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*is paper investigates the observer-based structural balance control for a class of complex dynamical networks. Generally
speaking, a complete complex dynamical network is composed of two coupled subsystems, which are called node subsystem (NS)
and connection relationship subsystem (CS), respectively. Similar to synchronization and stabilization of networks, the structural
balance is another phenomenon of networks and determined by the state of connection relationships. However, it is not feasible to
design the controller for the CS directly because the states of the connection relationships are difficult to be measured accurately in
practical applications. In order to solve this problem, a state observer for the CS has been designed. *us, the structural balance
controller in the CS can be directly designed by using the estimation information of the state observer. *en, with the help of the
Lyapunov stability theory, it is proved that the CS can asymptotically track a given structural balance matrix under the influence of
the observer-based controller. Finally, the results derived from this paper are demonstrated by performing a numerical example.

1. Introduction

In recent decades, complex dynamical networks have drawn
considerable attention because many real-world applications
need the help of research results about complex dynamical
networks, such as neural networks [1], social networks [2],
power networks [3], wireless networks [4], and Internet
networks [5]. Complex dynamical networks are represented
by a group of dynamically interacting nodes with connection
relationships between them. *at is, the dynamical equa-
tions of a complete network mainly contain two parts. *e
first is the node subsystem (nodes) and the second is the
connection relationship subsystem (connection relation-
ships between nodes), where the two subsystems are usually
coupled with each other. Moreover, the model of complex
dynamical networks helps to understand and examine the
dynamical behaviors of networks in a better way. *e reason
is that some behaviors are reflected by nodes such as syn-
chronization [6, 7], stabilization [8, 9], and consensus

[10–12], and another characteristic behavior is determined
by the connection relationships such as structural balance
[13–15].

From the existing research results about the synchro-
nization, stabilization, consensus, and structural balance or
other problems of complex dynamical networks, it is as-
sumed that all states in complex dynamical networks, in-
cluding the states of nodes and connection relationships, can
be measured accurately. In fact, due to the large scale of
complex dynamical networks (including a large number of
nodes and connection relationships) and influence of ex-
ternal environment, technical constraints, and measurement
costs, this assumption is too hard to meet for a network [16].
It implies that it is very necessary and important to construct
state observers for the complex dynamical networks to es-
timate the unknown state variables. In [17, 18], the state
estimation problem is investigated for complex dynamical
networks with the coupling time delays. In [19, 20], the state
estimation problem of complex networks with uncertain
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network parameters and stochastic noisy disturbance is
discussed. *e papers [21, 22] proposed some state esti-
mation methods to solve the problem of packet loss caused
by the congestion and transmission error in the networks.

However, the abovementioned papers about the state
estimation of complex dynamical networks only discussed
the estimation problems of the states in nodes subsystem and
assumed that the connection relationships between nodes
are known. On the other words, the measurement and state
estimation problems of the connection relationships not
only are ignored but also they are not concerned with the
structural balance control problem of the complex dy-
namical networks.

Compared to the states of the nodes in the networks, the
state values of the connection relationships are more
complex and difficult to be measured accurately in practical
applications, especially in some real networks such as social
networks. Hence, there are only a few papers to study the
effective measurement problem of the connection rela-
tionships in networks. In [23], a state measurement method
of connection relationships is proposed according to the
physical interaction between the individuals (nodes). Zeng
et al. [24] introduced a measurement method of the social
relationships based on adaptive weights. Similar to the state
values of the nodes, it is also difficult to obtain all the
measured values of the connection relationships, and de-
signing observers to estimate the unmeasured state values of
the connection relationships is very necessary. As far as we
know, there is only one paper to discuss the state estimation
problem of dynamic connection relationships in networks
[25]. Unfortunately, this paper only solves the state esti-
mation problem for connection relationships in a class of
networks, but does not consider some related control
problems, such as structural balance control.

