is converged to a small zero field in
Figure 4, which can be updated online automatically with the
given adaptive laws. From Figure 5, it is shown that the time
responses of corresponding control are UUB. Finally, it is
concluded that UUB of all signals in the closed-loop system
can be guaranteed in Figures 3–5, and the consensus of
leader-follower system can be realized by the proposed
distribute fuzzy adaptive control with similar parameters
whether the leader system and follower systems have the
identical or nonidentical dimensions.

5. Conclusion

(e consensus problem of leader-follower multiagent sys-
tems with different dimensions has been considered in this
paper. For the unknown nonlinear functions in systems,
FLSs are applied to approximate the unknown nonlinear
functions, and then a distributed fuzzy adaptive control
based on similar condition is designed. With the proposed
fuzzy adaptive control, the states of each follower system can
stably track the states of the leader system, and it is proved
that all signals in the closed-loop system are UUB. (e
designed method has been verified by a simulation example.
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