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As the actuator faults in an industrial process cause damage or performance deterioration, the design issue of an optimal controller
against these failures is of great importance. In this paper, a fractional-order predictive functional control method based on
population extremal optimization is proposed to maintain the control performance against partial actuator failures. 0e proposed
control strategy consists of two key ideas. 0e first one is the application of fractional-order calculus into the cost function of
predictive functional control. Since the knowledge of analytical parameters including the prediction horizon, fractional-order
parameter, and smoothing factor in fractional-order predictive functional control is not known, population extremal optimization
is employed as the second key technique to search for these parameters. 0e effectiveness of the proposed controller is examined
on two industrial processes, e.g., injection modeling batch process and process flow of coke furnace under constant faults, time-
varying faults, and nonrepetitive unknown disturbance. 0e comprehensive simulation results demonstrate the performance of
the proposed control method by comparing with a recently developed predictive functional control, genetic algorithm, and
particle swarm optimization-based versions in terms of four performance indices.

1. Introduction

In industrial processes, actuators play an important role in
the industrial control system because an actuator links the
controller output to the physical actions and determines the
quality of products [1, 2]. However, the actuator faces dif-
ficulties in executing the controller demand completely due
to the physical malfunction, e.g., friction and saturation.
Specially, in the control system of industrial process, an
actuator fault often exists, and the control performance may
be degraded caused by discrepancies between the desired
actuator position and the actual position.

Generally, the actuator faults in industrial processes can
be separated into three categories, i.e., the actuator outage,
the actuator stuck, and the partial actuator failure [3]. As for
the first two categories, it is impossible to improve any

controllers’ performance because the control process under
these two categories is totally uncontrollable. 0us, this
study focuses on the third category, i.e., the partial actuator
failure, which can be tackled to a certain extent by using the
adequate control scheme. As a result, many related research
works have been carried out. For example, Wang et al. [4]
put forward an iterative learning control (ILC) scheme for
batch processes under partial actuator faults according to a
particular 2D Fornasini–Marchsini model. Giridhar and El-
Farra [5] proposed a robust detection, isolation, and com-
pensation of control actuator faults based on the framework
of feedback robust control. Jin et al. [6] proposed an im-
proved ILC scheme to control the nonlinear constrained
system with actuator failures. Ding et al. [7] proposed a
novel ILC scheme to control the uncertain multiple-input
multiple-output discrete system under actuator faults. In [8],
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a model predictive control method was suggested for the
injection molding batch process with partial actuator fail-
ures. Due to the uncertainties of actuator fault, the control
system design is often mismatched [1, 9]. To deal with this
challenge problem, ILC [10–12] has been developed as one of
the most popular strategies for different industrial processes.
However, as discussed in [3], the ILC is largely dependent on
the repetitive nature of such processes, whose performance
improvement is confined by this unsuitable assumption
because many real-world processes are actually time-varying
and nonrepetitive and suffering from persistent disturbance.
0us, the design of the ILC is not fit for industrial processes
in practice.

In the past decades, model predictive control (MPC)
has shown the potential ability of control design for in-
dustrial processes [13–15]. As a recently developed MPC,
state-space predictive functional control (PFC) [3, 16, 17]
provides a novel insight into control design for the in-
dustrial processes against partial actuator failures because it
not only has theoretical basis for the control design but also
has advantages in hardware implementation, computa-
tional capability, and control accuracy. For example, in [3],
Tao et al. proposed a PFC method based on a linear
quadratic structure for industrial process under actuator
failures and highlighted that its performance is better than
traditional state-space PFC. In [16], an improved version of
PFC was applied into the control design for an injection
modeling batch process with a partial actuator. However,
this improved PFC’s weighting factors on the process state
and output tracking error are determined through expe-
rience. To alleviate this deficiency, a genetic algorithm-
(GA-) based PFC was proposed, where GA was used to tune
its weighting factors, and six cases of partial actuator
failures were used to demonstrate the performance of GA-
based PFC [17]. Besides, Hu et al. [18] combined PFC with
GA and linear quadratic structure for industrial processes
against the partial actuator failures. Although a lot of good
results have been obtained by PFC strategies, the frame-
work of PFC design for industrial control processes still
needs to be further explored for achieving high-quality
control performance.

Additionally, with the deep study on mathematical
fractional-order calculus, the applications of fractional-or-
der controller have been attempted by many researchers. In
[19, 20], the PFC based on fractional-order calculus was
proposed to control the fractional model with model mis-
matches. Sanatizadeh and Bigdeli [21] designed the frac-
tional-order predictive functional controller for unstable
systems with time delay. In [22], the authors have suc-
cessfully applied the fractional-order PFC into industrial
heating furnace, and the experimental results on the tem-
perature process showed the improvement of the fractional-
order PFC. In all aforementioned examples, fractional-order
methods have shown better performance than the corre-
sponding traditional integer-order methods. In summary,
the fractional-order calculus has a potential ability to im-
prove the performance of traditional integer-order methods.
0is is one of primary motivations to incorporate fractional-
order mechanism into PFC and propose a fractional-order

PFC called FOPFC for an industrial process against partial
actuator faults.

Unfortunately, the fractional-order calculus also in-
volves more tuning parameters than the integer version. In
other words, tuning the related parameters in FOPFC has
more difficulty than PFC. In FOPFC, there are three key
parameters called fractional-order parameter c, smoothing
factor λ, and prediction horizon P, which have important
impacts on the performance of control system. More
specifically, as discussed in [19, 20], λ plays the role in
smoothing reference trajectory. c and P have influence on
the rapidity and stability of the system response. On the
other hand, as tuning these parameters lacks analytical
knowledge, the selection of these parameters in [19, 20] is
generally based on the trial and error method. In order to
alleviate this problem, in this paper, a competitive evolu-
tionary algorithm is employed to optimize the related
parameters in FOPFC for improving the closed-loop
performance. As an efficient evolutionary algorithm,
population-based extremal optimization (PEO) [23] is
extended from extremal optimization (EO) [24] and has
shown great promising ability in a variety of fields, such as
numerical optimization problems including single-objec-
tive and multiobjective problems [23, 25], PID/FOPID
controllers designing problems [26, 27], and weighting
optimization of ensemble learning [28]. To be more precise,
in [25], an improved multiobjective PEO was presented for
solving multiobjective problems. In [26], multivariable PID
controllers were designed using real-coded PEO. In [27],
multi-non-uniform mutation-based PEO was applied to
designing the FOPID controllers. Abovementioned ex-
amples have revealed that PEOs have outstanding supe-
riority over other popular evolutionary algorithms
including GA and particle swarm optimization (PSO). As
discussed in [23], the authors have done extensive ex-
periments on some benchmark single-objective optimi-
zation problems. 0e results in [23] demonstrate the PEO
performs better than or at least competitive with many
reported popular single-objective evolutionary algorithms.
From the design perspective of PEO algorithm, the PEO
used in this paper is relatively simper than other evolu-
tionary algorithms including GA and PSO due to its fewer
adjustable parameters and only mutation operation. 0us,
the PEO is used in this work. It is worthy to be mentioned
that compared with the previous studies [17, 18], the
proposed control method extends the integer-order PFC to
the fractional version and uses PEO algorithm to tune the
main parameters in FOPFC, which is superior to the GA
used in [17, 18]. In addition, the existing work [20]
designed the parameter FOPFC by the trial-and-error
method, while this paper uses the PEO algorithm to tune
the related parameters in FOPFC and applies FOPFC to
solving the industrial processes under partial actuator
failures. To the best of our knowledge, there exist no re-
ported related works focusing on PEO for tuning param-
eters in FOPFC. 0erefore, in order to deal with this
problem, the PEO-based FOPFC algorithm called PEO-
FOPFC is proposed in this paper by adopting PEO to search
for the adjustable parameters in FOPFC.
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To the best of our knowledge, this work is the first
contribution to optimize the analytical parameters including
the prediction horizon, fractional-order parameter, and
smoothing factor in a FOPFC controller for industrial
processes with partial actuator failures by means of PEO. To
bemore specific, the principal contributions of this paper are
summarized as follows:

(1) A fractional-order predictive functional control
(FOPFC) strategy is firstly proposed for the indus-
trial process with partial actuator failures.

