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Currently, study on the relevant methods of variational mode decomposition (VMD) is mainly focused on the selection of the
number of decomposed modes and the bandwidth parameter using various optimization algorithms. Most of these methods
utilize the genetic-like algorithms to quantitatively analyze these parameters, which increase the additional initial parameters and
inevitably the computational burden due to ignoring the inherent characteristics of the VMD. From the perspective to locate the
initial center frequency (ICF) during the VMD decomposition process, we propose an enhanced VMD with the guidance of
envelope negentropy spectrum for bearing fault diagnosis, thus effectively avoiding the drawbacks of the current VMD-based
algorithms. First, the ICF is coarsely located by envelope negentropy spectrum (ENS) and the fault-relatedmodes are fast extracted
by incorporating the ICF into the VMD. +en, the fault-related modes are adaptively optimized by adjusting the bandwidth
parameters. Lastly, in order to identify fault-related features, the Hilbert envelope demodulation technique is used to analyze the
optimal mode obtained by the proposed method. Analysis results of simulated and experimental data indicate that the proposed
method is effective to extract the weak faulty characteristics of bearings and has advantage over some advanced methods.
Moreover, a discussion on the extension of the proposed method is put forward to identify multicomponents for broadening its
applied scope.

1. Introduction

+e rolling bearing is a key part of rotating machines, whose
performance determines the operation efficiency and reli-
ability of the whole mechanical equipment [1], such as
aircraft engines, high-speed trains, water-pumps, electric
fans, and so on. When the rolling bearing is in early failure,
the fault information is very weak. Furthermore, many
noises and other environmental factors make the fault in-
formation difficult to be detected. If this early failure con-
tinues to develop, it could reduce the operating stability of
the machines, and even cause the catastrophic failures [2, 3].
+erefore, the accurate and reliable fault diagnosis of early
local damage for the rolling bearings is of particular
significance.

In recent decades, various methods based on vibration
signal have been introduced by researchers for the diagnosis
of faulty rolling bearings, such as deconvolution analysis

[4, 5], wavelet transform [6], spectral kurtosis-based method
[7–10], time-frequency analysis [11, 12], and the adaptive
signal decomposition methods [13, 14]. Among these
methods, the adaptive signal decomposition methods have
attracted more and more attention and are the hot topic for
bearing fault diagnosis. Huang et al. [15] first proposed an
adaptive decomposition algorithm to deal with the non-
stationary signals, i.e., empirical modal decomposition
(EMD), which can decompose the signal into several
monocomponents. However, many drawbacks of the EMD
method and its variants, including noise-sensitive and mode
mixing [16], limit their effectiveness in extracting the weak
bearing fault characteristics. To address these problems, Wu
and Huang [17] developed an ensemble EMD (EEMD),
while the more computational burden needs to be paid [18].
Afterwards, various advanced adaptive decomposition
methods have been developed to process nonstationary
signals, such as empirical wavelet transform-based methods
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[19, 20] and local mean decomposition-based methods
[21, 22], which have also been widely used in the field of
bearing fault diagnosis.

Recently, Dragomiretskiy and Zosso [23] innovatively
proposed an adaptive signal decomposition technique,
variational mode decomposition (VMD), which can de-
compose the signals with multicomponents into mono-
components. Compared with the traditional adaptive
decomposition methods, the VMD method has some ob-
vious advantages as follows: noise suppression, nonrecursive
sifting, and adaptively chosen bands. However, the effec-
tiveness of VMD is greatly affected by the initial parameters
in practical applications. +erefore, selecting the suitable
initial decomposition parameters has become a critical issue
in the study of VMD. Many researches [24–29] mainly
focused on how to determine the bandwidth parameter and
the number of decomposition modes for the fault diagnosis
of bearings. However, the current types for initializing the
parameters in VMD subject to some prior experience.
Hence, further exploration on the decomposing strategy of
the VMD method needs to be desired for its better appli-
cation in bearing fault diagnosis.

Wang and Markert [25] found that the initial center
frequency (ICF) has a significant impact on the filter bank
and processing results, but its influence on bearing fault
diagnosis results is rarely discussed in the accessible lit-
erature. Besides, most of the current methods employ only
one balance parameter to match the bandwidths of all
extracted modes, but each latent mode has its individual
theoretical bandwidth. In order to solve these problems,
our team [30] has proposed a novel ICF-guided VMD
method to improve the ability of weak damage feature
extraction of rotating machines. It was found that a fine ICF
would help to perform the VMD easily without much prior
experience. As a result, an energy fluctuation spectrum
(EFS) index is used to locate the ICF and then optimize the
balance parameter to match the bandwidth of fault-related
component by incorporating the center frequency (CF).
However, how to locate the ICF is significant for the
successful application of VMD. +rough research, we
found that the reliability of the EFS index is limited by the
parameters used in the time-frequency representation
(TFR). In this paper, we propose an enhanced VMD using
the envelope negentropy spectrum (ENS) as a guidance to
mitigate the influence of the parameters used in TFR and
strengthen the adaptability of the VMD. First, the TFR of
the rawmechanical signal is obtained by short-time Fourier
transform (STFT). +en, the ENS is constructed based on
the results of TFR. +ird, use the VMD method to extract
the faulty modes on the basis of ICF located by ENS. Fi-
nally, the extracted modes are optimized to maximize the
faulty information by adjusting the bandwidth parameter,
and the Hilbert envelope demodulation technique is car-
ried out on the optimal mode, from which the bearing
faulty characteristics can be accurately detected. Compared
with the original ICF-guided VMD method, the proposed
method has an advantage of effectively avoiding the pa-
rameter influence of TFR. Simulated and experimental
studies on bearing fault are conducted to validate the

proposed method and its enhanced performance over some
advanced methods. Moreover, to broaden the applications
of the enhanced VMD method with the guidance of ENS,
an interesting extension is proposed to identify the mul-
tifault-related bands of bearing and a detailed discussion is
given for this idea.

