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-is paper is concerned with the delay-dependent stability of systems with distributed time-varying delays. -e novelty
relies on the use of some new inequalities which are less conservative than some existing inequalities. A less conservative
stability criterion is obtained by constructing some new augmented Lyapunov–Krasovskii functionals, which are given in
terms of linear matrix inequalities. -e effectiveness of the presented criterion is demonstrated by two
numerical examples.

1. Introduction

Consider the systems with distributed time-varying delays:

_x(t) � Ax(t) + Bx(t − h(t)) + C 
t

t− h(t)
x(s)ds, (1)

x(t) � ϕ(t),

t ∈ [− h, 0],
(2)

where x(t) ∈ Rn is the system state, A, B, C ∈ Rn×n are
constant matrices, and h(t) is the time-varying delay
satisfying

0≤ h(t)≤ h, − u≤ _h(t)≤ u< 1. (3)

Since time delays occur in many dynamic systems,
stability analysis of the time delay system [1–5] has become
a hot topic in the past few decades. Due to the represen-
tation of linear systems with time-varying delays, the delay-
dependent stability analysis via the LKF method has
attracted much attention. -e conservatism of the LKF
method comes from two aspects: the construction of the
LKF and the bound on its derivative. Selecting the LKF is

crucial to derive less conservative criteria. An augmented
LKF [6] is proposed to reduce the conservatism in the early
literature. Recently, a new augmented LKF [7] is intro-
duced by employing the information of a second-order
Bessel–Legendre inequality. It is necessary to take the
derivative of the LKF to derive a stability criterion. -e
difficulty lies in the bounds of the integrals that arise in the
derivative of the LKF. -ere are two main methods for
dealing with such integrals: the free-weighting matrix
method [8] and the integral inequality method.-e integral
inequality method includes various integral inequalities,
such as Jensen inequality [9–11], Wirtinger-based in-
equality [12–15], free matrix-based inequality [16, 17],
auxiliary function-based inequality [18], relaxed integral
inequality [19], and Bessel–Legendre inequality [20]. Very
recently, the improved inequality-based functions ap-
proach [21] is proposed to derive less conservative results
for systems with time-varying delays. However, when
estimating _V(xt), 

b

a
_xT(s)R _x(s)ds is only estimated

as 
b

a
_xT(s)R _x(s)ds≥ (1/b − a)ΩT

1 RΩ1 + (3/b − a)ΩT
2 RΩ2 +

(5/b − a)ΩT
3 RΩ3. Ω1,Ω2, andΩ3 are the same as in Lemma

2. -en, a new integral inequality was proposed in [22] to
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further reduce the conservatism. But the integral inequality
can only deal with the constant time delay. On the other
hand, stability analysis for systems with distributed delays
is of both practical and theoretical importance. -en, it is
desirable to extend the system model to include distributed
delays. In recent years, the stability analysis of systems with
distributed delays has been received considerable attention
[23–27]. But only the authors in [25, 26] consider the
systems with distributed time-varying delays.

-is paper is concerned with the delay-dependent sta-
bility of systems with distributed time-varying delays. Based
on some new inequalities and some new augmented LKFs, a
less conservative stability criterion is obtained in terms of
LMIs. Our paper has two characteristics: (1) the integral


b

a
_xT(s)R _x(s)ds is estimated as 

b

a
_xT (s)R _x(s)ds≥ (1/b −

a)ΩT
1 RΩ1 + (3/b − a)ΩT

2 RΩ2 + (5/b − a)ΩT
3 RΩ3 + (7/b − a)

ΩT
4 RΩ4, which includes those in [9, 13, 20] as special cases.
Ωi, i � 1, 2, 3, 4, is the same as in Lemma 2. (2) An aug-
mented LKF which contains more information about h(t) is
proposed to reduce the conservatism. -e effectiveness of
the presented criterion is demonstrated by two numerical
examples.