(2) Encountered the difficulties in tuning-related pa-
rameters in FOPFC strategy due to the increasing
adjustable parameters and lacking analytical knowl-
edge, and the population extremal optimization is
introduced into FOPFC to search for the adjustable
parameters such as the prediction horizon, fractional-
order parameter, and smoothing factor.

(3) 0e effectiveness of the PEO-FOPFC strategy is
demonstrated on two industrial processes, e.g., in-
jection modeling batch process and process flow of
coke furnace under six cases including constant
faults, time-varying faults, and nonrepetitive un-
known disturbance. Moreover, the simulation results
show that the performance of proposed PEO-FOPFC
is much better than the recently developed PFC [16].

(4) 0e performance of fractional-order strategy is il-
lustrated by the comparison of FOPFC with PFC. In
addition, the performance of PEO algorithm is
purely verified by comparison PEO-FOPFC with
FOPFC and two other popular evolutionary algo-
rithms including GA- and PSO-based FOPFC
methods on an injection modeling batch process.

0e remainder of this paper is given as follows. Section 2
presents preliminaries concerning fractional-order calculus,
basics of EO, and problem formulation of the process. 0en,
the proposed PEO-FOPFC is described in Section 3. 0e
comprehensive experimental results of two industrial pro-
cesses are discussed in Sections 4 and 5, respectively. Finally,
Section 6 concludes the paper and gives future works.

2. Preliminaries

In this section, a brief overview of fractional-order calculus
and canonical EO algorithm is given. 0en, the description of
a single-input single-output industrial process is presented.

2.1. Fractional-Order Calculus. 0ere are three common def-
initions of fractional-order calculus called Grünwald–Letnikov
(GL) definition, Riemann–Liouville (RL) definition, and Caputo
definition [29].

0e RL form with order α is given as

D
α
tα f(t) �

dn

dtn
D

− (n− α)
t f(t) �

1
Γ(n − α)

dn

dtn
􏽚

t

b
(t − τ)

n− α− 1
f(τ)dτ,

(1)

where f(t) means the function, [b, t] means the interval of
f(t), α> 0 is the fractional-order with n − 1< α< n, and Γ
represents the gamma function.

0e Caputo form with order α is given as

D
α
tα f(t) �

1
Γ(n − α)

􏽚
t

b
(t − τ)

n− α− 1
f

(n)
(τ)dτ, (2)

where f(t) means the function, [b, t] means the interval of
f(t), α> 0 is the fractional-order with n − 1< α< n, and Γ
represents the gamma function. 0e GL definition can be
described as

D
c
tβ f(t) � lim

h⟶0

1
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􏽘
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j
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j
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where β is the initial time, h is the calculation step, [x] means
the integer part of x, c is the fractional-order parameter, and

ω(c)

j � (− 1)j c

j
􏼠 􏼡are the polynomial coefficients and can be

obtained as follows:

ω(c)
0 � 1,

ω(c)
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c + 1

j
􏼠 􏼡ω(c)

j− 1, j � 1, 2, . . . .

(4)

In addition, h can be substituted by the sample time Ts,
when considering the practical process and the character-
istics of fractional order.

As suggested in [20], this paper employs GL definition to
derive the discrete form of the control system. 0en, the
discretized model of fractional-order integer operator can be
described as follows [20, 30]:
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(5)

where
W � ωb − ωa, ωb− 1 − ωa− 1, . . . , ωb− a − ω0, ωb− a− 1, . . . , ω1, ω0􏼂 􏼃,

FI � f(0), f Ts( 􏼁, . . . , f a − Ts( 􏼁, f(a), . . . , f b − Ts( 􏼁, f(b)􏼂 􏼃.

(6)

2.2. Canonical Extremal Optimization. 0e canonical EO
[24] manipulates a single configuration for the purpose of
finding a satisfying solution. In this method, a local fitness
value is given to each component in the initial solution.
Once a suitable permutation is obtained on the basic of
assigned local fitness, the mutation operator is employed
on the worst component to generate the new solution.
Subsequently, the undesirable component is replaced with
the new one unconditionally. Canonical EO is outlined in
Algorithm 1.
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2.3. Model of Nonlinear Industrial Process. As discussed in
[3, 16], the linear deviationmodel can be used to describe the
nonlinear industrial process. For simplicity, a single-input
single-output (SISO) process is used in this study. And, the
corresponding process can be obtained through lineariza-
tion as follows:

x(k + 1) � AIx(k) + BIu(k − d),

y(k) � CIx(k) + ω(k),
􏼨 (7)

where k and d denote the current time and process time
delay, respectively, and x(k), y(k), u(k), and ω(k) represent
the process state, output, input, and unknown measurement
noise, respectively. AI, BI, and CI are the system matrices
with appropriate sizes.

Here, the term uF(k) is the failed signal from the actuator.
0en, the failure model can be derived as follows:

u
F
(k) � au(k), where 0< α≤ 1. (8)

Afterwards, the version of process under actuator fail-
ures can be described as

x(k + 1) � AIx(k) + BIαu(k − d),

y(k) � CIx(k) + ω(k).
􏼨 (9)

3. Proposed Control Strategy

In this section, we firstly introduce the design of fractional-
order predictive functional controller (FOPFC) in Section
3.1. 0en, we present the control strategy of the proposed
PEO-based FOPFC (PEO-FOPFC) in Section 3.2.

3.1.Design of FOPFC. On the basis of equation (7) in Section
2.3, the state vector can be constructed as follows [17]:

Δxm(k) � Δx(k), Δu(k − 1), Δu(k − 2), . . . , Δu(k − d)􏼂 􏼃
T
,

(10)

where the Δ denotes the difference operator.
Afterwards, the new state space model can be obtained as
Δxm(k + 1) � AmΔxm(k) + BmΔu(k),

Δy(k + 1) � CmΔxm(k + 1).
􏼨 (11)

where

Am �

AI 0 0 · · · 0 BI

0 0 0 · · · 0 0
0 1 0 · · · ⋮ 0
0 0 1 0 0 ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
0 0 · · · 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bm � 0 1 0 · · · 0􏼂 􏼃
T

,

Cm � CI 0 0 · · · 0􏼂 􏼃.

(12)

Note that the 0 is full vector with zero elements with the
appropriate dimensions.

0e output tracking error is described as follows:

e(k) � y(k) − r(k), (13)

where r(k) denotes the reference trajectory. And, r(k+ i)� λi
y(k)+ (1 − λ)ic(k), λ denotes the smoothing factor and c(k) is
the set point.

Combining equations (11) and (13), the dynamic output
error can be derived as follows:

e(k + 1) � e(k) + CmAmΔxm(k) + CmBmΔu(k) − Δr(k + 1),

(14)

where Δr(k+ 1) means the differenced value of set-point at
time k+ 1. By adding the tracking error to the state variable,
the extended state vector can be obtained as follows:

z(k) � Δxm(k) e(k)􏼂 􏼃
T
. (15)

0en, the new model is obtained as follows:

z(k + 1) � Az(k) + BΔu(k) + CΔr(k + 1), (16)

where A �
Am 0

CmAm 1􏼢 􏼣; B �
Bm

CmBm

􏼢 􏼣; C �
0

− 1􏼢 􏼣. 0 is the

zero vector with appropriate sizes.
As mentioned in [20], the cost function of integer PFC is

chosen as follows:

JPFC � 􏽘
P

j�1
z

T
(k + j)Qjz(k + j), (17)

where P is the prediction horizon. And, the diagonal matrix
Qj is often used as the weighting factor to give a specific value

(1) Randomly initialize configuration SI. Calculate the global fitness of SI termed as C(SI)
(2) Set Sbest � SI and C(Sbest)�C(SI), where Sbest donates the best solution found so far
(3) Repeat
(4) Evaluate the local fitness of each component in the current configuration SI
(5) Obtain a permutation according to the assigned local fitness
(6) Employ mutation operation on worst component and a new configuration is generated
(7) Replace the worst component with the new configuration, unconditionally
(8) Update the Sbest and C(Sbest)
(9) Until some criterion is satisfied;
(10) Return Sbest and C(Sbest)