+e rest of this paper is outlined as follows. Section 2
reviews the basic theory of the VMD.+e ENS is constructed
and the enhanced VMD with the guidance of ENS is pro-
posed in Section 3. In Section 4, the simulated and exper-
imental cases are used to validate the superiority of the
method. A discussion on the extension of the proposed
method is given in Section 5 and the conclusions are finally
drawn in Section 6.

2. Variational Mode Decomposition

VMD is a new technique for adaptive signal decomposition
with nonrecursively sifting structure, which can divide a
real-valued signal f(t) into K meaningful modes
uk(t), k ∈ (1, 2, . . . , K). +e overall framework of VMD is a
variational constraint model, which minimizes the band-
width of each estimated mode. Assume that each mode has a
finite bandwidth with its individual CF, the optimization
algorithm of alternating direction multiplier method [31] is
adopted to solve the variational constraint model.+emodel
of VMD is constructed as

L uk􏼈 􏼉, ωk􏼈 􏼉, λ( 􏼁 � α􏽘
K
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(1)

in which zt(·) is the partial derivative with t; δ is the Dirac
distribution; ∗ denotes the convolution operator; α repre-
sents the bandwidth parameter; and λ(t) denotes the co-
efficient of Lagrangian multiplier. +e last two terms in
equation (1) are used to render the reconstructing re-
quirement. As a result, L( uk􏼈 􏼉, ωk􏼈 􏼉, λ) is solved by the al-
ternate direction multiplier method to search its saddle
point. +e optimization process mainly contains that the
meaningful modes and their CFs are updated by modulating
each mode to the corresponding baseband. Specially, the
detailed procedure of VMD is written as follows.

(1) Initialize u1
k(t)􏼈 􏼉 and its CF ω1

k(t)􏼈 􏼉; α; λ(t).
(2) Update un+1

k (t) and ωn+1
k (t) via the following

formula:

u
n+1
k (ω) �

f(ω) − 􏽐i≠kun(ω) + λn(ω)/2( )

1 + 2α ω − ωn
k􏼐 􏼑

2 , (2)

where f(ω) is the Fourier transform of f(t).
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(3) Update λ according to the following formula:
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k
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(4) Execute iteratively equations (2)–(4) until the con-
vergent is met as
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in which ε is the tolerance value of the converging
judgment that is set as 10− 7 typically.

3. An Enhanced VMD Method with the
Guidance of Envelope Negentropy Spectrum

Applications of the original VMD need to preset some initial
parameters, including the number of decomposed modes
and the bandwidth parameter. +e effectiveness of original
VMD is mainly subjected to these initial parameters. In our
previous study [30], it was found that the above two pa-
rameters did not require to be given accurately via incor-
porating the effective ICF into VMD. However, the way to
select the effective ICF is easily influenced by the parameters
in the TFR. In this section, the ENS is firstly constructed to
robustly indicate the latent ICFs of faulty mode. +en, an
enhanced VMD method with the guidance of ENS is pro-
posed to extract the fault-relatedmodes, therebymaximizing
the advantages of VMD in bearing fault diagnosis.

3.1. Envelope Negentropy Spectrum. Entropy could be
regarded as a good measure to detect out-of-equilibrium
perturbations in a system [32]. In time domain, the local
fluctuations of analysis signal will come with a decrease of its
entropy. Various researches have proved that entropy is
effective to evaluate the impulsive feature of mechanical
signal [33].+e ENS proposed in this paper, which combines
the concept of envelope with the definition of entropy,
inherits the advantages of entropy and has stability under
different conditions.

Generally, the information entropy H(x) of signal x(j)

with length N is defined as

H(x) � − 􏽘
N

j�1
p(x(j))ln(p(x(j))), (6)

where p(x(j)) represents the probability density of x(j).
Hence, we attempt to use the information entropy to observe
the frequency range of latent faulty mode coarsely. +e TFR
techniques can reveal the local fluctuations of waveformwith
time in the whole range of analysis frequency. As a con-
sequence, TFR is used to transform the one-dimensional
signal into the plane distribution in the time-frequency

domain. Subsequently, the information entropy in different
frequency ranges can be calculated based on the result of
TFR. As one of TFR methods, the short-time Fourier
transform (STFT) is selected as the TFR tool in this paper
due to its simplicity and rapidity. For a real value signal x(t),
its STFT is denoted as [34]

TFR(t, f) � 􏽚
+∞

− ∞
x(τ)w(t − τ)e

− 2jπfτdτ, (7)

where w(t) is the window function. +en, the envelope
waveform of the analysis signal is obtained to describe the
envelope negentropy at different frequencies as follows.

Env ti, fj􏼐 􏼑 �

����������������������������������

Re TFR ti, fj􏼐 􏼑􏼐 􏼑􏼐 􏼑
2
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2

􏽲

.

