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Stock trend prediction refers to predicting future price trend of stocks for seeking profit maximum of stock investment. Although
it has aroused broad attention in stock markets, it is still a tough task not only because the stock markets are complex and easily
volatile but also because real short-term stock data is so limited that existing stock prediction models could be far from perfect,
especially for deep neural networks. As a kind of time-series data, the underlying patterns of stock data are easily influenced by any
tiny noises. Thus, how to augment limited stock price data is an open problem in stock trend prediction, since most data
augmentation schemes adopted in image processing cannot be brutally used here. To this end, we devise a simple yet effective
time-sensitive data augmentation method for stock trend prediction. To be specific, we augment data by corrupting high-
frequency patterns of original stock price data as well as preserving low-frequency ones in the frame of wavelet transformation.
The proposed method is motivated by the fact that low-frequency patterns without noisy corruptions do not hurt the true patterns
of stock price data. Besides, a transformation technique is proposed to recognize the importance of the patterns at varied time
points, that is, the information is time-sensitive. A series of experiments carried out on a real stock price dataset including 50

corporation stocks verify the efficacy of our data augmentation method.

1. Introduction

In financial market, stock price trend is a type of important
time series, which is closely relevant to the profits of the
investment. Owing to short-term microstructure of the fi-
nancial market, stock price trend data are highly volatile and
uncertain. Though they provide the investors with decision
messages for seeking profit maximum of stock investment,
forecasting future stock price is still a tough task for decades.

Early methods utilize conventional statistical techniques
to predict stock price trend. Among them, autoregression
moving average (ARMA) and autoregression-integrated
moving average (ARIMA) [1] are the most popular models,
and in turn many variants have been explored [2-5]. For
instance, Babu and Reddy [3] proposed a linear hybrid

model which consists of ARIMA and GARCH models. Li
and Chiang [5] proposed a forecasting model by integrating
a neurofuzzy system and ARIMA models. Such statistical
methods might be too limited to deal with such a dynamic
and complex stock market because they fail to unveil the
nonlinearity between stock prices at varied time points.
With the boom of deep learning, deep stock price
prediction methods start to surge continually. Benefitting
from powerful layer-wise representation, deep models have
dominated the stock market prediction field [6, 7]. Nelson
et al. [8] were the first to apply Vanilla LSTM [9] for stock
price prediction and proved its effectiveness as its distin-
guished ability to capture long-term dependencies in input
sequences. Combined with LSTM, some other frameworks
[10-16] are also investigated to promote price prediction
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accuracy. In [10], to discover stock price patterns, the
K-means algorithm is firstly used to cluster stock price
subsequences, then a multibranch LSTM model is con-
structed which makes the final prediction based on the
learned k clusters. In [13], both wavelet transform and at-
tention mechanism are integrated into LSTM to make the
price prediction. In addition, Zhang et al. [12] leveraged
different underlying frequency patterns on the basis of
LSTM and discrete Fourier transform (DFT) for stock price
prediction. In detail, DFT serves to decompose the hidden
states of memory cells into several frequency components,
and then an inverse Fourier transform (IFT) process is used
to combine such components to reconstruct the above
hidden states.

As one knows, such deep models highly rely on large
scale datasets, and thereby exhibit the capability of effective
stock price prediction. In real life, only collecting around
2,520 samples could take ten years, which is far from the
requirements for tuning a large collection of parameters in
deep models. As a result, this might possibly induce the risk
of model overfitting and thus limit the performance of
prediction models on unseen data [17, 18]. To defeat this
issue, a simple and effective scheme is data augmentation,
which aims to augment data by coining new data similar to
original data generative distribution. Bengio et al. [19] found
that out-of-distribution examples are more beneficial to a
deep learner than a traditional shallow one. However, it is
nontrivial to exploit most existing data augmentation
techniques from image processing regime for stock price
data. This is because stock price data fed to the prediction
models each time is extremely few, thus any tiny improper
operations could hurt the underlying patterns of original
data.