ALGORITHM 1: Canonical EO.
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for each state variable in z(k+ j). As discussed in [31, 32],
matrix Qj plays an important role in control performance of
the predictive controller. 0erefore, in [31, 32], GA or EO
was employed to tune Qj and showed better performance
than the trial and error method. In fact, equation (17) can be
viewed as the continuous generalization ofJ � 􏽒

b

a
[f(t)]2dt,

where [a, b] is the continuous integer interval. Because
the fractional order is derived from the integer-order and
it has been demonstrated to provide better control
performance than integer-order in various domains, a
natural idea is to replace integer-order with fractional
order and test whether the performance can be im-
proved. 0us, the cost function of FOPFC can be derived
as follows [20]:

JFOPFC � 􏽘
P

j�1
z

T
(k + j)Λj Ts, c( 􏼁z(k + j), (18)

where Λj(Ts, c)�Tsdiag(ml− 1, ml− 2, . . ., m1, m0) with mj �

ω(− c)
i − ω(− c)

i− (l− 1),ω
(− c)
0 � 1,ω(− c)

i � (1 − (1 − c)/j)ω(− c)
i− 1 for

i> 0, and otherwise ω(− c)
i � 0, l is the number of state

variables in z(k), and c is the fractional-order factor.
0e PFC control action is based on the base functions

[3, 16]:

u(k + i) � 􏽘
N

j�1
ηjfj(i), (19)

where ηj is the coefficient, fj(i) denotes the base function, and
N is the number of base functions.

Here, we denote Ti � [f1(i), f2(i), . . ., fN(i)], (i� 0, 1, . . .,
P − 1), and Υ � [η1, η2, ..., ηN]T. 0en, equation (19) can be
rewritten as follows:

u(k + i) � TiΥ. (20)

From equation (16), together with equation (20), we can
obtain

z(k + 1) � Az(k) + BΔu(k) + CΔr(k + 1)

� Az(k) + B[u(k) − u(k − 1)] + CΔr(k + 1)

� Az(k) + B T0Υ − u(k − 1)􏼂 􏼃 + CΔr(k + 1)

� Az(k) − Bu(k − 1) + BT0Υ + CΔr(k + 1),

z(k + 2) � Az(k + 1) + BΔu(k + 1) + CΔr(k + 2)

� A Az(k) − Bu(k − 1) + BT0Υ + CΔr(k + 1)􏼂 􏼃 + B[u(k + 1) − u(k)] + CΔr(k + 2)

� A
2
z(k) − ABu(k − 1) + ABT0Υ + ACΔr(k + 1) + BT1Υ − BT0Υ + CΔr(k + 2)

� A
2
z(k) − ABu(k − 1) + (AB − B)T0 + BT1􏼂 􏼃Υ + ACΔr(k + 1) + CΔr(k + 2),

z(k + 3) � Az(k + 2) + BΔu(k + 2) + CΔr(k + 3)

� A A
2
z(k) − ABu(k − 1) + (AB − B)T0 + BT1􏼂 􏼃Υ + ACΔr(k + 1) + CΔr(k + 2)􏽨 􏽩

+ B[u(k + 2) − u(k + 1)] + CΔr(k + 3)

� A
3
z(k) − A

2
Bu(k − 1) + A

2
B − AB􏼐 􏼑T0 + ABT1􏽨 􏽩Υ + A

2
CΔr(k + 1) + ACΔr(k + 2)

+ BT2Υ − BT1Υ + CΔr(k + 3)

� A
3
z(k) − A

2
Bu(k − 1) + A

2
B − AB􏼐 􏼑T0 +(AB − B)T1 + BT2􏽨 􏽩Υ

+ A
2
CΔr(k + 1) + ACΔr(k + 2) + CΔr(k + 3),

⋮

z(k + P) � Az(k + P − 1) + BΔu(k + P − 1) + CΔr(k + P)

� A
AP− 1z(k) − AP− 2Bu(k − 1) + 􏽘

P− 2

i�1
A

i
B − A

i− 1
B􏼐 􏼑TP− 2− i + BTP− 2

⎡⎣ ⎤⎦Υ

+ AP− 2CΔr(k + 1) + AP− 3CΔr(k + 2) + · · · + CΔr(k + P − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ BTP− 1Υ − BTP− 2Υ + CΔr(k + P)

� A
P
z(k) − A

P− 1
Bu(k − 1) + 􏽘

P− 1

i�1
A

i
B − A

i− 1
B􏼐 􏼑TP− 1− i + BTP− 1

⎡⎣ ⎤⎦Υ

+ A
P− 1

CΔr(k + 1) + A
P− 2

CΔr(k + 2) + · · · + ACΔr(k + P − 1) + CΔr(k + P).

(21)
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0en, the following equation can be obtained:
z(k + 1)

z(k + 2)

z(k + 3)

⋮

z(k + P)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

A

A2

A3

⋮

AP
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B

AB

A2B

⋮

AP− 1B
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u(k − 1)

+

BT0

(AB − B)T0 + BT1

A2B − AB( 􏼁T0 +(AB − B)T1 + BT2

⋮

􏽘
P− 1
i�1 AiB − Ai− 1B( 􏼁TP− 1− i + BTP− 1
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Υ

+

C 0 0 0 0

AC C 0 0 0

A2C AC C 0 0

⋮ ⋮ ⋮ ⋱ ⋮

AP− 2C AP− 3C AP− 4C · · · C
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·

Δr(k + 1)

Δr(k + 2)

Δr(k + 3)

⋮

Δr(k + P)
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.

(22)

In addition, denote the Z � z(k + 1), z(k + 2), . . . ,􏼂

z(k + P)]T and ΔR � Δr(k + 1), Δr(k + 2), . . . , Δr􏼂 (k+

P)]T.

We obtain

Z � Fz(k) − Gu(k − 1) +ΦΥ + SΔR, (23)

where

F �

A

A2

A3

⋮

AP
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G �

B

AB

A2B

⋮

AP− 1B
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,

S �

C 0 0 0 0
AC C 0 0 0
A2C AC C 0 0
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AP− 1C AP− 2C AP− 3C · · · C
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,

Φ �

BT0

(AB − B)T0 + BT1

A2B − AB( 􏼁T0 +(AB − B)T1 + BT2

⋮

􏽘
P− 1
k�1 AkB − Ak− 1B( 􏼁TP− 1− k + BTP− 1
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.

(24)

0en, equation (18) can be rewritten as

JFOPFC � Z
TΛZ, (25)

where Λ� block diag{Λ1, Λ2, . . ., ΛP}.
Afterwards, the optimal control law can be obtained by

finding the minimum value of equation (25):

Υ � − ΦTΛΦ􏼐 􏼑
− 1
ΦTΛ(Fz(k) − Gu(k − 1) + SΔR). (26)

At last, the control signal u(k) is then derived as follows:

u(k) � 􏽘
N

j�1
ηjfj(0). (27)

In the realistic industrial process, there exist system
uncertainties. 0us, a robust stability condition is needed for
the closed-loop control system to ensure a stable system. In
[16] and [33], the authors have given the robust stability
condition of state space predictive controller. Here, extended
from [16], we give a robust stability condition for the
proposed FOPFC, which is described below.

Theorem 1. For the industrial process considering unknown
partial actuator failures, i.e., description in equation (9), if the
FOPFC is designed based on the model equation (7) such that
the following condition holds:

σmax(ΔA)< − σmax A − BKs( 􏼁 +

������������������������

σmax
2 A − BKs( 􏼁 +

λmin Mp􏼐 􏼑

λmax WP( 􏼁

􏽶
􏽴

,

(28)

where σmax(κ) is the maximum singular value ofκ, λmin(κ)

and λmax(κ) are the minimum and maximum eigenvalues
ofκ, respectively, and MP and WP represent the symmetric
positive matrices subject to the following equation:

A − BCS( 􏼁
T
WP A − BCS( 􏼁 − WP � − MP, (29)

where

ΔA �

0 0 0 · · · 0 αBI − BI 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
⋮ ⋮ ⋮ · · · ⋮ ⋮ ⋮
⋮ ⋮ ⋮ · · · ⋮ ⋮ ⋮
0 0 ⋮ ⋮ ⋮ 0 0
0 0 · · · · · · 0 αCIBI − CIBI 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

6 Complexity



Ω �

B 0 0 · · · 0
AB B 0 · · · 0
A2B AB B · · · 0
⋮ ⋮ ⋮ ⋱ ⋮

AP− 1B AP− 2B AP− 3B · · · B
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,

CS � 1, 0 . . . , 0( 􏼁 ΩTΦΦTΛΩ􏼐 􏼑
− 1
ΦΦTΛF.