On the other hand, more and more scholars pay at-
tention to the structural balance of networks, and a series of
research results have been obtained [13–15, 24, 26–34]. So
far, the models of structural balance have gone through the
following stages. (i) *e signed network model, in which the
state values of connection strength are expressed by only
using integers 0 and ±1 [24, 26]; (ii) the time continuous
models, which are described by a set of differential equations
or a matrix differential equation [13, 15, 27–32], but they did
not consider the effects of internal state motions of the nodes
on the evolution of connection relationships; (iii) the model
is described by a Riccati dynamical equation with the
coupling matrix about the internal state of nodes [14, 33, 34],
which implies that any dynamical changes of nodes (or
connection relationships) will cause the connection rela-
tionships (or nodes) to be changed via the effective coupling.
*ese papers investigate the time evolution behaviors of the
connection relationships and show the structural balance of
networks. However, considering that the state values of
connection relationships cannot be measured accurately;
thus, there are only a few papers to discuss the structural
balance control problems of networks. In [15, 31], the
structural balance of networks is realized by changing the
values of the connection relationships between the nodes
and a “reference” agent (node).*e papers [14, 34] proposed

a complex dynamical network model composed of the node
subsystem and connection relationship subsystem, where
the two subsystems are coupled with each other. *us, the
structural balance of networks can be achieved by designing
the controller in node subsystem, which can control the
states of nodes to force the connection relationship sub-
system to be structural balance via the effective coupling. To
the best of our knowledge, the structural balance control of
networks based on the state observer of connection rela-
tionships has not been studied.

Inspired by the above discussions, we mainly focus on
the design of the structural balance controller with the es-
timation information of the state observer for the connec-
tion relationships subsystem in this paper. Firstly, we
proposed a complex dynamical network model, which is
composed of the nodes subsystem and connection rela-
tionships subsystem with coupled each other. *en, we
designed a state observer for the connection relationship
subsystem. Finally, the controller in connection relation-
ships subsystem has been proposed by using the estimation
information of the state observer, which can guarantee the
phenomenon of structural balance emerges in the network.
*at is, the estimation and direct control problems of the
connection relationships subsystem are solved in this paper.

*is paper is organized as the following sections. Section
2 proposes a complex dynamical network model, which is
composed of the nodes subsystem and the connection re-
lationships subsystem with outputs. In Section 3, the state
observer for the connection relationships subsystem is
designed. Section 4 completes the design of the structural
balance controller in connection relationship subsystem by
using the estimation information of the state observer. *e
simulation example is presented in Section 5. Finally, the
conclusions are given in Section 6.

2. Network Model Description

In this paper, we consider a class of the undirected complex
dynamical network with N nodes, which are composed of
the node subsystem and the connection relationship sub-
system. If each node is n-dimensional continuous-time
system, then the node subsystem and the connection rela-
tionship subsystem can be described as follows (see
[14, 33, 34]):

_xi � fi xi(  + ci 

N

j�1
pij(t)Hj xj , i � 1, 2, . . . , N, (1)

_P � ΘP + PΘT + U + UT + G(x) + G(x)T,

Y � ΥP,
 (2)

where xi � xi1 xi2 . . . xin 
T ∈ Rn is the state vector of

node i; the vector functions fi(xi) � fi1(xi) fi2(xi) . . .

fin(xi)]
T and Hj(xj) � Hj1(xj) Hj2(xj) . . . Hjn(xj)

T;
ci is a given positive constant, and it represents the common
connection strength of the ith node in the networks; the matrix
Θ ∈ RN×N is a constant matrix; G(x) ∈ RN×N represents the
coupling matrix with the internal state of the nodes, and
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x � xT
1 xT

2 . . . xT
N 

T ∈ RNn; U ∈ RN×N is the control
input; Υ ∈ RN1×N is the output matrix of the connection re-
lationship subsystem (2); and the connection relationships
matrix P � P(t) � [pij(t)]N×N, where the time-varying
function pij(t) expresses the weighted value of connection
relationship between the node i and the node j in the network
and pji � pij for undirected networks, especially when i � j,
pij indicates the relationship strength of the node itself,
i � 1, 2, . . . , N.

Now, we introduce the definitions of vec(·) operator and
the Kronecker product of matrices as follows.

Definition 1 (see [35]). *e application vec: Rk×l⟶ Rkl,
defined by

vec(H) � h11, . . . , h1l, h21, . . . , h2l, . . . , hk1, . . . , hkl 
T
,

(3)

where H � [hij]k×l ∈ Rk×l is called the vectorization
operator.

