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GM(1,1) is a univariate grey prediction model with incomplete structural information, in which the real number form of the
simulation or prediction data does not conform to the Nonuniqueness Principle of Grey theoretical solution. In light of the
network model of GM(1,1), the connotation of grey action quantity is systematically analyzed and the interval grey number form
of grey action quantity is restored under uncertain influencing factors. A novel GM(1,1) model is then constructed.*e newmodel
has the basic characteristics of the grey model under incomplete information. Moreover, it can be fully compatible with the
traditional GM(1,1) model.*e developedmodel is employed to the natural gas consumption prediction in China, showing that its
predicting rationality is much better than that of the traditional GM(1,1) model. It is worth mentioning that, for the first time, the
grey property of GM(1,1) has been restored in structure, which is of significance for both academia and industry.

1. Introduction

In 1982, Professor Deng proposed the GM(1,1) model [1]
with predictive function based on cybernetics. GM(1,1) is a
single-variable grey prediction model with a first-order
difference equation [2]. Its greatest feature is that GM(1,1)
has only a dependent variable but no independent variables
[3, 4]. Grey theory holds that the development and evolution
of a system are influenced by many uncertain external
environments and internal factors (Grey causes) [5]. Under
such circumstances, it is difficult to establish a definite
functional relationship between dependent variables and
independent variables to analyze and predict the future
development trend of the system [6, 7]. However, under the
influence and restriction of many factors, the operation
results of the system are determined (White results) [8]. In
other words, the results of system operation are the final
manifestation of the system under the influence of many
factors, which can comprehensively reflect the evolution
trend and development law of the system under the com-
bined action of these factors [9, 10].

GM(1,1) has many advantages [5, 11], such as small
amount of data needed, simple modeling process, and easy
to learn and use. It has been widely used to solve various
prediction problems in production and life [12]. With the
deepening of application, the theoretical system of
GM(1,1) has been enriched and improved, and a lot of
research results have been produced. Generally speaking,
these achievements mainly include the following four
aspects:

(a) Optimization of GM(1,1) parameters: such as initial
condition optimization [13, 14], background value
optimization [15, 16], and accumulation order op-
timization [17–19]

(b) Optimization of GM(1,1) structure: realizing the
optimization of model structure from the single
exponential form to intelligent variable structure
[20–22]

(c) Extension of GM(1,1) modeling object: to achieve
the expansion of modeling objects from real data to
grey uncertain data [23–25]
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(d) GM(1,1) combined forecasting model: the combi-
nation prediction technologies of GM(1,1) and other
methods are studied, such as Grey neural network
model [26–28], Grey Markov model [29, 30], Grey
support vector machine [31, 32], and Grey deep
learning [33, 34]

*e above research results play an important role in
improving the simulation and prediction performance and
expanding the application scope of GM(1,1). However,
GM(1,1) is a grey model with incomplete structural infor-
mation (the absence of independent variables). According to
the “Nonuniqueness Principle” of grey theory [35], the
solution with incomplete and uncertain information is not
unique. *erefore, the simulation or prediction results of
GM(1,1) should be nonunique. On the contrary, the current
GM(1,1) model’s simulation or prediction results are unique
[36]. *is is mainly because the GM(1,1) model does not
consider the “grey” uncertainty of grey action quantity and
simplifies it to a real number. However, the real number
means that the GM(1,1) model is a time sequence prediction
model with deterministic structure, so its simulation and
prediction results are unique.

It can be seen that the existing GM(1,1) model is a
simplified model, its research process ignores the uncer-
tainty characteristics of grey action quantity, and its pre-
diction results also violate the “nonuniqueness principle of
solution” of grey theory. For this reason, starting from the
network model of GM(1,1), the interval uncertainty form of
grey action quantity is restored. On this basis, a newGM(1,1)
model is established. *e simulation and prediction results
of the new model are both interval grey numbers with
known probability functions.