(30)

0en, the proposed controller is the robust stability for
the considered system.

0e proof is presented in Proof of0eorem 1 in Appendix.
0e error tracking and constant disturbances rejecting

the performance of PFC have been given in [34]. And, we
can examine error estimates and sensitivity to disturbances
of the proposed controller extended from [34] as follows.

Proposition 1. If the process is treated in the form of
equation (16) and the subsequent FOPFC law is designed as
equation (20), then the proposed FOPFC control law tracks
the constant set-point without steady error and for the
constant input disturbances and output disturbances and the
FOPFC can reject with no steady error.

0e proof is presented in Proof of Proposition 1 in
Appendix.

Remark 1. As suggested in [1, 3, 16], to facilitate the con-
troller design, the process model is based on nominal state
space model and the noise is not considered. In the simu-
lation part, the noise is not ignored. To consider the ω(k) in
design controller, one can use system identification tech-
nique [10].

3.2. PEO-Based FOPFC Control Strategy. 0ese are two key
strategies in the PEO-FOPFC method. One is that the
fractional -order mechanism is applied into the cost function
of PFC technique, which is presented in Section 3.1. 0e
other is that the PEO algorithm is used to search the ad-
justable parameters in FOPFC. In the evolutionary algo-
rithm, the fitness function plays an important role in
searching the optimal parameters. 0us, we firstly define the
fitness function used in the process of evolution and then
describe the specific steps of the PEO-FOPFC.

3.2.1. Fitness Function. In [17], the combination of over-
shoot and rise time was used as the fitness function to tune
the weighting factors in PFC, while the integral of time
weighted absolute error (ITAE) was adopted as fitness
definition in [31]. As discussed in [26], a more reasonable
performance index has been proposed, which considers not
only integral of absolute error (IAE) but also overshoot,
steady-state error, rise time, settling time, square of the input
signal, and output signal. Also, its superiority to IAE and
ITAE has been demonstrated on multivariable PID con-
trollers. 0us, in this paper, we use the following equation
(31) as fitness function for the industrial process under
partial actuator faults. As seen from equation (31), this
fitness function not only considers IAE, rise time, and
settling time but also the square of input signal to avoid
exporting a large control value and Δy to avoid getting a
large overshoot:

F(S) �

w1 tr + ts( 􏼁 + 􏽚
∞

0
w2|e(t)| + w3u

2
(t)􏼐 􏼑dt, if Δy(t)≥ 0,

w1 tr + ts( 􏼁 + 􏽚
∞

0
w2|e(t)| + w3u

2
(t) + w4|Δy(t)|􏼐 􏼑dt, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

where tr, ts, e(t), u(t), and y(t) are rise time, settling time, system
error, input signal, and output signal at the time t. w1, w2, and
w3 are weight coefficients. As suggested in [26], here w1, w2,

w3, andw4 are set as w1 � 50, w2 � 0.999, w3 � 0.001, and
w4 � 100.

Remark 2. w1, w2, w3, andw4 are the weight coefficients,
which have a large influence on the control performance.
From equation (31), one can see that w1 controls the rise
time and settling time of system response. 0e parameters
w2 and w3 have effect on the system error and input signal,
and w4 has impact on the overshoot of system response. In
real-life engineering, these weight coefficients are often
determined via the experiential rules and trial-and-error
method according to priority of performance indices. In
general, w2 andw3 are subject to the equation, i.e., w2 + w3 �

1 and w2 is often set much larger than w3. 0us, w2 andw3
are set as 0.999 and 0.001, respectively. In addition, w4 is

generally set as 50≤w4 ≤ 100 or a larger value; here, w4 �

100 is used. After determining w2, w3, andw4, the parameter
w1 is determined by the trial-and-error method and set as 50.
0e weight coefficients, i.e., w1, w2, w3, andw4 are not the
optimal values in this paper. In fact, how to obtain more
appropriate weight coefficients is still worth studying.

3.2.2. Main Description of PEO-FOPFC. 0e main param-
eters P, c, and λ in FOPFC are optimized by the PEO al-
gorithm. 0e flowchart of PEO-FOPFC strategy is shown in
Figure 1. 0e detailed steps of optimizing three parameters
in FOPFC by the PEO algorithm are described as follows.

Input: the system model, PEO’s adjustable param-
eters including the population sizeNP, the maximum
number of iterations Imax, andmutation parameter b,
number of base functions N, and upper and lower
values of parameters to be optimized, i.e., P, c, and λ

Complexity 7



Output: the best solution Sbest (i.e., the optimal
parameters P, c, and λ used in FOPFC) and the
corresponding fitness value Cbest

Step 1. 0e parameters to be optimized are encoded
into a solution S in the PEO algorithm given in
Figure 2. More specifically, one initial population
PI = {S1, S2, . . ., SNP} contains generated solutions
with NP size, where each solution Si � [Pi, ci, λi]
denotes one group parameters used in FOPFC.0en,
set P�PI, Sbest �PIbe (PIbe is the best solutions in PI
based on the fitness value defined in equation (27)),
and Cbest � F(Sbest).
Step 2 (for each solution Si in P).

(a) Obtain the D mutated solutions {Sik, (k� 1, 2, 3,
. . ., D)} by application of multi-non-uniform
mutation (MNUM) operation [35] shown in
equations (32) and (33). More specially, the j-th
component is mutated by MNUM operation and
the other components remain unchanged, and
then fitness value for each mutated solution is
obtained by calculating the fitness function de-
fined in equation (31). For example, for solution
S1 � [P1, c1, λ1] in P, three mutated solutions
S11 � [P1′ , c1, λ1], S12 � [P1, c1′ , λ1], and S13 � [P1,
c1,λ1′ ] can be obtained by using MNUM oper-
ation. And, the process of mutation operation in
PEO is shown in Figure 3:

Si xj􏼐 􏼑 �

Si xj􏼐 􏼑 + Uj − Si xj􏼐 􏼑􏼐 􏼑 × A(t), if r< 0.5,

Si xj􏼐 􏼑 + Si xj􏼐 􏼑 − Lj􏼐 􏼑 × A(t), if r≥ 0.5,

⎧⎪⎪⎨

⎪⎪⎩

(32)

A(t) � r1 1 −
t

Imax
􏼠 􏼡􏼢 􏼣

b

, (33)

where the subscript j is the j-th decision variable, x is
the decision variable, U and L are the upper and
lower values of decision variable, t is the current
number of iteration, r and r1 are uniformly dis-
tributed random values between 0 and 1, and b is the
mutation parameter.

(b) Access each mutated solutions based on the fitness
function F(Sik). 0en, rank the D solutions {Sik,
(k� 1, 2, 3, . . ., D)}.

(c) Select the best solution among Sik according to the
rank index and term it as Sbi. Additionally, the
corresponding best fitness value is termed as Cbi.
0en save Sbi and Cbi in Pb and Cb for the purpose of
updating, respectively.

Step 3. Update the best solution and the corresponding
fitness. More specially, find the best solution Cnb in Cb
and corresponding solution Snb, if Cnb is better than
Cbest, and then set Cbest�Cnb and Sbest� Snb.

Step 4. Accept P � Pb unconditionally.
Step 5. Obtain the optimal parameters of FOPFC
(i.e., the optimal parameters P, c, and λ used in
FOPFC) and corresponding fitness value Cbest when
the predefined Imax is satisfied; otherwise, go to Step
2 with the P.

Remark 3. To improve integer-order PFC, we have used two
key operators in the PEO-FOPFC. One is the application of
fractional-order calculus into PFC. 0is operator makes the
PFC have more tuning parameters. 0e other operator is
employing an effective PEO algorithm to optimize the re-
lated parameters in FOPFC by minimizing the constructed
fitness function, i.e., equation (31). From equation (31), one
can see that a comprehensive performance is considered.
Additionally, a specific improvement performance can be
obtained by adjusting the weighting factors. Compared with
the integer-order PFC, the fractional-order PFC is more
likely to obtain a better comprehensive performance by
using PEO.