(8)

According to the envelope information, the entropy at
frequency fj can be derived based on equation (6). How-
ever, the early local bearing defect, which might cause the
repetitive feature buried in the analysis signal, would de-
crease the entropy of analysis at a specific frequency band.
For convenience, the opposite of entropy, i.e., negentropy, is
used to indicate the latent faulty mode as equation (9).+is is
to make the highest impulsiveness to agree with the largest
value of negentropy.

Henv fj􏼐 􏼑 � 􏽘
N

i�1

Env ti, fj􏼐 􏼑

􏽐
N
i Env ti, fj􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦ln
Env ti, fj􏼐 􏼑

􏽐
N
i Env ti, fj􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦.

(9)

+en, the concept of ENS is constructed by drawing the
Henv(fj) with fj. Although the form of ENS is affected by
the result of TFR as expressed in equations (8) and (9), the
applications will verify that the protruding frequency for
indicating the faulty mode is relatively stable with the change
of TFR parameters.

3.2. +e Proposed VMD Method with the Guidance of ENS.
In the original VMD algorithm, there are four initial de-
composition parameters, i.e., Lagrangian multiplier coeffi-
cient, bandwidth parameter, the number of the decomposed
modes, and its corresponding ICFs. As the strong noise
component exists in the collected signal with the early stage
defect of bearing, there is no need to strictly enforce the
constraint, i.e., the Lagrangian multiplier coefficient should
be set to zero. One of the critical links to the successful
applications of VMD is the judgment of the number of
decomposition modes. Actually, the number of meaningful
modes embedded in the analysis data is difficult to be known
in advance. Moreover, their corresponding ICFs which are
close to the convergent property should also be careful to
preset. At present, there are three ways for us to set ICFs.

(1) Zero initialization

ω0
k � 0, k � 1, . . . , K. (10)

(2) Uniformly spaced distribution
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ω0
k �

k − 1
2K

, k � 1, . . . , K. (11)

(3) Randomly spaced distribution

ω0
k � sort e

(ln(1/K)+(ln(0.5)− ln(1/K))·rand(1,K))
􏼐 􏼑, k � 1, . . . , K,

(12)

where ω0
k is the ICF of kth mode; sort(·) is a rank function

and rand(·) is the function of random number. However,
these ways based on experience might lead to the ICFs far
away from the real ones and cause an increase in com-
putational burden, even divergence, in the optimization
procedure. In fact, not all of the modes buried in the
measured signal have to be extracted, and only the fault-
related modes are required to be identified. +erefore, the
ENS is introduced to define the ICF of the faulty mode and
the decomposing strategy of VMD can be reconstructed
with the guidance of ENS. +e bandwidth parameter
cannot also be predicted in advance because the effective
bandwidth changes with the different mechanical systems.
Nevertheless, the bandwidth parameter is first given
coarsely, and then it can be adjusted based on the sensitive
index of faulty modes. According to the suggestion of ref
[30], the initial bandwidth parameter can be set between
[400, 5000]. So the following study uniformly sets the
initial bandwidth parameter to 2500 without loss of
generality. Based on the above description, Figure 1
summarizes the flowchart of the enhanced VMD with
the guidance ENS and its detailed procedure is demon-
strated as follows:

Step 1: measure the vibration data from the rotating
machines.
Step 2: compute the ENS based on the constructed TFR
of the collected signal.
Step 3: pick out the ICF of latent faulty mode from the
ENS.
Step 4: extract the expected mode by incorporating the
ICF into VMD. According to the way of initializing the
parameters in VMD, the expected mode is extracted by
updating the following two equations:

u
n+1
1 (ω) �

f(ω)

1 + 2α ω − ωn
1( 􏼁

2, (13)

where ω0
1 is the ICF indicated by the ENS.
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􏼌􏼌􏼌􏼌
2dω

. (14)

Step 5: adjust the bandwidth parameter to enrich the
faulty information in the expected modes. In the above
steps, the frequency band containing the fault infor-
mation has been roughly located under the initial
condition. Based on this, here, the maximizing kurtosis
is used to determine the bandwidth parameter due to
that the kurtosis is a typical index to represent the fault-

related impulsiveness. In this way, the efficiency of
VMD in the optimization strategy can be enhanced.
Step 6: perform the Hilbert envelope demodulation
analysis on the optimal mode.

4. Applications of the Proposed Method

4.1. Simulation Study. To verify the performance of the
proposed method, in this section, according to the vibration
characteristics of a local fault bearing, a simulation is
constructed as follows:

y(t) � x(t) + e(t) � 􏽘
k

exp
− ξ0�����

1 − ξ20
􏽱 · 2πfre t − τ0 − kT0( 􏼁⎛⎜⎜⎜⎝

× sin 2πfre t − τ0 − kT0( 􏼁⎞⎠ + e(t),

(15)

where the periodical impact signal is x(t); the second part
e(t) is the noise composition simulated by Gauss white noise
and the function awgn (x(t), SNR, “measured”) is used to
adjust the signal to noise ratio (SNR) of the simulated signal;
ξ0 is the damping coefficient; fre denotes the resonance
frequency; τ0is the initial time of the impulsive feature; and
T0 is the time interval of two adjacent impulsive features. All
of the parameters used in equation (15) are listed in Table 1.
+e sampling frequency of the simulated signal is 2000Hz
and the simulated signal has a time length of 1 s.