*e remainder of this paper is organized as follows. In
Section 2, we analyzed the essence and connotation of the
grey action quantity “b” of GM(1,1). In Section 3, we pro-
posed and deduced the new GM(1,1) model with an interval
grey action quantity. In Section 4, we employed the new
model to simulate and predict the nature gas total con-
sumption in China and compared and analyzed the rea-
sonableness of the results. Our conclusions are presented in
Section 5.

2. Essence and Connotation of Grey
Action Quantity

In the univariate grey system, system characteristic variables
describe the evolution law of the system, which is the result
of the interaction of many complex external factors.*ey are
all real numbers. *e influencing factors of system devel-
opment are “cause.” *e result of change embodied in the
system is “result.” In cybernetics, the former is called input,
and the latter is called output. In a single-variable grey
system, because the independent variables are unknown, the
comprehensive effect of many uncertain and complex fac-
tors on the development of the system is expressed by pa-
rameter “b.” *erefore, parameter “b” is called the grey
action quantity and represents all grey uncertainty infor-
mation (Grey Information Coverage) [37].

In GM(1,1), the relationship between grey action
quantity “b” and system output x(0)(k) (system character-
istic variable) [36] is shown in Figure 1.

In Figure 1, the input variable “b” represents all the
uncertain factors (Grey factors) affecting the system de-
velopment and the output variable x(0)(k) is the charac-
teristic variable (White result) of the system. x(0)(k)

adjusts the size of parameter “b” by AGO (Accumulation
Generation Operator, weakening randomness) andMEAN
(MEAN generation of consecutive neighbors sequence,
improving smoothness). *e main purpose of AGO [35]
and MEAN [35] is to weaken the influence of extreme
values in raw data on input variable “b.” In Figure 1, the
feedback coefficient “a” is called the development coeffi-
cient and its size and symbols reflect the development
trend of x(0)(k).

According to the relationship between input, output, and
feedback of the system in Figure 1, b − a · MEAN �

x(0)(k)⟹x(0)(k) + az(1)(k) � b can be obtained, which is
the basic form of the classical GM(1,1) model. *e pa-
rameters “a” and “b” are estimated by the least square
method, which are all real numbers. Because grey action
quantity “b” represents the influence of all external factors
on the development trend of the system, it is essentially
uncertain (Grey factors), and its form should be grey
number. However, in the modeling process of the GM(1,1),
the grey attribute of “b” is not taken into account which is
estimated and modeled with a real number. *is obviously
does not agree with the actual meaning of “b,” which leads to
the poor reliability of the prediction results of the GM(1,1)
model.

*e GM(1,1) model is a grey model with incomplete
structural information. *e uncertainty and complexity of
the influencing factors are caused by incomplete structural
information. However, the simulation and prediction results
of the current GM(1,1) model are determined as real
numbers, which is totally inconsistent with the non-
uniqueness principle of the grey theory solution. *erefore,
it is necessary to restore the “grey” uncertainty character-
istics of grey action quantity “b” and build a new GM(1,1)
model on this basis.

3. New GM(1,1) Model

In this section, the interval grey number form of grey action
quantity “b” will be restored under the uncertainty of
influencing factors. On this basis, a new GM(1,1) model is
constructed. Because the grey action quantity “b” is an in-
terval grey number, the simulation and prediction results of
GM(1,1) are also interval grey numbers, which satisfies the
nonuniqueness of GM(1,1) prediction results under un-
certain conditions.

3.1. Basic Concepts of the GM(1,1) Model

Definition 1 (see [35]). Assume that X(0) � (x(0)(1),

x(0)(2), . . . , x(0)(n)) is a nonnegative sequence, where
x(0)(k)≥ 0, k � 1, 2, . . . , n. *en, X(1) � (x(1)(1), x(1)(2),
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. . . , x(1)(n)) is called the 1-AGO (Accumulating Generation
Operator) sequence of X(0), where

x
(1)

(k) � 
k

i�1
x

(0)
(k), k � 1, 2, . . . , n, (1)

and Z(1) � (z(1)(2), z(1)(3), . . . , z(1)(n)) is called the mean
generation of consecutive neighbors sequence of X(1), where

z
(1)

(k) � 0.5 × x
(1)

(k) + x
(1)

(k − 1) , k � 2, 3, . . . , n.