Remark 4. 0e fractional calculus introduced into the cost
function of PFC is expected to enhance the performance of
PFC because of more tuning parameters. However, how to
determine the adjustable parameters of FOPFC is not easy
due to lacking analytical knowledge. 0us, this paper pro-
posed PEO to tune the related parameters of FOPFC. In
other words, the proposed PEO-FOPFC is one kind of
FOPFC in essence, where the adjustable parameters of
FOPFC are determined by PEO.

Remark 5. From the description of PEO-FOPFC, we can see
that PEO-FOPFCmainly performs the following operations: (1)
evaluating population fitness, where the time complexity of
FOPFC needs to be considered; (2) sorting population fitness;
(3) population mutations, which include O(ImaxNPDPTt/Ts),
O(ImaxNPDlgNPD), andO(ImaxNPD). 0us, the time complexity
of PEO-FOPFC is O(ImaxNPDPTt/Ts) or O(ImaxNPDlgNPD),
whichever is larger. In practice, the PEO can be used offline to
optimize the adjustable parameters of FOPFC. In other words,
the time complexity of the application of PEO-FOPFC into real-
world engineering problem is same with FOPFC i.e., O(PTt/Ts),
where Tt is the time range of simulation.

Remark 6. In [22], the authors have successfully applied the
fractional-order predictive functional control into industrial
heating furnace. According to this reference, we can im-
plement the proposed PEO-FOPFC for real-world engi-
neering problem described as follows: after using the PEO
algorithm, we can obtain the optimized FOPFC. 0en,
Grünwald–Letnikov approximation is used to transform the
fractional-order process into an integer formulation. Finally,
the implementation of fractional-order mechanism can be
transformed into the implementation of integer model-
based PFC.
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4. Simulation Results on Injection
Molding Process

In this section, we firstly introduce a typical industrial
process, i.e., injection molding process in Section 4.1. 0en,
in order to demonstrate the effectiveness of the proposed
PEO-FOPFC, we do some experiments on control of the
injection velocity under different partial faults and unknown
disturbance. In this section, our experiments are divided into
three parts for different purposes. 0e first part is to

investigate the ability of fractional order. 0us, we
compare the FOPFC with PFC in this part. 0e second one
is to compare the proposed control method with the
recently published PFC [16]. Note that the PFC in [16] is

Start

Input the system model and related parameters 
of PEO–FOPFC

One initial population PI = {S1, S2, …, SNP} is obtained with NP
randomly generated solutions, where each solution Si denotes one 

group parameters in FOPFC. Subsequently, set P = PI, Sbest = PIbe, and 
Cbest = F(Sbest)

Obtain D mutated solutions {Sik, (k = 1, 2, 3, …, D)} by MNUM
operation shown in equations (28) and (29) on the j-th component

with the others unchanged

Access each mutated solution based on the fitness function 
F(Sik). Then, rank D solutions

Select the best solution among Sik based on the rank index, and 
term it as Sbi. Additionally, the corresponding best fitness value 
is termed as Cbi. Then save Sbi and Cbi in Pb and Cb, respectively

Cnb is better than Cbest?
Cbest  and Sbest
unchanged

N

N

Y

Y

Cbest = Cnb and Sbest = Snb

Accept P = Pb, 
unconditionally

Is Imax satisfied?

Obtain the optimal parameters of FOPFC and corresponding 
fitness value Cbest

End

For each solution Si in P

Input the parameters of FOPFC strategy

R(s)

–
+

E(s)
Partial actutor failure

FOPFC 
controller Plant G(s)

U(s) U F(s) Y(s)

W(s)

Calculate the fitness function defined in equation (27)

Figure 1: 0e flowchart of the proposed PEO-FOPFC strategy.
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Figure 2: Encoding of related parameters in FOPFC.

Obtain the
D mutated
solutions

Keeping the others
unchanged

γ′

P′

λ′

By employing
mutation operation

P γ λ

S

Mutated element
Original element

Figure 3: 0e process of mutation operation in PEO.
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Table 1: 0e conditions of six actuator faults.

0ree constant faults and a random white noise of standard deviation 0.2
Case 1 α� 0.4
Case 2 α� 0.3
Case 3 α� 0.25

0ree time-varying faults and a random white noise of standard deviation 0.2
Case 4 α� 0.4 + 0.2sin(k)
Case 5 α� 0.3 + 0.2sin(k)
Case 6 α� 0.2 + 0.1sin(k)
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Figure 4: 0e results obtained by FOPFC and PFC under Case 1 in simulation 1. (a) Output responses; (b) input signals.
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Figure 5: 0e results obtained by FOPFC and PFC under Case 2 in simulation 1. (a) Output responses; (b) input signals.
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the improved version of PFC, and the performance of PFC
in [16] has been proved to be better than the traditional
PFC. 0is part is designed to show the PEO-FOPFC’s
superiority to the reported PFC [16]. 0e third one is to
validate the influence of PEO on tuning the related pa-
rameters (i.e., P, λ, and c) in PEO-FOPFC. Here, the
FOPFC and two other evolutionary algorithms (i.e., GA
and PSO) based FOPFC methods are considered as
competitors. It should be noted that all the computer
simulations are conducted in MATLAB 2016a software on
a 2.5 GHz and 8 GB RAM computer under the Windows 7
operating system.

4.1. System Description. As reported in [16], the process of
injection molding consists of three phases: filling, packing,
and cooling. Among above three phases, the packing stage is
very important because it plays key role in maintaining
product quality, mechanical strength, deformation, and
accuracy. 0erefore, the injection velocity should be con-
trolled with high-precision to get the high-quality products.
Generally, it is operated through the opening of the pro-
portional valve by regulating the flow of hydraulic oil. 0us,
in this process, the output is injection velocity termed as
y(k), and the input variable is the proportional valve opening
termed as u(k), respectively. In this paper, the typical
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Figure 6: 0e results obtained by FOPFC and PFC under Case 3 in simulation 1. (a) Output responses; (b) input signals.
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Figure 7: 0e results obtained by FOPFC and PFC under Case 4 in simulation 1. (a) Output responses; (b) input signals.
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Figure 8: 0e results obtained by FOPFC and PFC under Case 5 in simulation 1. (a) Output responses; (b) input signals.
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Figure 9: 0e results obtained by FOPFC and PFC under Case 6 in simulation 1. (a) Output responses; (b) input signals.

Table 2: 0e results of control performance obtained by FOPFC and PFC in simulation 2.

Case Algorithm IAE ITAE Md Ess

0ree constant faults

Case 1 PFC [16] 165.572 51.773 2.443 0.0511
FOPFC 167.798 52.217 2.098 0.0252

Case 2 PFC [16] 205.998 68.744 3.435 0.1290
FOPFC 204.480 67.094 3.018 0.0708

Case 3 PFC [16] 232.875 80.469 3.698 0.0706
FOPFC 231.065 78.484 3.312 0.0162

0ree time-varying faults

Case 4 PFC [16] 183.022 57.771 3.189 0.0317
FOPFC 180.799 56.268 2.381 0.0266

Case 5 PFC [16] 218.925 72.425 3.739 0.1219
FOPFC 213.976 69.688 2.981 0.0675

Case 6 PFC [16] 271.063 96.301 4.576 0.6553
FOPFC 267.114 94.254 4.270 0.5764
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injection velocity control model is adopted from [16] shown
as follows:

P(z) �
y(z)

u(z)
�

1.69z + 1.419
z2 − 1.582z + 0.5916

, (34)

where y(z) and u(z) are the z-transforms of y(k) and u(k),
respectively. In addition, there exists unknown actuator
failure α in the valve opening. And, the set-point r(k) form is
shown in the following equation:

r(k) � 15(for 1≤ k< 40),

r(k) � 30(for 40≤ k≤ L),
􏼨 (35)

where L is set as 80. 0e goal of controller design is to
make the process output track the set point as closely as
possible under actuator failures and unknown distur-
bances. In this study, six faults are considered under
nonrepetitive unknown disturbance. More specially, three
cases of constant faults and three cases of time-varying
faults with a random white noise of standard deviation 0.2
added to the process output are used. Table 1 gives the
above six conditions.