Definition 2 (see [35]). If H ∈ Rk×l andZ ∈ Rc×d, then the
Kronecker product of H and Z, denoted as H⊗Z ∈ Rkc×ld, is
defined by the following matrix:

H⊗Z �

h11Z h12Z · · · h1lZ

h21Z h22Z · · · h2lZ

· · · ·

· · · ·

hk1Z hk2Z · · · hklZ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

*en, the following basic properties of the vectorization
operator vec(·) and Kronecker product can be obtained
from [35].

(1) (H⊗X)(W⊗D) � (HW)⊗ (X D)

(2) (H⊗D)T � HT ⊗DT

(3) (X⊗W)− 1 � X− 1 ⊗W− 1

(4) vec(HXZ) � (H⊗ZT)vec(X)

(5) vec(HX + XZ) � (H⊗ I + I⊗ZT)vec(X)

where X and W are matrices with compatible dimensions
and I represents the identity matrix with compatible di-
mensions. Especially, it is assumed that both X and W are
invertible in property (3).

According to (3), (4), and the Kronecker product
properties, the Riccati dynamical equation (2) can be re-
written as follows:

vec( _P) � Avec(P) + vec(U) + vec UT(  + vec(G(x))

+ vec G(x)T
 ,

vec(Y) � C1vec(P),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where A � Θ⊗ IN + IN ⊗Θ, C1 � Υ⊗ IN, and IN denotes
the identity matrix of order N.

Assumption 1. For the connection relationships subsystem (2),
we assume that the double matrix (Θ,Υ) is completely stable.

If Assumption 1 holds, then we can obtain a matrix
K ∈ RN×N1 , which can make Θ + KΥ to be a Hurwitz stable
matrix.*us, as long as any matrix Q> 0 is given, there must
be one and only one positive definite matrix M ∈ RN×N that
satisfies the following Lyapunov equation:

(Θ + KΥ)T
M + M(Θ + KΥ) � − Q. (6)

Lemma 1. If Assumption 1 is true, then the following
Lyapunov equations are obtained:

Θ⊗ ΙN + K1C1( 
T M + M Θ⊗ ΙN + K1C1(  � − Q1, (7a)

IN ⊗Θ + K2C2( 
T M + M ΙN ⊗Θ + K2C2(  � − Q2, (7b)

where M � M⊗M, Q1 � M⊗Q, Q2 � Q⊗M, K1 � K⊗ IN,
K2 � IN ⊗K, and C2 � IN ⊗Υ. Clearly, M> 0, Q1 > 0, and
Q2 > 0.

Proof. If Assumption 1 is true, then we can obtain (6), by
which the following equations can be obtained:

(Θ + KΥ)T
M ⊗ IN +[M(Θ + KΥ)]⊗ IN � − Q⊗ IN,

(8a)

IN ⊗ (Θ + KΥ)T
M  + IN ⊗ [M(Θ + KΥ)] � − IN ⊗Q.

(8b)

Using the properties of Kronecker product, (8a) and (8b)
can be rewritten as

Θ⊗ IN + K⊗ IN(  Υ⊗ IN(  
T

M⊗ IN(  + M⊗ IN( 

· Θ⊗ IN + K⊗ IN(  Υ⊗ IN(   � − Q⊗ IN,

(9a)

IN ⊗Θ + IN ⊗K(  IN ⊗Υ(  
T

IN ⊗M(  + IN ⊗M( 

· IN ⊗Θ + IN ⊗K(  IN ⊗Υ(   � − IN ⊗Q.
(9b)

*us, we can obtain

Θ⊗ IN + K1C1 
T

M⊗ IN(  + M⊗ IN(  Θ⊗ IN + K1C1 

� − Q⊗ IN,

(10a)

IN ⊗Θ + K2C2 
T

IN ⊗M(  + IN ⊗M(  IN ⊗Θ + K2C2 

� − IN ⊗Q.