(2)

Definition 2 (see [1]). Let X(0), X(1), and Z(1) be the same as
in Definition 1; then,

x
(0)

(k) + az
(1)

(k) � b, (3)

is called the basic form of GM(1,1), which is derived from
Figure 1, that is,

b − a · MEAN � x
(0)

(k)⟹ b − az
(1)

(k) � x
(0)

(k)

⟹x
(0)

(k) + az
(1)

(k) � b.
(4)

Theorem 1 (see [1]). Let X(0), X(1), and Z(1) be the same as
in Definition 1, a � (a, b)T be a sequence of parameters, and

Y �

x(0)(2)

x(0)(3)

⋮

x(0)(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

− z(1)(2) 1

− z(1)(3) 1

⋮ ⋮

− z(1)(n) 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

*en, the least square estimate sequence of grey dif-
ferential equation x(0)(k) + az(1)(k) � b satisfies

a � B
T
B 

− 1
B

T
Y. (6)

Detailed proof can be found in reference [38].

3.2. Interval Grey Number Form of Grey Action Quantity.
In cybernetics, there is a corresponding relationship between
each input and output. Grey action quantity covers all
unascertained information and has different sizes at different

time points (Figure 2). Usually, b2, b3, . . . , bn are not equal,
that is, b2 ≠ b3 ≠ · · · ≠ bn.

According to *eorem 1, the parameters a � (a, b)T are
estimated by the least square method under the condition of
minimizing the sum of squares of simulation errors of
x(0)(k), k � 2, 3, . . . , n. In other words, the parameters “b” in
*eorem 2 is an approximate value, which is used to rep-
resent all the grey action quantities b2, b3, . . ., and bn of each
input. *en, the information difference between grey action
quantities is completely ignored. *erefore, the simulated
and predicted data based on parameter “b” in*eorem 2 are
only an approximate solution. It can be seen that the tra-
ditional GM(1,1) model violates the nonuniqueness prin-
ciple of the solution of grey theory under incomplete
information.

In this section, according to the relationship between
each input and output of the system, the uncertain infor-
mation contained in grey action quantity is fully excavated,
and the interval grey number form of grey action quantity is
restored. On this basis, a new GM(1,1) model is constructed.

According to equation (3), the grey action quantity with
different values of k(k � 2, 3, . . . , n) can be calculated, as
follows:

k � 2⟶ b2 � x(0)(2) + az(1)(2),

k � 3⟶ b3 � x(0)(3) + az(1)(3),

⋮

k � n⟶ bn � x(0)(n) + az(1)(n).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

*en, we call Bs � b2, b3, . . . , bn  is the sequence of grey
action quantity of GM(1,1). *e maximum value bmax and
minimum value bmin of Bs � b2, b3, . . . , bn  can be obtained,
as follows:

bmax � max b2, b3, . . . , bn ,

bmin � min b2, b3, . . . , bn .
(8)

After this, grey action quantity of GM(1,1) can be
expressed as the interval grey number form, that is,
⊗b ∈ [bmin, bmax].

According to equation (3), the grey action quantity bk is
positively correlated with x(0)(k).*at is, the bigger the bk is,
the bigger the x(0)(k) is. *e parameter “b” in GM(1,1) is
estimated by the least squaremethod, which is a compromise
value between bmin and bmax. Obviously, bmin ≤ b≤ bmax, that
is, b ∈ [bmin, bmax]. On the other hand, under the existing
conditions, the maximum possible value of interval grey
number ⊗b is neither bmin or not bmax, but “b.”*e parameter
“b” is the real number most likely to represent the whitening
value of interval grey number ⊗b ∈ [bmin, bmax], that is,
⊗ b � b. According to the definition of probability function
[35], ⊗b ∈ [bmin, bmax] can be expressed as in Figure 3.