Additionally, in order to quantitative analyze the control
performance of different methods, we use the following
performance indices: IAE, ITAE, maximum deviation Md,
and steady-state error Ess. Here, IAE, ITAE, Md, and Ess are
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Figure 10: 0e results obtained by PEO-FOPFC and PFC under Case 1 in simulation 2. (a) Output responses; (b) input signals; (c) tracking
error signals.
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defined for injection velocity control system in this study as
follows:

IAE � 􏽘
L

k�1
|e(k)|,

ITAE � 􏽘
L

k�1
k/L|e(k)|,

M d � max(y(k)) − r(L),

Ess � y(L) − r(L).

(36)

Smaller performance implies a better control performance.

Remark 7. In the all simulations, the fault is from beginning
to end, which includes themoment the set-point is changing.

4.2. Simulation 1: FOPFC and Its Comparison with PFC.
As suggested in [16], the related parameters in PFC are set
as follows: prediction horizon P � 4, the weighting factors
Qj � [1, 0, 1, 0], and the number of base function N � 1. To
the best of the authors’ knowledge, the FOPFC strategy is
firstly proposed for the industrial process with partial
actuator failures. 0us, this subsection is devoted to
investigating the control performance of FOPFC against
the partial actuator failures in the industrial process and
the effects of fractional-order mechanism on the control
performance. Here, the version of PFC equipped with
fractional-order mechanism, i.e., FOPFC, is considered
to be compared with PFC [16]. Note that the main pa-
rameters in FOPFC are set as the same as those of PFC,
except the specific parameter, i.e., fractional-order
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Figure 11: 0e results obtained by PEO-FOPFC and PFC under Case 2 in simulation 2. (a) Output responses; (b) input signals; (c) tracking
error signals.
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parameter c used in FOPFC. Here, c is set to 0.5 by the
trail-and-error tuning approach. Figures 4–9 show the
comparative results of output responses and input sig-
nals obtained by PFC and FOPFC under different six
cases. In addition, Table 2 tabulates four performance
indices. Clearly, the closed-loop system responses and
input signals obtained by FOPFC are slightly better than
those of PFC under Case 2 and Case 3. For Case 1, FOPFC
has a similar performance to PFC. As another three
server faults (i.e., Case 4, Case 5, and Case 6) with time-
varying faults and a random white noise of standard
deviation 0.2, FOPFC shows superiority to PFC, which
indicates that the fractional-order mechanism have
potential ability in solving more server faults.

4.3. Simulation 2: PEO-FOPFC and Its Comparison with PFC.
In PEO-FOPFC, Ts is abstracted as 1 during the process of
evolution because it has same influence on weighting factors,
and Imax, NP, and b are set as 10, 50, and 3, respectively. 0e
parameters including P, c, and λ of FOPFC optimized by
PEO are P� 2, c � 0.5659, and λ� 0.8231. And, the faults are
the same with six cases used in simulation 1.0e comparison
results are presented in Figures 10–15, where Figures 10(a)–
15(a) show the output responses, Figures 10(b)–15(b) show
the input control signals, and Figures 10(c)–15(c) show the
tacking error under the six cases, respectively. Additionally,
Table 3 presents the comparative results of control perfor-
mance indices obtained by PEO-FOPFC and PFC [16] under
six cases, where the best performance is highlighted in bold.

–5

0

5

10

15

20

25

30

35
O

ut
pu

t

0 10 20 30 40 50 60 70 80
k

Set-point
PFC
PEO-FOPFC

(a)

–0.5

0

0.5

1

1.5

2

In
pu

t

0 10 20 30 40 50 60 70 80
k

PFC
PEO-FOPFC

(b)

0

5

10

15

Tr
ac

ki
ng

 er
ro

r

0 10 20 30 40 50 60 70 80
k

PFC
PEO-FOPFC

(c)

Figure 12: 0e results obtained by PEO-FOPFC and PFC under Case 3 in simulation 2. (a) Output responses; (b) input signals; (c) tracking
error signals.
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From Figures 10(a)–15(a), the proposed PEO-FOPFC
presents better output tacking performance than PFC be-
cause it shows less oscillations and smaller overshoots.
Observed from Figures 10(b)–15(b), we can see that the PFC
[16] presents more drastic input control signals than PEO-
FOPFC, which indicates the product quality obtained by
PFC [16] is worse than PEO-FOPFC. Besides, the tacking
error performance in Figures 10(c)–15(c) also illustrates the
superiority of the proposed PEO-FOPFC.

4.4. Simulation 3: PEO-FOPFC and Its Comparison with
FOPFC, GA-FOPFC, and PSO-FOPFC. In this section, we
devote to investigating the influence of PEO algorithm on
control performance of PEO-FOPFC.0us, we compare PEO-

FOPFC with FOPFC and two other popular evolutionary al-
gorithms (i.e., GA [35] and PSO [36]) based FOPFC methods
(termed as GA-FOPFC and PSO-FOPFC, respectively) under
above six cases of faults. In order to clearly compare the three
evolutionary algorithms-based FOPFC methods, we tabulate
their related parameters and optimal parameters of FOPFC in
Table 4.

From Table 4, we can see the number of adjustable pa-
rameters used in PEO is less than that in GA and PSO, which
indicates the PEO algorithm is simpler than GA and PSO
from the perspective of algorithm design. Figures 16(a)–16(f)
show the results of four compared methods, and the corre-
sponding performance indices are presented in Table 5. From
Figure 16 and Table 5, the main observations can be sum-
marized as follows: (1) it can be found that the performance of
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Figure 13: 0e results obtained by PEO-FOPFC and PFC under Case 4 in simulation 2. (a) Output responses; (b) input signals; (c) tracking
error signals.
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FOPFC for the industrial process with partial actuator failures
can be improved by using evolutionary algorithms; (2) the
PEO algorithm is better than GA and PSO algorithm to find
the better related parameters of FOPFC in term of four in-
dices, although Md obtained by PEO-FOPFC is worse than
that by GA-FOPFC and PSO-FOPFC in Cases 4–6; (3) the
proposed PEO-FOPFC can improve ensemble control per-
formance against partial actuator failures under both constant
faults and time-varying faults.

Remark 8. In Table 1, the conditions of six actuator faults
are listed and a different α is used. Smaller α value means
more severe fault. From above simulations 1–3, we can find
that worse control performance is obtained with smaller α

values in terms of four control performance indices and
output responses.

5. Simulation Results on Process Flow of
Coke Furnace

In this section, we investigate the application of PEO-
FOPFC into control of process flow of coke furnace under
different partial faults and unknown disturbance. Figure 17
gives the sketch of process flow of coking furnace. 0e main
job of this unit is coking residues oil. First, the residual oil is
divided into two flows, i.e., FRC8103 and FRC8104, and the
convection room of the process furnace (101/3) is preheated.
0en, the separated streams will be merged into the frac-
tionating tower, i.e., T102, where the preheated oil exchanges
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Figure 14: 0e results obtained by PEO-FOPFC and PFC under Case 5 in simulation 2. (a) Output responses; (b) input signals; (c) tracking
error signals.
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Figure 15: 0e results obtained by PEO-FOPFC and PFC under Case 6 in simulation 2. (a) Output responses; (b) input signals; (c) tracking
error signals.

Table 3: 0e results of the control performance obtained by PEO-FOPFC and PFC in simulation 1.

Fault Case Algorithm IAE ITAE Md Ess

0ree constant faults

Case 1 PFC [16] 165.572 51.773 2.443 0.0511
PEO-FOPFC 143.502 42.159 0.1296 0.0152

Case 2 PFC [16] 205.998 68.744 3.435 0.1290
PEO-FOPFC 163.051 49.112 0.9378 0.0207

Case 3 PFC [16] 232.875 80.469 3.698 0.0706
PEO-FOPFC 181.602 56.049 1.511 0.0180

0ree time-varying faults

Case 4 PFC [16] 183.022 57.771 3.189 0.0317
PEO-FOPFC 154.261 46.632 0.691 0.0252

Case 5 PFC [16] 218.925 72.425 3.739 0.1219
PEO-FOPFC 178.013 55.044 1.587 0.0220

Case 6 PFC [16] 271.063 96.301 4.576 0.6553
PEO-FOPFC 213.876 69.374 2.377 0.0429
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Table 4: Related adjustable parameters used in three different evolutionary algorithms and corresponding optimal parameters in FOPFC.