+e simulated signal with the SNR of − 5 dB is first
analyzed by the proposed method to study its effectiveness
and robustness. Figure 2 shows the waveform of the sim-
ulated signal. As shown in Figure 2(c), it is impossible to
observe the fault-related component from the envelope
spectrum.+en the different parameters of the TFR (window
length changed from 128 to 512 and overlap rate changed
from 50% to 90%) are applied to analyze the results of ENS.
Figure 3(a) demonstrates that the proposed method can well
indicate the ICF of latent faulty mode. For comparing with
the proposed method, the advanced indictor, i.e., EFS de-
fined in ref. [30], is utilized to process the simulated signal.
+e EFS is given as

EFS fj􏼐 􏼑 �

��������������������������������

􏽐
N
i�1 Env ti, fj􏼐 􏼑 − 􏽐

N
i�1Env ti, fj􏼐 􏼑/N􏼐 􏼑

2
􏽱

N − 1
.

(16)

+e ICFs indicated by the EFS under different TFR
parameters are demonstrated in Figure 3(b). It can be ob-
served that the ICFs located by the EFS [30] have the obvious
fluctuation with the change of the parameters of TFR. To
further evaluate the stability of the enhanced VMD method
with the guidance of ENS in this article, the simulated signal
is repeated ten times randomly. As shown in Figure 4, the
success rates of the proposed method are always 100% at
different simulations, in which the ICF is located in the range
of [290, 310Hz]. However, some fluctuation exists in the
success rates of EFS at multirun simulation. As reported in

4 Complexity



Table 2, the statistical values (means and variances denoted
in equations (17) and (18)) also prove that the proposed
method has a good stability for indicating the ICF of latent
faulty mode.

μ �
􏽐 Ai

n
, (17)

D �
􏽐 Ai − μ( 􏼁

2

n − 1
, (18)

where μ and D are the mean and variance, respectively, Ai

represents the success rate of each simulation, and n denotes
the number of simulations.

Specifically, an example of simulated signal with − 5 dB is
given as follows. As illustrated in Figure 5(a), the TFR of the
simulated signal is obtained by the STFT with a window
length of 384 and overlap rate of 90%. +en, the ENS based
on TFR is calculated as shown in Figure 5(b). For com-
parison, the spectra obtained by the EFS are also drawn in
Figure 5(c). As shown in the figure, although EFS can find
the ICF of the latent faulty mode under certain parameters,
the spectra obtained by these indices are not obvious over
the proposed method.

To further verify the antinoise ability of the proposed
method, the simulated signal with SNR − 10 dB is analyzed as
before. +e waveform of the simulated signal with SNR
− 10 dB is drawn in Figure 6. Figure 7(a) illustrates the ICFs
extracted by the proposed method with different parameters
of the TFR and Figure 7(b) shows the ICFs indicated by the
EFS. It can be seen that a more steady result is obtained by
the proposed method than the EFS. Furthermore, the
simulated signal is also repeated ten times randomly.

Figure 8 shows the success rates of the proposed method are
also always 100% at multirun simulations. However, the
remarkable fluctuation exists in the success rates of EFS.
Table 3 lists the means and variances of success rates ob-
tained by the two different indexes. It also proves that the
proposed method has a better performance to locate the ICF
than the EFS.

Similarly, an example of simulated signal with − 10 dB is
given as follows. As shown in Figure 9(a), the STFT with a
window length of 384 and overlap of 90% is used to obtain
the TFR of the simulated data. Figures 9(b) and 9(c) show the
spectra indicated by the proposed method and EFS. We can
see that the ICF indicated by the proposed method are closer
to the real one. Meanwhile, EFS lost the ability to locate the
correct ICF. Based on the guidance of ENS and EFS, the
optimal mode is extracted by adjusting the bandwidth pa-
rameter, respectively. +en, the Hilbert envelope demodu-
lation analysis is carried out on the optimal modes illustrated
in Figures 10(a) and 10(b). As shown in Figures 10(c) and
10(d), the envelope spectrum of optimal mode based on ENS
exhibits the faulty frequency 50Hz and its harmonics clearly,
while the envelope spectrum of optimal mode based on EFS
shows nothing. +e analysis results show that the proposed
method is not susceptible to the parameters and has a good
antinoise ability by comparing with the EFS from different
views.

As a powerful analytical technique for bearing fault
feature extraction, spectral kurtosis (SK) [8] is used to an-
alyze the simulated signal for further comparison. +e
paving of kurtosis values of SK and the resulting signal
filtered by frequency band (expressed by a solid red circle)
are illustrated in Figure 11, and it can be clearly seen the
kurtosis-dominant frequency band with CF of 718.75Hz.
+e resulting bandpass filtering signal is further processed
using the envelope analysis. And no fault feature appears in
its envelope spectrum, as shown in Figure 11(c). +e results
mean that the proposed method outperforms SK in
extracting the weak faulty features.

Measure the vibration data from 
the rotating machines

Compute the ENS based on the
TFR of the test data

Locate the ICF of latent faulty 
mode from the ENS

Extract the expected mode by 
incorporating the ICF into VMD

Adjust the bandwidth parameters
by the following optimization

strategy

Let optimal mode (OM) = u0, i = 1,
α1 = α0 –iΔα and αr = α0 + iΔα, extracted the mode uli and

uri via VMD and calculate the kurtosis values Kuli Kuri

OM = ul(i–1) OM = ur(i–1)

Execute Hilbert envelope demodulation analysis on the OM

KOM < Kuli KOM < KuriKuli ≤ KOM ≥ Kuri

Kuli ≤ Kul(i–1) Kuri ≤ Kur(i–1)Yes Yes

i = i + 1,α1 = α0 + iΔα
and calculate Kur(i–1)

i = i + 1, α1 = α0 – iΔα
and calculate Kul(i–1)

Figure 1: Flow chart of the enhanced VMD method with the guidance of ENS.