3.3. New GM(1,1) Model with Interval Grey Action Quantity

Definition 3. Let X(0), X(1), Z(1), and a be the same as in
Definition 1 and *eorem 1. *en, P � (a,⊗b)T is called the
sequence of grey parameters, and a is named as the

× 1

AGOMEAN
x(1)(k)

a

x(0)(k)b +

–
Influencing factors

of uncertainty
(grey factors)

Determined result
(white result)

Figure 1: *e network model diagram of GM(1,1) [37].
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development coefficient, and ⊗b ∈ [bmin, bmax] is called the
interval grey action quantity.

Definition 4. Let X(0), X(1), Z(1), and P be the same as in
Definitions 1 and 3; then,

x
(0)

(k) + az
(1)

(k) � ⊗b ∈ bmin, bmax , (9)

is called the GM(1,1) model in which grey action
quantity is the interval grey number ⊗b, GM(1, 1,⊗b) for
short. And

dx(1)

dt
+ ax

(1)
� ⊗b ∈ bmin, bmax , (10)

is called the whitinization (or image) equation of
x(0)(k) + az(1)(k) � ⊗b ∈ [bmin, bmax].

Theorem 2. Let X(0), X(1), Z(1), and P be the same as in
Definitions 1 and 3; then,

(i) 7e solution (or called a time response function) of
(dx(1)/dt) + ax(1) � ⊗b ∈ [bmin, bmax] is given by

x
(1)
min(t) � x

(1)
(1) −

bmin

a
 e

− at
+

bmin

a
,

x
(1)
mid(t) � x

(1)
(1) −

b

a
 e

− at
+

b

a
,

x
(1)
max(t) � x

(1)
(1) −

bmax

a
 e

− at
+

bmax

a
.

(11)

(ii) 7e time response sequence of (dx(1)/dt) + ax(1) �

⊗b ∈ [bmin, bmax] is given by

x
(1)
min(k + 1) � x

(0)
(1) −

bmin

a
 e

− ak
+

bmin

a
, k � 1, 2, . . . , n;

x
(1)
mid(k + 1) � x

(0)
(1) −

b

a
 e

− ak
+

b

a
, k � 1, 2, . . . , n;

x
(1)
max(k + 1) � x

(0)
(1) −

bmax

a
 e

− ak
+

bmax

a
, k � 1, 2, . . . , n.

(12)

(iii) 7e restored values can be given by

x
(0)
min(k + 1) � x

(1)
min(k + 1) − x

(1)
min(k)

� 1 − e
a

(  x
(0)

(1) −
bmin

a
 e

− ak
, k � 1, 2, . . . , n,

x
(0)
mid(k + 1) � x

(1)
mid(k + 1) − x

(1)
mid(k)

� 1 − e
a

(  x
(0)

(1) −
bmid

a
 e

− ak
, k � 1, 2, . . . , n,

x
(0)
max(k + 1) � x

(1)
max(k + 1) − x

(1)
max(k)

� 1 − e
a

(  x
(0)

(1) −
bmax

a
 e

− ak
, k � 1, 2, . . . , n.

(13)

According to *eorem 2, when the grey action quantity
of GM(1,1) is expanded from real number b to interval grey
number ⊗b, the GM (1,1) model evolves into the new
GM(1, 1,⊗b) model, and the simulation or predicted results
of GM(1, 1,⊗b) have the following characteristics:

(1) *e simulated or predicted result of GM(1, 1,⊗b) is
an interval grey number ⊗(k)

(2) *e interval grey number ⊗(k) has the definite lower
x

(0)
min(k) and upper bounds x(0)

max(k), that is,
⊗(k) ∈ [x

(0)
min(k), x(0)

max(k)]

(3) *e possibility function of the interval grey number
⊗(k) is a triangle, and its maximum possible value
⊗ (k) is x

(0)
mid(k), that is ⊗ (k) � x

(0)
mid(k)

*e schematic diagram of the interval grey number ⊗(k)

and its probability function is shown in Figure 4.
It can be seen that when the grey action quantity “b” is

restored to an interval grey number ⊗b ∈ [bmin, bmax], the
simulation and prediction data of the GM(1, 1,⊗b) model are
also interval grey numbers. In the case of uncertain system

k = 2 k = n

× 1

AGOMEAN
x(1)(2)

a

x(0)(2)
Grey

factors
White
result

+

–

b2

z(1)(2)
k = 3

× 1

AGOMEAN
x(1)(3)

a

x(0)(3)
Grey

factors
White
result

+

–

b3

z(1)(3)