Algorithm Related adjustable parameters Number of adjustable
parameters

Optimal parameters
in FOPFC

GA-FOPFC Population size NP� 30, maximum number of iterations Imax � 50,
crossover probability pc � 0.8, mutation parameter b� 3 4 P� 4, c � 2.3549,

λ� 0.8650

PSO-FOPFC Swarm size NP� 30, maximum number of iterations Imax � 50, acceleration
factors c1 � 1.49, c2 �1.49, limits of velocity Vmax � 2, Vmin � − 2 6 P� 3, c � 0.8009,

λ� 1.000

PEO-FOPFC Population size NP� 10, maximum number of iterations Imax � 50,
parameter b� 3 used in MNUM operation 3 P� 2, c � 0.5659,

λ� 0.831
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Figure 16: Continued.
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heat with the gas oil from the top of the coke towers. After
that, the circulating oil, i.e., the heavy part of mixed oil, is
pumped into two flows and sent back to the radiation room
for the purpose of heating to about 495 °C. Finally, the two
branches join together and will be sent to the coke towers to
remove coke. Each time the output temperature in the
chamber has a large impact on this process. 0us, the output
temperature needs to be accurately controlled in the coke

furnace under different partial faults and unknown distur-
bance. As suggested in [37], a first-order flus dead time
(FOPDT) can be used to test and can be described as follows:

G(s) �
1.1

300s + 1
e

− 150s
. (37)

Under sampling time Ts � 30 s, the discrete-time model
can be obtained as follows [37]:
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Figure 16:0e output responses obtained by PEO-FOPFC and FOPFC under six cases in simulation 3. (a) Case 1, (b) Case 2, (c) Case 3, (d)
Case 4, (e) Case 5, and (f) Case 6.

Table 5: 0e results of control performance obtained by FOPFC and PFC in Simulation 3.

Case Algorithm IAE ITAE Md Ess

0ree constant faults

Case 1

FOPFC 167.798 52.217 2.098 0.0252
GA-FOPFC 178.770 53.465 0.326 0.0436
PSO-FOPFC 167.457 49.645 0.438 0.0248
PEO-FOPFC 143.502 42.159 0.129 0.0152

Case 2

FOPFC 204.480 67.094 3.018 0.0708
GA-FOPFC 205.666 64.234 1.201 0.0360
PSO-FOPFC 193.774 60.013 1.004 0.0261
PEO-FOPFC 163.051 49.112 0.938 0.0207

Case 3

FOPFC 231.065 78.484 3.312 0.0162
GA-FOPFC 227.807 73.855 1.719 0.0155
PSO-FOPFC 215.677 69.338 1.857 0.0221
PEO-FOPFC 181.602 56.049 1.511 0.0180

0ree time-varying faults

Case 4

FOPFC 180.799 56.268 2.381 0.0266
GA-FOPFC 179.445 55.383 0.601 0.0360
PSO-FOPFC 171.842 51.918 0.622 0.0360
PEO-FOPFC 154.261 46.632 0.691 0.0252

Case 5

FOPFC 213.976 69.688 2.981 0.0675
GA-FOPFC 207.156 65.122 1.309 0.0884
PSO-FOPFC 196.743 61.116 1.415 0.0316
PEO-FOPFC 178.013 55.044 1.587 0.0220

Case 6

FOPFC 267.114 94.254 4.270 0.5764
GA-FOPFC 264.112 90.721 2.291 0.1552
PSO-FOPFC 249.106 84.295 2.591 0.0306
PEO-FOPFC 213.876 69.374 2.377 0.0429

20 Complexity



FRC8103
37.2t/h

FRC8107
43.5t/h

FRC8108
43.6t/h

FRC8104
36.9t/h

TR8156
339.6°C

TR8155
348.6°C

TR8129
495.8°C

Residual oil

AUTCAS

AUT AUT

Fraction tower circulating oil from
pumps 102/1,2,3

To T102
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Figure 17: Process flow of coking furnace (101/3) [37].

Table 6: 0e results of control performance obtained by PEO-FOPFC and PFC on the process flow of coke furnace.

Case Algorithm IAE ITAE Md Ess

0ree constant faults

Case 1 EPFC [37] 52.995 54.386 0.265 0.203
PEO-FOPFC 35.358 43.013 0.177 0.185

Case 2 EPFC [37] 54.759 58.230 0.274 0.217
PEO-FOPFC 38.795 48.190 0.194 0.204

Case 3 EPFC [37] 56.523 61.266 0.283 0.228
PEO-FOPFC 42.903 52.310 0.215 0.217

0ree time-varying faults

Case 4 EPFC [37] 56.182 54.715 0.281 0.196
PEO-FOPFC 42.433 43.666 0.212 0.174

Case 5 EPFC [37] 61.111 59.624 0.306 0.206
PEO-FOPFC 50.230 49.832 0.251 0.187

Case 6 EPFC [37] 63.899 67.314 0.319 0.236
PEO-FOPFC 55.613 59.116 0.278 0.219
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Figure 18: 0e output responses obtained by PEO-FOPFC and FOPFC under six cases on process flow of coke furnace. (a) Case 1, (b) Case
2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.
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G(z)) �
0.1047

z6 − 0.9048z5. (38)

Remark 9. 0e set-point is abstracted into 1 to 3, and the six
faults considered here are the same with simulations 1–3
given in Table 1. 0e used adjustable parameters of PEO are
also the same with simulations 1–3. 0e competitor is taken
from [37], called predictive functional control, based on the
extended state space model (denoted as EPFC here).

By employing PEO, we can obtain P� 5, c � 5.6773, and
λ� 0.8335 for this simulation. Figures 18(a)–18(f ) compare
the output responses of the set-point tracking obtained by
PEO-FOPFC and EPFC. Table 6 presents the results of
control performance obtained by PEO-FOPFC and PFC on
the process flow of coke furnace. From Figure 18 and Table 6,
one can see that PEO-FOPFC shows an improvement over
EPFC under partial faults and unknown disturbance con-
sidered in the paper, which implies the PEO algorithm and
fractional-order theory contribute a lot to obtain a better
comprehensive control performance.

6. Conclusion

In this paper, we have proposed the PEO-FOPFC strategy for
industrial processes under partial actuator failures.0ere are
two key operators in the PEO-FOPFC.More specifically, one
is the application of fractional-order calculus into the PFC
technique to improve its performance against partial actu-
ator failures, and the other one is employing an effective
PEO algorithm to search the optimal-related parameters in
FOPFC. To demonstrate the strong competitiveness, the
PEO-FOPFC strategy has been evaluated on two industrial
processes under six cases considering constant faults, time-
varying faults, and nonrepetitive unknown disturbance,
compared with the recently developed PFC [16, 37]. In

addition, in order to purely verify the effectiveness of the
fractional-order mechanism, the experiment is designed for
comparing FOPFC with PFC. And, another experiment is
used to purely evaluate the influence of PEO algorithm by
comparing PEO-FOPFC with FOPFC, GA-FOPFC, and
PSO-FOPFC. 0e three experimental comparison results
imply that the fractional-order mechanism and PEO algo-
rithm are largely improving the performance of PFC to
maintain the control performance and against the partial
actuator faults. As a consequence, the proposed PEO-
FOPFC strategy can be considered as a strong competitive
version of PFC strategy for industrial processes against
partial actuator failures.

Overall, by introducing the fractional-order mechanism
into the cost function, the FOPFC can be designed to im-
prove the performance of PFC due to more tuning pa-
rameters. 0e application of PEO to tuning the adjustable of
FOPFC can handle the difficulty in lacking the knowledge of
analytical these parameters. However, the parameter tuning
issue of FOPFC is based on the designed fitness function,
which may change for different control systems. Also, the
PEO algorithm costs more computation time.