In this study, the focus is to address this issue. Here, we
propose a simple yet effective data augmentation method for
stock price trend prediction. Different from conventional
augmentation schemes, which directly impose the trans-
formations such as adding random noises to original time
series, our data augmentation method considers how to
perform the transformations over the unimportant patterns
of original data as well as to preserve the underlying patterns
within the dataset. This increases the data diversity. The
insight behind the proposed augmentation method is that
low-frequency patterns without noisy corruptions could not
hurt the true patterns of original time-series data. As in
Figure 1, low-frequency patterns are more relevant to the
patterns of original data, as it can be viewed as the substitute
of original data, while high-frequency ones are more ir-
relevant and random. According to this observation,
amounts of new time-series samples are coined, and their
data distribution resembles original time series. In specific,
we first decompose the input time series into diverse fre-
quency components and then adopt some transformations
to change some components. In this work, the discrete
wavelet transform (DWT) [20] is used, which provides
detailed frequency and location information about original
data. Besides, according to time-sensitive property of time
series, we coin new data by reweighting stock price patterns
of different time points in time series. This could avoid the
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impact of overdue historical data over the coined time series.
Ablation studies and extensive experiments are carried out
on a real stock price dataset including 50 corporation stocks
to verify the efficacy of the proposed data augmentation
method.

The main contributions of this work are two-fold:

(1) An effective data augmentation method is tailored
for stock price data, which coins amounts of new
time series by changing high-frequency components
of original data while preserving low-frequency
components.

(2) Based on the proposed data augmentation method, a
decay factor is introduced to control the scale of
noise over time series for further refining our
method, which distinguishes the importance of the
patterns at different time points. This might elimi-
nate the interruption of overdue historical data over
the coined time series.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 describes the
proposed data augmentation method and transformation
techniques in our work. In Section 4, a series of comparison
experiments are conducted to evaluate the effectiveness of
our proposed method. Finally, we conclude the paper in
Section 5.

2. Related Work

Although numerous deep learning models have been widely
used and showed the superiority over shallow learning
methods in many areas, the overfitting problem often
emerges because of insufficient data in many applications,
including computer vision, natural language processing, and
data mining. Data augmentation is one of the most practical
ways to relieve such problem, and then numerous aug-
mentation strategies have been applied in computer vision,
such as translation, rotation, scaling, flipping, and shearing.
Many convolutional neural networks work well in corpo-
ration with such augmentation techniques [21]. However,
most of these data augmentation methods might not be
brutally applied for other areas. Schliiter and Grill applied a
series of data augmentation methods for singing voice de-
tection. Results showed that very few methods induce
performance gains in this task [18]. Devries and Taylor
showed that performing transformations in the input space
has limited effectiveness while operating in the feature space
which can achieve a better result in many tasks [22].

When using the operations including translation, flip-
ping, and scaling, the transformed image share the same
information as the original image. However, these opera-
tions cannot keep the property for time series, as it is not
obvious to obtain the discriminative information through a
similar operation [23]. Thus, how to augment the time-series
dataset for stock price prediction is still an open problem at
present.

Up to now, several studies have tried to address such a
problem. Le Guennec et al. [24] utilized window slicing,
window warping, and dataset mixing to improve deep CNN
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FIGURE 1: (a) A time-series instance, (b) the corresponding low-frequency components, and (c) high-frequency components.

models for time-series classification. Fawaz et al. [25] pro-
posed a data augmentation method based on dynamic time
warping distance to boost time-series classification. Obvi-
ously, such augmentation schemes are specially designed for
classification task and might be far from optimal for re-
gression task such as stock price prediction. To augment the
dataset for stock price prediction, most efforts focus on
utilizing similar stocks with the similar price tendency to
expand the dataset. Zhang et al. [26] proposed a solution
composed of two stages, i.e., similar stocks were collected
according to their retracement probability density function
(PDF) in the first stage and then the stocks in the same
cluster act as the enlarged dataset to train the model. Besides,
Yujin and Young proposed a ModAugNet model including
an overfitting prevention LSTM and a prediction LSTM
module [27], to relieve the overfitting problem. In the
training process, ten companies’ stocks highly correlated to
the stock market index were collected and then randomnly
combined five of them were fed to the prevention LSTM
each time. In the end, the final prediction is made together
with the features extracted from the target stock index.

Unlike such studies, which aims to augment the dataset
by collecting similar stocks to enlarge the dataset [26, 27], we
propose a more general data augmentation method for stock
prediction analysis based on discrete wavelet transform
(DWT), which requires no specific knowledge from external
environments. Thus, our method is free from specific sit-
uations and can cooperate with other augmentation
methods as above.

3. Method

This section firstly overviews the proposed data augmen-
tation method, then details each procedure used in the data
augmentation method.