× 1

AGOMEAN
x(1)(n)

a

x(0)(n)
Grey

factors
White
result

+

–

bn

z(1)(n)

···

Figure 2: Corresponding relationship between input and output of GM(1,1).

bmin

fb(x)

bmaxb

1

0 x

Figure 3: Interval grey number form of Grey action quantity and
its possibility function.
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structure information, the grey number form of simulation or
prediction results conforms to the Nonuniqueness Principle of
Grey theory solution. Meanwhile, the real number form of
simulation and prediction results of the traditional GM(1,1)
model is retained in the results. Compared with the traditional
GM(1,1) model, which simplifies the grey action quantity b
excessively and the reasonable prediction results may be lost, the
proposed newGM(1, 1,⊗b)model extends the effective range of
the simulation and prediction results of GM(1,1) to the greatest
extent.

4. Model Application and Rationality Analysis

With the increasing demand for natural gas in China’s civil
and industrial sectors, China has surpassed Japan to become
the world’s largest importer of natural gas and also the
world’s most heavily dependent importer of natural gas. In
2018 alone, China imported 125.4 billion cubic meters of
natural gas, a growth rate of 31.7%. Under the background of
the international trade rule of “take or pay” of natural gas
and the rapid increase of China’s demand for natural gas, the
stable and orderly supply of natural gas has become an
important factor threatening China’s energy security.

According to China’s Statistical Yearbook (data.-
stats.gov.cn/easyquery.htm?cn�C01), China’s total natural
gas consumption (ten thousand tons of standard coal) in
2009–2018 is shown in Table 1.

In order to test the comprehensive performance of the
GM(1, 1,⊗b) model, it is necessary to test the simulation and
prediction results of the model at the same time. In this
paper, the first seven data in Table 1 are used as the raw data
to build the GM(1, 1,⊗b) model and the last three data are
used as the reserved data to test the prediction performance
of the GM(1, 1,⊗b) model.

*en, the modeling data X(0) is as follows:

X
(0)

� x
(0)

(1), x
(0)

(2), x
(0)

(3), x
(0)

(4), x
(0)

(5),

x
(0)

(6), x
(0)

(7)

� (11764.41, 14425.92, 17803.98, 19302.62, 22096.39,

24270.94, 25364.40).

(14)

Step 1. Generating new sequences X(1) and Z(1):

According to Definition 1, X(1) and Z(1) are be obtained,
as follows:

X
(1)

� x
(1)

(1), x
(1)

(2), x
(1)

(3), x
(1)

(4), x
(1)

(5), x
(1)

(6), x
(1)

(7) 

� (11764.41, 26190.33, 43994.31, 63296.93, 85393.32,

109664.26, 135028.66), Z
(1)

� z
(1)

(2), z
(1)

(3),

z
(1)

(4), z
(1)

(5), z
(1)

(6), z
(1)

(7) �(18977.37, 35092.32,

53645.62, 74345.125, 97528.79, 122346.46).

(15)

Step 2. Constructing Matrices Y and B and computing
parameters a and b:

According to *eorem 1, Matrices Y and B can be
constructed, as follows:

Y �

14425.92

17803.98

19302.62
22096.39

24270.94

25364.40

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

B �

− 18977.37 1

− 35092.32 1

− 53645.62 1

− 74345.125 1

− 97528.79 1

− 122346.46 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

*en,

a � (a, b)T
� B

T
B 

− 1
B

T
Y �

− 0.1046

13538.1421
 . (17)

Step 3. Constructing the interval grey action quantity
⊗b ∈ [bmin, bmax]:

According to Definition 1 and the development coeffi-
cient a, the known data x(0)(k) and z(1)(k), (k � 2, 3, . . . , 7),
the grey action quantity bk at time point k can be computed,
as follows:

Bs � b2, b3, b4, b5, b6, b7 

� 12441.2212, 14133.9410, 13692.2325, 14321.1986,{

14071.1454, 12569.1140}.