Table 1: Parameter setting of simulation signal.

ξ0 fre τ0 T0 fouter

0.05 300Hz 0.05 s 0.02 s 50Hz
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To further verify the superiority of the proposed method
over some adaptive signal decomposition methods, the
simulated noisy signal is analyzed by the traditional VMD
method with fixed decomposition parameters (K� 3,
α� 2500) and the particle swarm optimization (PSO)-based
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Table 2:+emean and variance of success rate for different indices
with SNR� − 5 dB.

Index ENS (%) EFS (%)
μ 100 55.29
D 0 13.19

6 Complexity



0

0.2

0.4

0.6

0.8

1

Fr
eq

ue
nc

y 
(k

H
z)

200 300 400 500 600 700 800 900100
Time (ms)

–70

–60

–50

–40

–30

–20

Po
w

er
/fr

eq
ue

nc
y 

(d
B/

H
z)

(a)

ICF

200 400 600 800 10000
Frequency (Hz)

–2.5

–2

–1.5

En
ve

lo
pe

 n
eg

en
tr

op
y

(b)

ICF

2

4

6

En
er

gy
 fl

uc
tu

at
io

n
200 400 600 800 10000

Frequency (Hz)

(c)

Figure 5: Spectral analysis of the simulated signal in Figure 2(b) at window length 384 and overlap rate 90%: (a) TFR, (b) ENS, (c) EFS.
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VMD method [26]. In the PSO-based VMD method, to
guarantee consistency of the comparison, the number of
modes K varies from 3 to 8, and the bandwidth parameter α
varies from 400 to 5000.+e waveform and envelope spectra
of the optimal target mode obtained by the fixed-parameter
VMD are provided in Figures 12(a) and 12(b), from which
we cannot see any information related to fault characteristic
frequency. +e bandwidth parameter and number of
decomposed modes optimized by PSO search algorithm are
a collection of (2400, 8), the optimal target mode and its
envelop spectrum are shown in Figures 12(c) and 12(d). It
can be found that the optimal mode obtained by the PSO-
based VMDmethod can barely detect the fault characteristic
frequency, and there are too many interference terms.
Furthermore, due to the complex iterative process of the
PSO-based method, it takes more time to find the optimal
mode than the proposed method in this paper.

4.2. Experimental Verification

4.2.1. Experiment 1. In this section, we validate the proposed
method using the experimental signals. As shown in

Figure 13, the test rig consists of a motor, a tachometer, a
gearbox, a tested rolling bearing, and control electronics. In
this experiment, the rotating speed of the driving motor is
1740 r/min and the sampling frequency is 51. 2 kHz. +e
accelerometer is mounted on the top of the tested bearing.
+e geometric parameters and characteristic frequencies of
the tested bearings are listed in Table 4, where the ball pass
frequency outer race (BPFO), ball pass frequency inner race
(BPFI), and ball spin frequency (BSF) are denoted by fo, fi,
and fB, respectively.

+e time waveform of the experimental signal and its
envelope spectrum are illustrated in Figure 14. +ere is no
obvious fault characteristic frequency in Figure 14(b).
+en, the experimental data are analyzed by the proposed
method. As shown in Figure 15, the ICFs located by the
proposed method with different parameters of the TFR are
more stable than the results indicated by the EFS. Spe-
cially, the STFT with a window length of 384 and overlap
of 90% is used to obtain the TFR of the experimental data,
as shown in Figure 16(a). +en, the ENS can be obtained
based on the TFR. Comparing with the proposed ENS, it
can be seen from Figure 16 that the inaccurate ICF is
indicated by the spectra constructed by the EFS. Based on
the guidance of ENS, the optimal mode is extracted by
adjusting the bandwidth parameter. As shown in
Figures 17(a) and 17(c), the envelope spectrum of optimal
mode exhibits the outer race faulty frequency fo and its
harmonics clearly, which is in good agreement with the
actual situation. Furthermore, the optimal mode based on
EFS and its envelop spectrum are illustrated in
Figures 17(b) and 17(d) for comparison, from which we
cannot extract any fault information from the experi-
mental data. +e above analysis shows that the proposed
method can well capture the fault-related feature.

As comparison, SK is performed on the same vibration
signal. +e kurtogram and the resulting signal filtered by
frequency band (indicated by a solid red circle) are illus-
trated in Figures 18(a) and 18(b). +e envelop analysis is
then carried out on the resulting bandpass filtering signal.
From Figure 18(c), the SK is also inferior to the proposed
method in fault diagnosis of rolling bearing.

For further comparison, the raw signal is also analyzed
by the fixed-parameter VMD method and PSO-based VMD
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Figure 7: ICFs located by the proposed method and EFS of the simulated signal in Figure 6(b). (a) Envelope negentropy. (b) Energy
fluctuation.
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Table 3:+emean and variance of success rate for different indices
with SNR� − 10 dB.