3.1. The Overall Pipeline. As discussed above, the proposed
data augmentation method augments dataset by changing
high-frequency components with some transformations
whilst keeping low-frequency ones unchanged. The idea
behind our method is that low-frequency components are
close to the original data; thus, low-frequency patterns
without noisy corruptions will not hurt the true patterns of
time series. Thus, it is more likely to generate new data
following the same distribution as the original data. The

overall process of the proposed method is shown in Figure 2.
To decompose the original data in frequency domain, a
series of techniques can be applied here, such as Fourier
transform and discrete wavelet transform (DWT) [20]. In
this paper, DWT is used as it can provide detailed frequency
and location information with respect to the original data.
By changing high-frequency components, we can coin
amounts of time series. The usual operations to realize this
goal contain data corruptions with random noises and in-
terpolation [28]. Such methods are not optimal for time
series. To this end, we design a novel transform operation for
time series by introducing a decay factor to control the scale
of noises over the original data during different time du-
rations. As one knows, time series are time sensitive. When
they are treated fairly and operated with the same opera-
tions, it might be harmful for keeping the underlying pat-
terns of original data. This easily makes the ground truth
uncertain. That is, the generated time series could be nothing
but noises. The proposed transform operation introduces a
decay factor to keep the underlying important information.
In this way, the resultant synthetic time series are generated
by combining the new transformed high-frequency com-
ponents with original low-frequency ones.

To summarize, the proposed augmentation method is
composed of three stages. A time series is decomposed into
the corresponding high-frequency components and low-
frequency ones at the first stage. Then, the proposed
transform operation is performed over the high-frequency
components, while preserving the low-frequency compo-
nents. In the end, we compose the transformed high-fre-
quency components and low-frequency ones into a brand
time series.

3.2. Data Decomposition in Frequency Domain. In the
proposed data augmentation method, the original time
series need to be mapped into frequency domain. Many
candidates can be used for this purpose. Among them, the
discrete wavelet transform (DWT) is a typical continuous
signal decomposition method. It can decompose time series
into a set of diverse frequency subseries using a series of
high-pass and low-pass filters in a level-by-level manner.
This meets the requirements of the proposed data aug-
mentation method.

For clarity, we review DWT for subsequent sections.
Given a time series x = {xl, Xy oees xT}, the low- and
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FIGURE 2: The overview of the proposed data augmentation method.

high-frequency subseries generated in the ith level are
denoted as x! (i) and x"(i). Then, the corresponding low-
and high-frequency subseries can be obtained using a low-
pass filter I={l;,1,, ...,Ix} and a high-pass filter
h={hy, hy, ..., hg}. The concrete functions are as follows:

K
ai+) =Y xh () L
k=1
h K (1)
ap(i+1) = x, i () Iy
k=1

where x! (i) is the nth element of the low-frequency sub-
series in the ith level. As x! (0) is set to the input time series,
low- and high-frequency subseries in the (i + 1)th level
x'(i+1) and x" (i + 1) can be generated from the 1/2 down
sampling of the intermediates ad(i+1) and a"(i + 1), re-
spectively. With the above transform, a set of diverse fre-
quency subseries can be obtained from the original time
series as X (L) = {x" (1), x"(2), ..., x"(L), x'(L)}, where
L is the maximum level, and the frequency from x" (1) to
xt(L) is from high to low.

3.3. Transform over High-Frequency Components. To aug-
ment dataset, each sampled time series fed to DWT is
decomposed into diverse frequency subseries. Then, a series
of transformations can be operated in the high-frequency
components to generate new series. Among them, adding
the noises following the Gaussian distribution to the high-
frequency components is the most commonly used way. The
operation can be formulated as follows:

s’ =s+AX, X ~N(0, a7), (2)

where s is the original time series, which refers to the high-
frequency subseries. A is the constant parameter which
controls the scale of the noise. X is the noise matrix, of which
distribution is with the zero mean and standard deviation
ko,, wherein g, is the standard deviation across the whole
time series.

Unlike image or natural language data, time series such
as stock price data are time sensitive. That is, the stock price
at the current time point is closely related to that at short-
time points rather than overdue time points. To tackle this
problem, a decay factor A € (0, 1) is introduced, which

controls the scale of noises added to the data at different time
points:

si= 5 +(1-)*AX, X ~ N(0, ¢*),
I, (3)

where s; is the ith entry of the high-frequency subseries and i
is the index. L, and L, are the length of original time series
and subseries, respectively. In this way, it is more likely to
generate data in the same distribution as original data whilst
preserving the truly underlying patterns of the original series
near the ground truth.

Except for simply adding noises to original data, in-
terpolation [28] can be also used here, which is a data
transformation commonly used in image processing. For
each sample in the dataset, we find the near neighbors to
generate new data with interpolation:

s'=G-s)B+s, (4)

where s refers to the high-frequency subseries of the input
series and s is the counterpart of the neighbor sequence. f3 is
the coefficient in the range {0, 1}, which controls the freedom
degree of interpolation. For example, when f is set to 0.5,
both original time series and the neighbor ones are balanced.
In our work, as the nearest neighbor is too similar to the
original time series, we just choose one neighbor which is
several time steps near the target one to perform
interpolation.