(10b)
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If both sides of equalities (10a) and (10b) are multiplied
by (IN ⊗M) and (M⊗ IN) from right, respectively, then we
can obtain

Θ⊗ IN + K1C1 
T

M⊗ IN(  IN ⊗M(  + M⊗ IN( 

· Θ⊗ IN + K1C1  IN ⊗M(  � − Q⊗ IN(  IN ⊗M( ,

(11a)

IN ⊗Θ + K2C2 
T

IN ⊗M(  M⊗ IN(  + IN ⊗M( 

· IN ⊗Θ + K2C2  M⊗ IN(  � − IN ⊗Q(  M⊗ IN( .

(11b)

It is noticed that (IN ⊗M)(M⊗ IN) � M⊗M �

(M⊗ IN)(IN ⊗M). *erefore, equalities (11a) and (11b) can
be rewritten as follows:

Θ⊗ IN + K1C1 
T
(M⊗M) +(M⊗M) Θ⊗ IN + K1C1 

� − Q⊗M,

(12a)

IN ⊗Θ + K2C2 
T
(M⊗M) +(M⊗M) IN ⊗Θ + K2C2 

� − M⊗Q.

(12b)

*is completes the proof of Lemma 1.

Assumption 2. *e coupling matrix G(x) in subsystem (2)
satisfiesG(x) � M− 1ΥTΨ(x)M− 1, whereΨ(x) ∈ RN1×N and
‖Ψ(x)‖≤ ρ(t)‖x‖2, ρ(t)> 0.

3. The State Observer Design

In this paper, the state P in subsystem (2) cannot be
measured accurately, which implies that the states of
structural balance controller U cannot contain P directly.
*erefore, it is necessary to design an observer to estimate
the state P in (2), and the definition of the state observer
about subsystem (2) is given as follows.

Definition 3. For a given matrix dynamical system
_P � F(P, Y, x, ρ), if the state of node subsystem (1) can be
measured accurately and P − P

t⟶+∞⟶ 0 holds, then the ma-
trix dynamical system _P � F(P, Y, x, ρ) is called a state
observer of subsystem (2).

If Assumptions 1 and 2 are true, we can design the state
observer of subsystem (2) as follows:

_P � (Θ + KΥ)P + P(Θ + KΥ)T
+ U + U

T
+ L(P, Y, x, ρ)

− KY − Y
T
K

T
.

(13)

Using vec(·) operator for (13), the following equation
can be obtained:

vec( _P) � A + K1C1 + K2C2( vec(P) + vec(U) + vec U
T

 

+ vec(L(P, Y, x, ρ)) − K1vec(Y) − K2vec Y
T

 ,

(14)

where P represents the estimated value of the state P in
subsystem (2), and the robust term L(P, Y, x, ρ) �

Ω +ΩT, ΥP≠Y

0, ΥP � Y
 , where Ω � ρ(t)‖x‖2(M− 1ΥT(Y − ΥP)

M− 1/‖Y − ΥP‖). Clearly, vec(L(P, Y, x, ρ)) �

vec(Ω) + vec(ΩT), C1vec(P)≠ vec(Y)

0, C1vec(P) � vec(Y)
 . At the same

time, we note that the equality ‖Y − ΥP‖ � ‖YT − PΥT‖ �

‖vec(Y − ΥP)‖ � ‖vec(YT − PΥT)‖ holds, then
vec(Ω) � ρ(t)‖x‖2( M

− 1
CT
1 [vec(Y) − C1vec(P)]/‖vec(Y) −

C1vec(P)‖) and vec(ΩT) � ρ(t)‖x‖2( M
− 1

CT
2 [vec(YT) −

C2vec(P)]/‖vec(YT) − C2vec(P)‖) can be obtained.
In this paper, the estimation error is denoted by

E � P − P. By using properties of vec(·) operator and
Kronecker product, the following error system can be
obtained:

vec( _E) � Avec(P) − A + K1C1 + K2C2( vec(P)

+ vec L(P, Y, x, ρ) − K1vec(Y) − K2vec Y
T

 

� A + K1C1 + K2C2( vec(E) + M
− 1

C
T
1 vec(Ψ(x))

+ M
− 1

C
T
2 vec Ψ(x)

T
  − vec L(P, Y, x, ρ).

(15)

Lemma 2. If Assumptions 1 and 2 are true, then the matrix
dynamical system (13) is the state observer of subsystem (2).