Index ENS (%) EFS (%)
μ 100 47.36
D 0 15.89
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method, and the results are shown in Figure 19. Similar to
the results of simulation analysis, the fixed-parameter VMD
(K� 3, α� 2500) method cannot extract fault features. +e
optimal mode and its envelop spectrum determined by PSO-
based VMD with the optimal solution (K� 4, α� 4800) are
displayed in Figures 19(c) and 19(d). Although the fault
characteristic frequency fo is identified in the envelope
spectrum, its harmonic cannot be found compared with the

proposed method in Figure 17(c), and the PSO-based
method is time consuming.

4.2.2. Experiment 2. To further confirm the enhanced
performance of the proposed method in bearing defect
identification, the faulty bearing data of the Case Western
Reserve University (CWRU) Bearing Data Center [35, 36] is
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Figure 9: Spectral analysis of the simulated signal in Figure 6(b) at window length 384 and overlap rate 90%: (a) TFR, (b) ENS, (c) EFS.
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Figure 11: Simulated signal in Figure 6(b) processed by the SK: (a) the paving of kurtosis values and (b) the signal filtered by frequency band
(expressed by a solid read circle); (c) envelope spectrum of the filtered signal.
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Figure 12: Results of the simulation signal in Figure 6(b) by different methods: (a) optimal mode extracted by the fixed-parameter VMD and
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Figure 13: SpectrQuest machinery fault simulator test rig.

Table 4: Geometry and characteristic frequencies of the rolling bearing.

MB ER-16K Ball numbers Ball diameter Pitch diameter
9 7.94mm 38.5mm

Fault type fo fi fB

Fault characteristic frequency (Hz) 103.88 157.41 67.28
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Figure 14: +e experimental bearing vibration data of the test rig: (a) waveform; (b) envelope spectrum.
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Figure 15: ICFs located by the proposed method and EFS with the experimental signal in Figure 14(a). (a) Envelope negentropy. (b) Energy
fluctuation.
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also analyzed in this study. +e CWRU bearing failure test
device, which consists of a 2 hp electric motor (left), a torque
transducer/encoder (center), and a dynamometer (right), is
illustrated in Figure 20. +e rotational frequency of the
driving motor is 29.95Hz. In this experiment, the acceler-
ometers with a sampling frequency of 12 kHz are utilized to
collect the vibration signal. In order to validate the ability of
the proposed method for early weak fault feature extraction,
the vibration data collected from test bearing with smallest

faulty sizes (width 0.1778mm and depth 0.2794mm) is
selected for analysis. +e geometric parameters and char-
acteristic frequencies of the test bearing are listed in Table 5.

+e waveform and envelope spectrum of the measured
signal are shown in Figure 21. +e fault-induced impulses
are so weak to be identified from the background noise in the
waveform, and the envelope spectrum also contains many
interference components such as noise. +en the proposed
method is applied to process the experimental data.

0

5

10

15

20

25

Fr
eq

ue
nc

y 
(k

H
z)

700 900400 500 600200 800300100
Time (ms)

–70

–60

–50

–40

–30

–20

–10

Po
w

er
/fr

eq
ue

nc
y 

(d
B/

H
z)

(a)

ICF

0

–1.85

–1.8

–1.75

En
ve

lo
pe

 n
eg

en
tr

op
y

2.51.50.5 1 2
Frequency (Hz) ×104

(b)

ICF

240

260

280

En
er

gy
 fl

uc
tu

at
io

n
0.5 1 1.5 2 2.50

Frequency (Hz) ×104

(c)

Figure 16: Spectral analysis of the experimental data in Figure 14(a) at window length 384 and overlap rate 90%: (a) TFR, (b) ENS, (c) EFS.
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Figure 17: Results of the experimental data in Figure 14(a) by different ICF locating methods: (a) optimal mode extracted by the proposed
method and (c) its envelope spectrum; (b) optimal mode extracted based on EFS and (d) its envelope spectrum.
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Figure 18: Experimental data in Figure 14(a) processed by the SK: (a) the paving of kurtosis values and (b) the signal filtered by frequency
band (expressed by a solid red circle); (c) envelope spectrum of the filtered signal.
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Figure 19: Results of the experimental signal in Figure 14(a) by different methods: (a) optimal mode extracted by the fixed-parameter VMD
and (b) its envelope spectrum; (c) optimal mode extracted by PSO-based VMD and (d) its envelope spectrum.

Complexity 13



Figure 22 displays the ICFs located by the proposed ENS
under different parameters of TFR. Similarly, as shown in
Figure 23, the proposed ENS can be obtained based on the
TFR with a window length of 384 and overlap of 90%. Based
on the guidance of ENS, the optimal mode is extracted by
adjusting the bandwidth parameter. As shown in Figure 24,
the envelope spectrum of optimal mode exhibits the outer
race faulty frequency fo and its harmonics clearly, which is

in good agreement with the actual situation. Comparing
with the proposed method, ICF-guided VMDmethod based
on EFS identified the rotation frequency fr and cannot
extract any fault information. +e above analysis shows that
the proposed method can well capture the fault-related
feature.

For comparison, the experimental bearing vibration data
of CWRU Bearing Data Center is also analyzed by SK. As

Electric motor
Torque transducer 

& encoder

Dynamometer

Figure 20: CWRU bearing failure test device.

Table 5: Geometry and characteristic frequencies of the rolling bearing.