In future, it will be a significant subject to extend the
proposed PFO-FOPFC into more complex industrial pro-
cesses and design more advanced controller for handling
actuator faults [38].

Appendix

Proof of Leorem 1. 0is proof is extended from [16].
From equation (26), we can obtain that

ΦTΛ[ΦΥ − Gu(k − 1)] � − ΦTΛ(Fz(k) + SΔR). (A.1)

From equations (20), (23), and (A.1), we can derive that

ΦΥ − Gu(k − 1) �

BT0

(AB − B)T0 + BT1

A2B − AB( 􏼁T0 +(AB − B)T1 + BT2

⋮

􏽘
P

i�1 AiB − Ai− 1B( 􏼁TP− 1− i + BTP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Υ −

B

AB

A2B

⋮

AP− 1B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(k − 1)

�

BT0Υ − Bu(k − 1)

(AB − B)T0Υ + BT1Υ − ABu(k − 1)

A2B − AB( 􏼁T0Υ +(AB − B)T1Υ + BT2Υ − A2Bu(k − 1)

⋮

􏽘
P

i�1 AiB − Ai− 1B( 􏼁TP− 1− iΥ + BTP− 1Υ − AP− 1Bu(k − 1)
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�

Bu(k) − Bu(k − 1)

(AB − B)u(k) + Bu(k + 1) − ABu(k − 1)

A2B − AB( 􏼁u(k) +(AB − B)u(k + 1) + Bu(k + 2) − A2Bu(k − 1)

⋮

􏽘
P

i�1 AiB − Ai− 1B( 􏼁u(k + P − 1 − i) + Bu(k + P − 1) − AP− 1Bu(k − 1)
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Δu(k)

Δu(k + 1)

Δu(k + 2)

⋮
Δu(k + P − 1)
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� ΩΔU.

(A.2)

Based on equations (A.2) and (A.1),

ΦTΛΩΔU � − ΦTΛ(Fz(k) + SΔR). (A.3)

0en, by premultiplying both sides of equation (A.3)
with ΩTΛ, we can obtain

ΔU � − ΩTΦΦTΛΩ􏼐 􏼑
− 1
ΩTΦΦTΛ(Fz(k) + SΔR). (A.4)

Here, let CS and CR be subject to the following equations:

CS � (1, 0, . . . , 0) ΩTΦΦTΛΩ􏼐 􏼑
− 1
ΩTΦΦTΛF,

CR � (1, 0, . . . , 0) ΩTΦΦTΛΩ􏼐 􏼑
− 1
ΩTΦΦTΛS.

(A.5)

At time instant k, the control increment can be described
as

Δu(k) � − CSz(k) − CRΔR. (A.6)

Without loss of generality, when considering closed-loop
stability, we can chose the set-point and let ΔR � 0.0en, the
proposed control law can be rewritten as follows:

Δu(k) � − CSz(k). (A.7)

According to the derivation of equations (7)–(15), we
can obtain following z(k+ 1) form of uncertain system:

z(k + 1) � (A + ΔA)z(k) + BΔu(k) + CΔr(k + 1). (A.8)

Combining equations (A.7) and (A.8), z(k+ 1) can be
rewritten as

z(k + 1) � A − BCS( 􏼁z(k) + ΔAz(k). (A.9)

Consider a Lyapunov functional candidate between the
time instants k and k+ 1 as

ΔV(z(k)) � V(z(k + 1)) − V(z(k)),

� z
T
(k + 1)WPz(k + 1) − z

T
(k)WPz(k).

(A.10)

By substituting equations (A.9) into (A.10),
ΔV(z(k))can be rewritten as

ΔV(z(k)) � z
T
(k) A − BCS( 􏼁

T
WP A − BCS( 􏼁z(k)

+ z
T
(k) A − BCS( 􏼁

T
WPΔAz(k)

+ z
T
(k)ΔAT

WP A − BCS( 􏼁z(k) + z
T
(k)ΔAT

· WPΔAz(k) − z
T

(k)WPz(k).

(A.11)

Considering the following inequations,

z
T
(k) A − BCS( 􏼁

T
WP A − BCS( 􏼁􏽨 􏽩z(k) − z

T
(k)WPz(k)

≤ − λmin MP( 􏼁‖z(k)‖
2

z
T
(k) A − BCS( 􏼁

T
WPΔAz(k) + z

T
(k)ΔAT

WP A − BCS( 􏼁z(k)

≤ − 2σmax A − BCS( 􏼁λmax WP( 􏼁‖ΔA‖‖z(k)‖
2
,

(A.12)

we can get

ΔV(z(k))≤ ‖z(k)‖
2

− λmin MP( 􏼁 + 2σmax A − BKs( 􏼁λmax(

· WP( 􏼁‖ΔA‖ + λmax WP( 􏼁‖ΔA‖
2
􏼑.

(A.13)

If the following inequations holds,

− σmax A − BCS( 􏼁 −

������������������������

σmax
2 A − BCS( 􏼁 +

λmin MP( 􏼁

λmax WP( 􏼁

􏽳

≤ ‖ΔA‖ � σmax(ΔA)

≤ − σmax A − BCS( 􏼁 +

������������������������

σmax
2 A − BCS( 􏼁 +

λmin MP( 􏼁

λmax WP( 􏼁

􏽳

,

(A.14)

then, ΔV(z(k))< 0 is guaranteed, which implies the robust
stability of the control system.

0is completes the proof.
Proof of Proposition 1. 0is proof is extended from [34].
Proof. Suppose that the transfer function is Ad(z)/Bd(z),

where model order is d. Here, we write the gain vector CS
and CR in equation (A.6) as CS � [c1, c2, . . ., cd, cd+1, cd+2, . . .,
c2d] and CR � [cr1, cr2, . . ., crP] and define two polynomial
functions M(z), N(z) as follows:
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M(z) � c1 + c2z
− 1

+ c3z
− 2

+ · · · + c dz
− (d− 1)

,

N(z) � 1 + cd+1z
− 1

+ cd+2z
− 2

+ · · · + c2 d− 1z
− (d− 1)

.

(A.15)

Additionally, ΔR can be rewritten as

ΔR �

Δr(k + 1)

Δr(k + 2)

⋮

Δr(k + P)
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�

r(k + 1) − r(k)

r(k + 2) − r(k + 1)

⋮

r(k + P) − r(k + P − 1)
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�

(1 − λ)(c(k) − y(k))

λ(1 − λ)(c(k) − y(k))

⋮

λP− 1(1 − λ)(c(k) − y(k))
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.

(A.16)

According to the control law equations (A.6), (15), and
(A.16), we define

CR
′ � cr1(1 − λ) + cr2λ(1 − λ) + · · · + crPλ

P− 1
(1 − λ).

(A.17)

0en, we can derive the control low in the following
polynomial form:

1 − z
− 1

􏼐 􏼑N(z)U(z) � − 1 − z
− 1

􏼐 􏼑M(z)Y(z) + CR
′ (C(z) − Y(z)).

(A.18)

Afterwards, we can get the transfer function T(z) de-
scribed from the set-point to the output as

T(z) �
CR
′B d(z)

1 − z− 1( ) M(z)A d(z) + N(z)B d(z)( 􏼁 + CR
′B d(z)

,

(A.19)

which can obtain

lim
z⟶1

T(z) � 1. (A.20)

If the equation (A.20) satisfied, then we can conclude that
the closed-loop system tracks the set-point without steady error.

Additionally, the transfer function from the output
disturbance and input disturbance to the output response
can be obtained, respectively, as follows:

SO(z) �
1 − z− 1( 􏼁N(z)A d(z)

1 − z− 1( ) N(z)A d(z) + M(z)B d(z)( 􏼁 + CR
′B d(z)

,

SI(z) �
1 − z− 1( 􏼁N(z)B d(z)

1 − z− 1( ) N(z)A d(z) + M(z)B d(z)( 􏼁 + CR
′B d(z)

.

(A.21)

One can see that

lim
z⟶1

SO(z) � 0,

lim
z⟶1

SI(z) � 0,
(A.22)

which indicates that the constant output disturbances and
input disturbances can be rejected without steady error.
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