Proof. Consider the following positive definite function:

V1 �
1
2
vec(E)

T Mvec(E). (16)

*en, the orbit derivative of V along (16) reads as

4 Complexity



_V1 � vec(E)
T Mvec( _E)

� vec(E)
T M A + K1C1 + K2C2( vec(E) + M

− 1
C

T
1 vec(Ψ(x)) + M

− 1
C

T
2 vec Ψ(x)

T
  − vecL(P, Y, x) 

� vec(E)
T M Θ⊗ ΙN + K1C1( vec(E) + vec(E)

T M ΙN ⊗Θ + K2C2( vec(E)

+ vec(E)
T M M

− 1
C

T
1 vec(Ψ(x)) + M

− 1
C

T
2 vec Ψ(x)

T
  − vecL(P, Y, x) 

�
1
2
vec(E)

T Θ⊗ ΙN + K1C1( 
T M + M Θ⊗ ΙN + K1C1(  vec(E)

+
1
2
vec(E)

T ΙN ⊗Θ + K2C2( 
T M + M ΙN ⊗Θ + K2C2(  vec(E)

+ vec(E)
T M M

− 1
C

T
1 vec(Ψ(x)) + M

− 1
C

T
2 vec Ψ(x)

T
  − vecL(P, Y, x) 

� −
1
2
vec(E)

T
Q1vec(E) −

1
2
vec(E)

T
Q2vec(E)

+ vec(E)
T

C
T
1 vec(Ψ(x)) + vec(E)

T
C

T
2 vec Ψ(x)

T
 

− vec(E)
T M

vec(Ω) + vec ΩT( , C1vec(P)≠ vec(Y)

0, C1vec(P) � vec(Y)

⎧⎪⎨

⎪⎩

≤ −
1
2
vec(E)

T
Q1vec(E) −

1
2
vec(E)

T
Q2vec(E)

+ vec(E)
T
C

T
1

����
����‖vec(Ψ(x))‖ + vec(E)

T
C

T
2

����
���� vec Ψ(x)

T
 

�����

�����

−
vec(E)T Mvec(Ω) + vec(E)T Mvec ΩT( , C1vec(P)≠ vec(Y)

0, C1vec(P) � vec(Y)

⎧⎪⎨

⎪⎩

≤ −
1
2
vec(E)

T
Q1vec(E) −

1
2
vec(E)

T
Q2vec(E) + ρ(t)‖x‖

2 vec(E)
T
C

T
1

����
���� + ρ(t)‖x‖

2 vec(E)
T
C

T
2

����
����

−

ρ(t)‖x‖2 C1vec(E)
����

���� + C2vec(E)
����

���� , C1vec(P)≠ vec(Y)

0, C1vec(P) � vec(Y)

⎧⎪⎨

⎪⎩

� −
1
2
vec(E)

T
Q1vec(E) −

1
2
vec(E)

T
Q2vec(E)≤ 0.

(17)

From inequality (17), we can obtain that the estimation
error matrix E is bounded and E

t⟶+∞⟶ 0. *us, *eorem 1 is
proved.

4. The Structural Balance Controller Design

Although we cannot directly use state P in subsystem (2) to
design the structural balance controller U, but the state of
subsystem (1), the state estimation information P in state
observer (13) and the output Y in subsystem (2) can be used
in the structural balance controller U.

Firstly, some useful definitions about structural balance
are given as follows.

Definition 4. A symmetric matrix S � [sαβ] ∈ Rm×m is
structurally balanced if the inequality sαβsβρsρα > 0 holds,
where α, β, ρ � 1, 2, . . . , m and m≥ 3.

According to Definition 4, the asymptotic structural
balance of complex dynamical networks can be defined as
follows.

Definition 5. Consider the complex dynamical network,
which is composed of subsystems (1) and (2). For a given
structural balance matrix P∗, if subsystem (2) can asymp-
totically track the matrix P∗ under the influences of con-
troller U, i.e., P(t)

t⟶+∞⟶ P∗, then this complex dynamical
network is called as structural balance.

Complexity 5



*erefore, the control objective in this paper is given as
follows.

Control objective: for the complex dynamical network,
which consists of subsystems (1) and (2), we need try to
design the controller U(P, Y, x, ρ) in subsystem (2), such
that the phenomenon of structural balance emerges in this
complex dynamical network.