6205-2RS JEM SKF Ball numbers Ball diameter Bearing mean diameter
9 7.94mm 39.04mm

Fault type fi fo fB

Fault characteristic frequency (Hz) 162.18 107.37 70.59
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Figure 21: +e experimental bearing vibration data of CWRU bearing data center: (a) waveform; (b) envelope spectrum.
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Figure 22: ICFs located by the proposed method and EFS with the experimental signal in Figure 21(a). (a) Envelope negentropy. (b) Energy
fluctuation.
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Figure 23: Spectral analysis of the experimental data in Figure 21(a) at window length 384 and overlap rate 90%: (a) TFR, (b) ENS, (c) EFS.
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shown in Figure 25(c), we can see that the dominant fre-
quency in the envelope spectrum obtained by the SK is not
the fault-related frequency. So the SK is inferior to the
proposed method in fault diagnosis of rolling bearing.

In addition, the fixed-parameter VMD (K� 3, α� 2500)
and PSO-based VMD method are also used to analyze the
experimental signal for comparisons. +e PSO-based VMD
method finally determined the optimal parameters are K� 4
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Figure 24: Results of the experimental data in Figure 21(a) by different ICF locating methods: (a) optimal mode extracted by the proposed
method and (c) its envelope spectrum; (b) optimal mode extracted based on EFS and (d) its envelope spectrum.
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Figure 25: Experimental data in Figure 21(a) processed by the SK: (a) the paving of kurtosis values and (b) the signal filtered by frequency
band (expressed by a solid read circle); (c) envelope spectrum of the filtered signal.
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and α� 600 through an iterative search process. +e results
of those two methods are shown in Figure 26. Although the
fault characteristic frequency can be found in the spectra, all
of them display many interference components and the
amplitude of its harmonic is too small to be distinguished.
+is case verifies the enhanced performance of the proposed
method in bearing fault detection again.

5. Discussions

When analyzing the simulation and experimental signals,
it has proved that the proposed method has a good
performance in bearing fault diagnosis. However, the
situation of multicomponents about faulty information or
compound faults of bearing usually exists in on-site ap-
plication. Hence, an extension for identifying multi-
components is essential to broaden the applied scope of
the proposed method. Although the enhanced VMD with
the guidance of ENS focuses on extracting the mono-
component currently, some excellent properties of the
proposed method make it possible to be further utilized to
extract the multifault information. (1) All bearing fault
information can be revealed by the ENS due to its fine
frequency resolution and sensitiveness to the bearing
faulty feature. (2) In the enhanced VMD, the meaningful
mode is extracted individually and the bandwidth pa-
rameter can be adjusted independently. According to
these properties, it can be found that the iteratively
decomposing strategy can be easily applied to the en-
hanced VMD with the guidance of ENS, which is given in
Algorithm 1. By using the extension of the enhanced
VMD, the procedure of bearing fault diagnosis can be
concluded as follows. First, the ICFs of latent bearing

faulty modes can be located by detecting the ENS and
sorting the ICFs in ascending order. Second, iteratively
extract the latent bearing faulty modes and adjust the
bandwidth parameter of individual mode to enrich the
fault information. +ird, use the sensitive index to eval-
uate the faulty modes.

An experimental case is conducted on this extension to
explain its procedure. +e experimental dataset [37] is
collected from an aero engine rotor-bearing fault simulator
and the test rig is illustrated in Figure 27. +ree acceler-
ometers are installed to collect the vibration signal with the
sampling rate 10 kHz.+e drivingmotor has a rotating speed
of 1840 r/min. Table 6 lists the geometric parameters and
characteristic frequencies of the tested bearings. Figure 28(a)
shows the time waveform of the experimental signal col-
lected by the channel #3 accelerometer. +e envelope
spectrum of the experimental signal is performed in
Figure 28(b), in which it is difficult to detect the faulty
characteristic frequency. +en, we use the extension for the
enhanced VMD with the guidance of ENS to process the
experimental signal. As shown in Figure 29(a), the STFT
with a window length of 384 and an overlap of 90% is used to
obtain the TFR of the experimental signal. Subsequently, the
four obvious “hills” are clearly observed based on the ENS as
plotted in Figure 29(b).

With the guidance of ENS, the four meaningful modes
are iteratively extracted by the extension method.
Figures 30(a)–30(e) show the time waveforms and Fourier
spectra of the extracted meaningful modes. To remove the
interference of noise component or inherent component, the
kurtosis is selected as sensitive index to further evaluate the
faulty modes. As shown in Figure 31, the last twomodes have
the larger kurtosis. Figure 32 illustrates that the typical fault
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Figure 26: Results of the experimental signal in Figure 21(a) by different methods: (a) optimal mode extracted by the fixed-parameter VMD
and (b) its envelope spectrum; (c) optimal mode extracted by PSO-based VMD and (d) its envelope spectrum.
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characteristics of the being inner race fault can be detected
from the envelope spectrum of the two modes, including the
inner race fault frequency and its harmonic. +us, it can be
derived that the test rig has a bearing inner race fault, which
is in line with the actual situation. Analysis results of this
experimental signal demonstrate that the extension of the

proposed method well works on the extraction of the
multicomponents fault information.