(18)

*en,

bmax � max b2, b3, b4, b5, b6, b7  � 14321.1986,

bmin � max b2, b3, b4, b5, b6, b7  � 12441.2212.
(19)

So, the interval grey action quantity ⊗b ∈ [bmin, bmax] is
as follows:

1

0 xx̂min(k)
(0) x̂mid(k)

(0) x̂max(k)
(0)

fk(x)

Figure 4: *e possibility function of the simulated or predicted
result ⊗(k) of GM(1, 1,⊗b).
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⊗b ∈ [12441.2212, 14321.1986],

⊗ b � b � 13538.1421,
(20)

and the possibility function of ⊗b ∈ [bmin, bmax] is shown in
Figure 5.

*e relationship between the grey action quantity at
different time points and the grey action quantity b of the
traditional GM (1,1) model is shown in Figure 6.

According to Figure 6, we can see that the grey action
quantity b of the traditional GM(1,1) model is a compromise
value and the size of b is estimated under the condition of
minimizing the sum of squares of residual errors of the
simulated data. *erefore, the process conceals the differ-
ence of grey action quantity at different points and loses
some known information, which is the main reason why the
simulation and prediction results of the traditional GM(1,1)
model are unstable.

Step 4. Computing the simulation and prediction data:
x

(0)
min, x(0)

max(k), and x
(0)
mid(k):

According to *eorem 2 and P � (a,⊗b)T, when
k � 2, 3, 4, 5, 6, 7, the simulated data x

(0)
min(k), x(0)

max(k), and
x

(0)
mid(k) can be computed, as follows:

x
(0)
min(2) � 14412.06;

x
(0)
min(3) � 16000.95;

x
(0)
min(4) � 17765.00,

x
(0)
min(5) � 19723.54;

x
(0)
min(6) � 21897.99;

x
(0)
min(7) � 24312.18,

x
(0)
mid(2) � 15568.40;

x
(0)
mid(3) � 17284.76;

x
(0)
mid(4) � 19190.35,

x
(0)
mid(5) � 21306.03;

x
(0)
mid(6) � 23654.95;

x
(0)
mid(7) � 26262.84,

x
(0)
max(2) � 16393.86;

x
(0)
max(3) � 18201.24;

x
(0)
max(4) � 20207.87,

x
(0)
max(5) � 22435.72;

x
(0)
max(6) � 24909.19;

x
(0)
max(7) � 27655.35.

(21)

*en,

⊗(2) ∈ [14412.06, 16393.86];

x
(0)
mid(2) � ⊗(2) � 15568.40,

⊗(3) ∈ [16000.95, 18201.24];

x
(0)
mid(3) � ⊗(3) � 17284.76,

⊗(4) ∈ [17765.00, 20207.87];

x
(0)
mid(4) � ⊗(4) � 19190.35,

⊗(5) ∈ [19723.54, 22435.72];

x
(0)
mid(5) � ⊗(5) � 21306.03,

⊗(6) ∈ [21897.99, 24909.19];

x
(0)
mid(6) � ⊗(6) � 23654.95,

⊗(7) ∈ [24312.18, 27655.35];

x
(0)
mid(7) � ⊗ (7) � 26262.84.

(22)

Similarly, when k � 8, 9, 10, the predicted data x
(0)
min(k),

x(0)
max(k), and x

(0)
mid(k) can be computed, as follows:

Table 1: China’s total natural gas consumption (TC) in 2009–2018 (unit: ten thousand tons standard coal).