In order to achieve the above control objective, the
following control scheme is proposed for subsystem (2):

U � − (Θ + ΚΥ)P∗ + ΚY + Λ, (18)

where Λ � − ρ(t)‖x‖( M
− 1ΥT(Y − ΥP) M

− 1/‖vec(Y) − C1vec(P)‖), Y≠ΥP

0, Y � ΥP
 ,

it is easy to see that L(P, Y, x, ρ) � − Λ − ΛT.
According to (3), (4) and the properties of vec(·) op-

erator and Kronecker product, equation (18) can be re-
written as

vec(U) � − Θ⊗ IN + K1C1( vec P
∗

(  + K1vec(Y) + vec(Λ),
(19)

vec U
T

  � − IN ⊗Θ + K2C2( vec P
∗

(  + K2vec Y
T

  + vec ΛT
 .

(20)

Let P � P − P∗, we can deduce from (14) that

vec( _P) � A + K1C1 + K2C2( vec P + P
∗

(  + vec(U)

+ vec U
T

  + vec(L(P, Y, x, ρ)) − K1vec(Y)

− K2vec Y
T

 .

(21)

Lemma 3. !e estimation state P in observer (13) can as-
ymptotically track the structural balance matrix P∗ by using
controller (18).

Proof. *e following equation can be obtained from
Lemma 1:

A + K1C1 + K2C2( 
T M + M A + K1C1 + K2C2( 

� − Q1 + Q2( .
(22)

*en, the following positive definite function is con-
sidered for error system (21):

V2 �
1
2
vec(P)

T Mvec(P). (23)

Calculating the time derivative ofV2 along (21) gives that

_V2 � vec(P)
T Mvec( _P)

� vec(P)
T M A + K1C1 + K2C2( vec P + P

∗
(  + vec(U)

+ vec U
T

  + vec(L(P, Y, x, ρ)) − K1vec(Y)

− K2vec Y
T

 

� vec(P)
T M A + K1C1 + K2C2( vec(P)

+ vec(P)
T M A + K1C1 + K2C2( vec P

∗
( 

− Θ⊗ IN + K1C1( vec P
∗

(  + K1vec(Y) + vec(Λ)

− IN ⊗Θ + K2C2( vec P
∗

(  + K2vec Y
T

  + vec ΛT
 

+ vec(L(P, Y, x, ρ)) − K1vec(Y) − K2vec Y
T

 

� vec(P)
T M A + K1C1 + K2C2( vec(P)

�
1
2
vec(P)

T M A + K1C1 + K2C2( 

+ A + K1C1 + K2C2( 
T Mvec(P)

� −
1
2
vec(P)

T
Q1 + Q2( vec(P)< 0.

(24)

*e inequality (24) shows that vec(P)
t⟶∞⟶ 0. *us,

Lemma 3 is completely proved.

Theorem 1. For the complex dynamical network composed
of subsystems (1) and (2), if Assumptions 1 and 2 are true,
then the state P in subsystem (2) can asymptotically track a
given structural balance matrix P∗ by the effect of controller
(18), such that the structural balance of this network is
achieved.

Proof. From Lemmas 2 and 3, we can obtain that
limt⟶∞[P(t) − P(t)] � 0 and limt⟶∞[P(t) − P∗] � 0, re-
spectively.*erefore, it is not difficult to get that limt⟶∞[P(t) −
P(t) + limt⟶∞

P(t) − P∗] � limt⟶∞ [P(t) − P∗] � 0, this
result proves *eorem 1 is true.
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5. Simulation Example

In this paper, a continuous analog Hopfield network [36] is
considered, which is composed of 10 neurons (nodes), and
the ith neuron can be described as

_xi � −
1
τi

xi +
1
Ci

Ii +
1
Ci



N

j�1
pijHj xj , (25)

where xi ∈ R is the state of the ith neuron; Ci expresses the
input capacitance of the ith neuron; the decay term τi � RiCi

is a positive constant, in which Ri is the effective resistance of
the ith neuron; Ii is the input current from other neurons
external to the circuit; pij � pji represents the strength of
synapse between the ith and the jth neuron; and the coupling
function Hj(xj) � (1 − e− xj )/(1 + e− xj ). *us, network (25)
can be described by the nodes subsystem (1) if we choose
fi(xi) � − (1/τi)xi + (1/Ci)Ii and ci � (1/Ci).