To intuitively understand the above transformations, we
illustrate different results of three transformations over the
high-frequency components of two synthetic time series in
Figure 3. And the details about how the augmented data
were utilized are illustrated as Figure 4.

3.4. Stock Price Prediction. Given a time series of stock prices
{p:1t =1,2,...,T}, where T is the length of the sequences
fed to deep models, and deep models aim to predict the next
price pr,,. To get a higher accuracy in stock price, numerous
models have been applied and made the progress to some
extent. Among them, LSTM serves as the most effective one
which captures long-and-short-term dependencies of the
input sequences. In this work, we choose LSTM as the base
model to conduct the stock price trend prediction. The
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FI1GURE 3: The transformed high-frequency components by (a) random noise, (b) our decay-scale noise operation, and (c) our interpolation

operation.
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FIGURE 4: The diagram about how the augmented data are utilized in experiments.

structure of LSTM can be formulated in the following
functions:

sigmoid (W, [x,; h,_,] +b,),
= sigmoid(Wf (x5 hey ] + bf)’
¢, = tanh (W [x;:h,_y] +b,),

¢ =1°C+ froc s

sigmoid (W, [x,; hy_{] + b,),

= o0 tanh(c,),

o
[

O
1]

(5)

S
| 1]

where x, is the input value at each time t, i, and h,_, are hidden
states of the LSTM, and ¢, is the memory state. sigmoid (-) and
tanh (-) are two types of the activation functions for three types
of gating units: the input gate i,, forget gate f,, and output gate
o, W, and b, denote weight matrices and bias vectors, re-
spectively. “o” represents the operation of point-wise multi-
plication. Parameters of the model can be learned by standard
back propagation with the mean squared error according to the

MSE as the objective function:

1

O(ﬁi’ )’i) N (5’1‘ - )5 (6)

=

I
—_

where N is the number of training samples. 7; and y; are the
predicted value and the ground truth of the ith sample in the
training set, respectively. On the basis of the base model, we
can evaluate the efficacy of our proposed data augmentation
method.

4. Experiments

In this section, we evaluate the effectiveness of our method
on a real-world dataset.

4.1. Dataset. The used dataset is a real-life stock price dataset.
It includes the daily open prices of 50 stocks among 10 sectors
from 2007 to 2016. The list of the stock symbols is given in
Table 1. We treat the dataset from 2007 to 2014 as training set,
while stock prices in both 2015 and 2016 are regarded as the
validation set and test set, respectively. The LSTM model is
trained on the training set of these 50 stocks, and then the
average accuracy is evaluated on the test set to validate the
performance of the trained model. To augment the dataset
and enhance the performance of models, the proposed data
augmentation methods were also applied, as shown in
Figure 4. For each instance in the training set, a new training
sample was also gemnerated to augment the dataset.

4.2. Results. To validate the proposed data augmentation
method, a series of comparisons have been conducted by
training LSTM with the new augmented dataset and original
dataset, respectively. To be specific, to augment the dataset,
several transformations have been operated on the high-
frequency components of original time series. Then, the most
suited transformation technique can be chosen for our
method, in light of experimental results. Furthermore, the
same operations are also imposed over original time series for
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TaBLE 1: Stock symbols of the dataset described in [12].
Sectors Stock symbols
Basic materials BHP DOW RIO SYT VALE
Cyclicals AMZN CMCSA DIS HD TM
Energy CVX PTR RDS-B TOT XOM
Financials BAC BRK-B JPM SPY WEC
Healthcare JNJ MRK NVS PFE UNH
Industrials BA GE MA MMM UPS
Noncyclicals KO MO PEP PG WMT
Technology AAPL GOOGL INTC MSFT ORCL
Telecommunications CHL DCM NTT T VZ
Utilities D DUK EXC NGG SO

fair comparison. Both MSE and MAE are used to evaluate the
performance of the model, which are defined as follows:

MSE—ii(A— )
N Yi=Yi)>

i=1

(7)

1 &,
MAE = Zl|y -

where N is the number of training samples. J; and y; are
the predicted value and the ground truth of the ith sample
of the training set, respectively. In general, the hidden state
dimension of LSTM is set to 50 and the length of time series
fed to the model is L = 24. In addition, the batch size is set
to 50. All the parameters are optimized in 2,000 epochs
with the RMSProp optimizer and standard mean square
error (MSE). In the procedure of the data preprocessing, a
soft threshold is used to denoise high-frequency compo-
nents of training samples induced by the wavelet transform
[21]. Then, a set of transformation techniques are adopted,
including random noise corruption, decay-scale noise
corruption, and interpolation. Likewise, the same opera-
tions are also applied for original data. Experimental results
are shown in Tables 2-4. To show the effectiveness of our
method, two LSTM models, respectively, trained on aug-
mented dataset and original dataset are tested on several
individual stocks, and the resultant square error curves are
shown in Figure 5.