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
TC 11764.41 14425.92 17803.98 19302.62 22096.39 24270.94 25364.40 27904.00 31397.04 36192.00

(12441.2212)
bmin

fb(x)

(14321.1986)
bmax

1

0
x

(13538.1421)
b

Figure 5: *e possibility function of ⊗b ∈ [bmin, bmax].
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Figure 6: Grey action quantity at different time point.
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x
(0)
min(8) � 26992.52;

x
(0)
min(9) � 29968.36;

x
(0)
min(10) � 33272.28,

x
(0)
mid(8) � 29158.23;

x
(0)
mid(9) � 32372.84;

x
(0)
mid(10) � 35941.84,

x
(0)
max(8) � 30704.26;

x
(0)
max(9) � 34089.31;

x
(0)
max(10) � 37847.55,

⊗(8) ∈ [26992.52, 30704.26];

x
(0)
mi d(8) � ⊗(8) � 29158.23,

⊗(9) ∈ [29968.36, 34089.31];

x
(0)
mi d(9) � ⊗(9) � 32372.84,

⊗(10) ∈ [33272.28, 37847.55];

x
(0)
mi d(10) � ⊗(10) � 35941.84.

(23)

Step 5. Analyzing the rationality of simulation and pre-
diction data:

Based on the above calculation results, the original data
and various simulation and prediction data curves are
drawn, as shown in Figure 7.

According to Figure 7, before analyzing the rationality of
the proposed GM(1, 1,⊗b) model in this paper, we first
analyze the irrationality of the traditional GM(1,1) model:

(a) *e overall trend of China’s total natural gas con-
sumption is increasing year by year, but it is not
balanced, such as the rapid growth in 2012–2014 and
the slowdown in 2014-2015. However, the traditional
GM(1,1) model is an exponential model with a
constant growth rate, so it is difficult for the GM(1,1)
model to achieve unbiased simulation of China’s
total natural gas consumption. It can be found from
Figure 7 that there are obvious deviations between
curves ① and ②.

(b) In the traditional GM(1,1) model, the grey action
quantity b represents the influence of all external
factors on the development trend of the system. It is
essentially uncertain, and its form should be grey
number. However, in the modeling process of
GM(1,1), the size of b is estimated by the least
squares method, which is a real number. *is
completely ignores the uncertainty characteristics of
grey action quantity and leads to the poor reliability
of the simulation and prediction results of the tra-
ditional GM(1,1) model (see curves ② and ⑤).

(c) *e GM(1,1) model is a grey model with incomplete
structural information which mainly reflects in the
uncertainty and complexity of the influencing fac-
tors. According to the “Nonuniqueness Principle” of
Grey theory, solutions with incomplete and uncer-
tain information show nonuniqueness. *erefore,
the simulation and prediction results of GM(1,1)
should be nonunique. However, the GM(1,1) model
is a time sequence prediction model with deter-
ministic structure, and its simulation and prediction
results are unique (see curves② and⑤), which does
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Figure 7: Comparisons of the original data and various simulation and prediction data.
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not conform to the Nonuniqueness Principle of
solution of Grey theory.

In order to study the actual meaning of grey action
quantity b under uncertain (Grey factors) conditions, the
interval grey number form of b is obtained by calculating
and comparing the grey action quantity b at different time
points. On this basis, a new GM(1,1) model, GM(1, 1,⊗b), is
constructed. Compared with the traditional GM(1,1) model,
the rationality of the GM(1, 1,⊗b) model is reflected in the
following aspects:

(i) *e model structure of GM(1, 1,⊗b) satisfies the
essential characteristics of uncertainty of the grey
prediction model. *e grey action quantity of
GM(1, 1,⊗b) is the interval grey number
⊗b ∈ [bmin, bmax] with known probability function,
which restores the interval grey number form of
grey action quantity under incomplete structural
information. After this, the interval structure of grey
prediction model is realized, which satisfies the
essential characteristics of uncertainty of the grey
prediction model.

(ii) *e simulation and prediction results of the
GM(1, 1,⊗b) model conform to the Nonuniqueness
Principle of solution of Grey theory. *e interval
grey number sequences with clear lower bound
x

(0)
min(k) and upper bound x(0)

max(k) with known
probability function are obtained based on the new
GM(1, 1,⊗b) model, rather than real number se-
quences based on the traditional GM(1,1) model.
*e GM(1, 1,⊗b) model conforms to the Non-
uniqueness Principle of solution under incomplete
structural information (see curves ③, ④, ⑥, and
⑦).