For comparing purpose, SK, the fixed-parameter VMD
(K� 3, α� 2500), and the PSO-based VMDmethod (optimal
parameters: K� 8, α� 5000) are used to analyze the multi-
components data, as shown in Figures 33 and 34. +e fault

Construct the ENS: Henv(fj) � 􏽐
N
i�1(Env(ti, fj)/􏽐

N
i Env(ti, fj))ln[(Env(ti, fj)/􏽐N

i Env(ti, fj))]

Locate the first M ICFs based on the ENS: ω0
1,ω

0
2, . . . ,ω0

m, . . . ,ω0
M􏼈 􏼉 � findpeaks(Henv(f))

for m � 1, 2, . . . , M do
initialize: n⟵ 0, j⟵ 0, α⟵ α0, ω0

m􏼈 􏼉

repeat
un+1

m (ω) � f(ω)/(1 + 2α(ω − ωn
m)2), ωn+1

m (ω) � (􏽒
∞
0 ωn

m|un+1
m (ω)|2dω/􏽒

∞
0 |un+1

m (ω)|2dω),
n⟵ n + 1

until convergence: ‖un
m − un− 1

m ‖
2
2/‖un− 1

m ‖
2
2 < ε

Let: Om
j
m � un

m and it CF CFj
m � ωn

m(ω)

while er> 0 do
initialize: n⟵ 0, j⟵ 0, α⟵ α0 ± jΔα, ω0

m⟵CFj
m

repeat
un+1

m (ω) � f(ω)/(1 + 2α(ω − ωn
m)2), ωn+1

m (ω) � 􏽒
∞
0 ωn

m|un+1
m (ω)|2dω/􏽒

∞
0 |un+1

m (ω)|2dω,
n⟵ n + 1

until convergence: ‖un
m − un− 1

m ‖
2
2/‖un− 1

m ‖
2
2 < ε

j⟵ j + 1
obtain mode: Omj

m � un
m and its CF CFj

m � ωn
m(ω)

er � kurtosis(Omj
m) − kurtosis(Omj− 1

m )

end while
Let: OMm � OMj

m, CFm � CFj
m and αm � α0 ± (j − 1)Δα

end for
Return Om1,Om2, . . . ,OmM􏼈 􏼉; CF1,CF2, . . . ,OmM􏼈 􏼉; α1, α2, . . . ,OmM􏼈 􏼉

ALGORITHM 1: An extension for the enhanced VMD with the guidance of ENS.

Channel #2
accelerometer

Channel #2
accelerometer

Test bearing Channel #4
accelerometer

Figure 27: Aero engine rotor-bearing fault simulator.

Table 6: Geometry and characteristic frequencies of the test bearing.

HRB6304 Ball numbers Ball diameter Pitch diameter
7 9.6mm 36mm

Fault type fi fo fB

Fault characteristic frequency (Hz) 135.8 78.7 53.4
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Figure 28: +e wave of multicomponents data: (a) waveform; (b) envelope spectrum.

0

2

4

Fr
eq

ue
nc

y 
(k

H
z)

700300 400 500 600200 800100
Time (ms)

–100

–80

–60

Po
w

er
/fr

eq
ue

nc
y 

(d
B/

H
z)

(a)

ICF1

ICF2
ICF3

ICF4

–2.5

–2

–1.5

–1

En
ve

lo
pe

 en
tr

op
y

40002000 3500 50004500300015000 1000500 2500
Frequency (Hz)

(b)

Figure 29: Spectral analysis of the multicomponents data in Figure 28(a) at window length 384 and overlap rate 90%: (a) TFR, (b) ENS.
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Figure 30: Continued.
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characteristic frequency fi and one coarsely fault-related
band can be observed from the envelope spectrum, but it is
hard to detect its harmonics and the sidebands. +is also
proves that the method is superior to some advanced
methods like SK, traditional VMD, and PSO-based VMD
method in extracting the fault feature of multicomponents
data.

6. Conclusions

In this paper, we presented an enhanced VMD with the
guidance of ENS for bearing fault diagnosis. +e main
contributions and advantages of the enhanced VMDmethod
are that it can overcome the difficulty in the initial pa-
rameters selection of the traditional VMD, and it is immune
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Figure 30: +e meaningful modes iteratively extracted by the extension method: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, and
(e) their Fourier spectra.
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Figure 32: Envelope spectra of the two modes with the larger kurtosis values analyzed by the proposed procedure.
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Figure 33: Multicomponents data in Figure 28(a) processed by the SK: (a) the paving of kurtosis values and (b) the signal filtered by
frequency band (expressed by a solid read circle); (c) envelope spectrum of the filtered signal.
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to the change of the parameters in TFR; thus, the reliability
of the bearing fault diagnosis can be significantly improved.
+e simulation and experimental signal studies confirmed
the effectiveness of the proposed method in the diagnosis of
local damage of rolling bearings. +e comparisons to VMD
under the guidance of EFS demonstrated the advantage of
the enhanced VMD in the robustness to the parameters in
TFR and the excellent resistance to strong noise component.
Moreover, the results validated the improved performance
of the proposed method compared with some advanced
methods including SK, fixed-parameter VMD, and PSO-
based VMD in extracting the weak faulty feature of rolling
bearing.

In order to adapt to the complex work conditions, an
extension on the enhanced VMD is discussed to broaden the
applications of this method. We found that the proposed
method can be easily extended to extract the multicom-
ponents fault information buried in mechanical signal and a
practical case is used to introduce the procedure of the
extension method. Comparison between the proposed
method and other methods indicate that the proposed
method outperforms some advanced methods in extracting
the fault feature of multicomponents data.
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