Tables 2~4 show the results of comparison experiments.
In these tables, the left records result from transformation
techniques applied to the high-frequency patterns, while the
right ones are from the identical transformations applied to
original time series. From Table 2, the scale of the random
noise has a direct influence on the performance of LSTM.
When the scale of random noise is very low (which is set to
0.05), both LSTM models trained on the augmented dataset
and original time series can achieve a relative sound results.
With the rise in the scale of noise, LSTM on the right tends to
be worse than before. The reason could be that the pattern of
the input sequence has been damaged when the scale of the
random noise is over a certain threshold. With the increase
in the scale coefficient, LSTM trained on the augmented
dataset from the high-frequency patterns performs better
than that trained on the counterpart augmented from
original time series. This could be attributed to the fact that
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TaBLE 2: Comparison experiments by adding random noises with
diverse scales over both the high-frequency subseries and original
time series.

Random noise Random noise

High frequency Original time

(ours) series
Scale coefficient (A) MSE MAE MSE MAE
0.05 5.147 0.934 5.142 0.939
0.1 5.111 0.934 5.418 0.986
0.15 5.205 0.931 5.313 0.942
No data augmentation 5.106 0.923

TaBLE 3: Comparison experiments by adding decay-scale random
noise with diverse scales to the high-frequency subseries and the
original time series.

Decay-scale
random noise

Decay-scale
random noise

High frequency Original time

(ours) series
Scale coeflicient (A) MSE MAE MSE MAE
0.05 5.105 0.929 5.119 0.926
0.1 5.006 0.902 5.130 0.921
0.15 5.117 0.927 5.115 0.925
No data augmentation 5.106 0.923

TaBLE 4: Comparison experiments by applying interpolation with
diverse balance coefficients to the high-frequency subseries and the
original time series.

Interpolation Interpolation
High frequency Original time
(ours) series

Balance coeflicient (A) MSE MAE MSE MAE
0.2 4.921 0.903 5218 0.951
0.4 5.050 0.915 5.458 0.976
0.6 4.917 0.893 5.461 0.977
0.8 5.192 0.932 5.5148  0.9647
No data augmentation 5.106 0.923

adding random noise to high-frequency patterns as well as
preserving low-frequency counterparts can capture the
primary patterns of original time series, which confirms our
previous claims.

Another observation is that although different scales of
noise have been applied to high-frequency patterns and
original time series, respectively, LSTM models achieve
limited performance gains. The reason is probably that the
importance of data in different periods is not the same. If we
simply treat them equally, this might damage the underlying
patterns of original time series and make the ground truth
confusing. To verify the viewpoint, a decay factor A is in-
troduced to control the scale of noises, and the results are
shown in Table 3. In the experiments, as the trained LSTM
models work well when A is set to 0.1. It can be observed that
using A, LSTM models achieve performance gains, since the
decay factor A can maintain main patterns near the ground
truth, to some degree. When adding the decay-scale noise to
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FIGURE 5: The square error curves on (a) MA and (b) SPY stocks, respectively.

high-frequency patterns, the trained LSTM can yield the best
result. This proves the previous claims.

From Table 4, the effectiveness of the interpolation
transformation can be observed. When the parameter A stays
in a low level, LSTM trained on the augmented dataset
performs better than that trained on the counterpart aug-
mented dataset from the original time series. With the rise in
the scale of noises, the first LSTM can achieve a relative
sound result while the second does not work well. The reason
could be that the interpolation over the high-frequency
patterns can still keep the underlying patterns of original
time series, which implies the efficacy of our method.

5. Conclusion

In this paper, we propose a general data augmentation
method, which can be applied to the time series without any
specific knowledge. It aims to preserve the main patterns of
the original time series as it only operates on the high-
frequency components. To keep most information near the
real label, a decay factor is introduced to control the scale of
noises added to time series. This ensures the coined data to
be time sensitive. To evaluate the efficacy of the proposed
data augmentation method, we conduct the experiments on
the real stock price dataset based on the basic LSTM model.
Experiment results show that the proposed data augmen-
tation method can boost stock price prediction performance
of the basic LSTM model.
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