(iii) *e GM(1, 1,⊗b) model conforms to the “Mini-
mum Information Principle” of Grey theory. *e
GM(1, 1,⊗b) model makes full use of the all in-
formation of grey action quantity at each time point.
*e traditional GM(1,1) model employs the least
square method to estimate the grey action quantity,
which is actually a simplified process, and leads to
the loss of some known information.

(iv) *e predicted results of the GM(1, 1,⊗b) model are
more valuable than the traditional GM(1,1) model.
*e prediction result of GM(1, 1,⊗b) is an interval
grey number (see curves ⑥ and ⑦), which enables
the decision maker to clearly understand the future
change range of the research object. However, the
prediction result of GM(1,1) is a determined real
number (see curve ⑤), which usually has some
errors; it leads decision makers to question its re-
liability. In this case, a certain interval is often more
valuable than an uncertain real number.

(v) *e new GM(1, 1,⊗b) model is compatible with the
traditional GM(1,1) model. In GM(1, 1,⊗b), the
grey action quantity b of the traditional GM(1,1)
model is just the whitening value of
⊗b ∈ [bmin, bmax], namely, ⊗ b � b, and then, the

x
(0)
mid(k) is calculated based on b accordingly. In

fact, x
(0)
mid(k) is the simulation or prediction result of

the traditional GM(1,1) model. *erefore,
GM(1, 1,⊗b) is compatible with GM(1,1).

(vi) From the predicted area in Figure 7, it can be found
that the actual value of natural gas consumption in
China from 2016 to 2018 (see curve ①) is totally
smaller than the predicted value of the upper bound
grey action quantity bmin (see curve ⑥) of the
GM(1, 1,⊗b) model but larger than the predicted
value of lower bound grey action quantity bmax (see
curve⑦).*is shows that the GM(1, 1,⊗b) model is
effective in predicting the range of natural gas
consumption in China in the next three years and
proves the rationality of the prediction results of the
GM(1, 1,⊗b) model again.

5. Conclusions

*e single variable grey prediction model represented by
GM(1,1) simply uses a real number (grey action quantity)
“b” to express the comprehensive effect of many uncertain
and complex factors on the system development because the
factors affecting the system (independent variables) are
unknown. In other words, grey action quantity “b” repre-
sents the influence of all external factors on the system
development trend. Hence, the parameter “b” is essentially
uncertain and should be in the form of grey number.
However, in the traditional GM(1,1) modeling process, the
grey attribute of “b” is not taken into account, which is
estimated and modeled according to the real number, which
is obviously inconsistent with the actual meaning of “b”.

On the other hand, the GM(1,1) model is a grey model
with incomplete structural information (the absence of
independent variables). According to the “Nonuniqueness
Principle” of Grey theory, the solution with incomplete and
uncertain information is not unique. *erefore, the simu-
lation and prediction results of GM(1,1) should be non-
unique. However, the current GM(1,1) model is a time
sequence prediction model with deterministic structure, so
its simulation and prediction results are unique, which
obviously violates the “Nonuniqueness Principle” of Grey
theory.

Starting from the origin of the grey prediction model,
this paper analyses the defects of the traditional GM(1,1)
model. *en, according to the Nonuniqueness Principle and
Minimum Information Principle of Grey theory, the interval
grey number form of grey action quantity b is restored and
the new GM(1, 1,⊗b) model is put forward. *e new
GM(1, 1,⊗b) model is applied to simulate and forecast
China’s natural gas consumption, and the rationality of the
simulation and prediction results of GM(1, 1,⊗b) and
GM(1,1) is analyzed. *e results show that the prediction
results of GM(1, 1,⊗b) have more reference values.

Although this paper only extends grey action quantity b
from real number to interval grey number ⊗b ∈ [bmin, bmax],
it is no exaggeration to say that the proposed GM(1, 1,⊗b)

model makes the classical grey prediction model really to
have the “grey” attribute. At present, there are many kinds of
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grey prediction models, and GM(1,1) is only one of the most
primitive grey models.*erefore, how to use GM(1, 1,⊗b) as
the basis to carry out in-depth research on the “grey” at-
tributes of other grey models, so as to build the new grey
prediction model with stronger modeling ability, is the next
work of our team.
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