*en, we assume that the changes of the strength pij

satisfy the Riccati differential equation (2), and choose

Ψ(x) �

xT
1 x1 xT

1 x2 · · · xT
1 x10

xT
2 x1 xT

2 x2 · · · xT
2 x10

⋮ ⋮ ⋱ ⋮
xT

N1
x1 xT

N1
x2 · · · xT

N1
x10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i, j � 1, 2, . . . , 10. If

we choose N1 � 5, then the matrices Θ ∈ R10×10 and
Υ ∈ R5×10 in (2) can be generated by the following rules in
Matlab:

(i) Each element in matrices Θ∗ ∈ R10×10 and
Υ∗ ∈ R5×10 is a randomly generated integer in range
[− 1, 1].

(ii) Let Θ � a ·Θ∗ and Υ � a · Υ∗, where a is a known
positive constant.

(iii) If the matrices Θ and Υ generated in Step (ii) satisfy
Assumption 1, proceed to the next step or repeat
Step (i).

(iv) Each element in column vector z ∈ R10 is +1 or − 1,
which is randomly generated. *en, we can choose
P∗ � b · zzT, where b> 0. In this paper, we choose
a � 0.025, b � 5 in the process of simulation.

*erefore, we can obtain the matrices K and M by
solving the Lyapunov equation (6). Moreover, the node
subsystem (1) is determined by the dynamical equation (25),
and we can choose the following simulation parameters:
Ri � 1, Ci � 0.1i, Ii � 5 cos(t), ρ(t) � 0.2, and Q � 100I10.
Finally, initial values of states xi(0) and pij(0) � pji(0),

i, j � 1, 2, . . . , 10, are given by randomly generating num-
bers in the range (− 3, 3). *e simulation results are shown in
Figures 1–5 .

From Figures 1–5, we can obtain the following
conclusions:

(i) From Figures 2–4, we can see that the estimation
error converges asymptotically to zero. According
to Definition 3, we know that the Riccati dynamical
equation (13) is a state observer of subsystem (2),
and the state observer is effective.

(ii) Figures 2 and 5 show that subsystem (2) can as-
ymptotically track the structural balance matrix P∗,
which can lead to the phenomenon of structural
balance in the network. Compared with other
methods of structural balance control [14, 33, 34],
the biggest difference is that we can directly design
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Figure 1: *e state response curves of the nodes subsystem.
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Figure 2: *e response curves of the connection matrix P(t).
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Figure 3: *e response curves of the estimation matrix P(t).
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the structural balance controller for the connection
relationship subsystem based on the estimation
information of the state observer. *erefore, the
controller proposed in this paper is simpler, and the
requirements of form about the coupling G(x) in
subsystem (2) are lower.

(iii) From Figures 1 and 2, it is easy to see that the
neuron (nodes) subsystem (25) and the connection
relationship subsystem (2) are mutually coupled. It
is worth noting that the states of the nodes are used
in state observer (13) and controller (18), and it
implies that the dynamic changes of the nodes can
affect the observer’s estimated error and the
structural balance of the network. On the contrary,
the dynamic changes of the connection relation-
ships will also cause the states of nodes to be
changed via the effective coupling.

6. Conclusion

In this paper, we have proposed a complex dynamical
network model, which is composed of the node subsystem
and the connection relationship subsystem, and the two
subsystems are coupled with each other. Different from the

existing research achievements on the state estimation of the
node subsystem, we mainly focus on the state estimation of
the connection relationship subsystem with outputs and
design a state observer to estimate the state of the connection
relationships subsystem in this paper. *is encouraged us to
directly design a structural balance controller for the con-
nection relationship subsystem by using the state estimation
information of the connection relationships. Based on this,
the structural balance controller proposed in this paper is
simpler than the existing methods of structural balance
control. *erefore, the design methods of state estimation
and structural balance control proposed in this paper can
enrich the research results about the state estimation and
structural balance of complex dynamical networks.
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