-roughout this paper, the set Sn denotes the set of
symmetric matrices and the set Sn

+ denotes the set of sym-
metric positive definite matrices. For any square matrix P,
we define Sym(P) � P + PT.

2. Main Results

In this section, the following lemmas are introduced to
derive the main results.

Lemma 1 (see [20]). For any matrices Θ ∈ Sn
+,

M1, M2 ∈ Rm×n, Υ ∈ R2n×m, and ∀α ∈ (0, 1), the inequality

− ΥT

1
α
Θ 0

0
1

1 − α
Θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Υ≤ − ΥTΣ(α)Υ − Sym ΥT

(1 − α)MT
1

αMT
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠

+ αM1Θ
− 1

M
T
1 +(1 − α)M2Θ

− 1
M

T
2 ,

(4)

holds, where

Σ(α) �
(2 − α)Θ 0

0 (1 + α)Θ
 . (5)

Lemma 2 (see [22]). For a matrix R ∈ Sn
+ and any contin-

uously differentiable function x: [a, b]⟶ Rn, the inequality


b

a
_x
T

(s)R _x(s)ds≥
1

b − a
ΩT

1 RΩ1 +
3

b − a
ΩT

2 RΩ2

+
5

b − a
ΩT

3 RΩ3 +
7

b − a
ΩT

4 RΩ4,

(6)

holds, where

Ω1 � x(b) − x(a),

Ω2 � x(b) + x(a) −
2

b − a


b

a
x(s)ds,

Ω3 � x(b) − x(a) +
6

b − a


b

a
x(s)ds −

12
(b − a)2


b

a


b

u
x(s)ds du,

Ω4 � x(b) + x(a) −
12

b − a


b

a
x(s)ds +

60
(b − a)2


b

a


b

u
x(s)ds du

−
120

(b − a)3


b

a


b

u


b

v
x(s)ds dvdu.

(7)

Lemma 3 (see [28]). Suppose that Ω,Ωij(i, j � 1, 2) are the
constant matrices of appropriate dimensions, α ∈ [0, 1],

β ∈ [− u, u], 0≤ u< 1, then

Ω + αΩ11 +(1 − α)Ω12 + βΩ21 +(1 − β)Ω22 < 0, (8)

holds if and only if the following inequalities hold:

Ω +Ω11 − uΩ21 +(1 + u)Ω22 < 0,

Ω +Ω12 − uΩ21 +(1 + u)Ω22 < 0,

Ω +Ω11 + uΩ21 +(1 − u)Ω22 < 0,

Ω +Ω12 + uΩ21 +(1 − u)Ω22 < 0.

(9)

Based on Lemmas 1–3, a novel stability criterion is
derived for system (1) with distributed time-varying delays.

Theorem 1. For given scalars h> 0, u> 0, if there exist
matrices P, Q1, Q2, ∈ S2n

+ , Q3 ∈ Sn
+, M1, M2 ∈ R10n×4n, such

that the LMI

Φ(α, β) �
ϕ(α, β) − ΥTΣ(α)Υ − Sym ΥT

(1 − α)MT
1

αMT
2

⎡⎣ ⎤⎦⎛⎝ ⎞⎠ ∗

αMT
1 +(1 − α)MT

2 − Θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

(10)

holds for α � 0, 1{ }, _h(t) � β � − u, u{ }, i.e.,

Φ(0, − u)< 0, (11)

Φ(0, u)< 0, (12)

Φ(1, − u)< 0, (13)

Φ(1, u)< 0, (14)

then, system (1) is asymptotically stable, where
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ϕ(α, β) � Sym ΠT
1 PΠ2  + ΠT

3 Q1Π3

− (1 − β)ΠT
4 Q1Π4 + Sym ΠT

5 Q2Π6  + h
2εT

0 Q3ε0,

Π1 � εT
1 αhεT

5 +(1 − α)hεT
6 

T
,

Π2 � AεT
1 + BεT

2 + CαhεT
5 εT

1 − εT
3 

T
,

Π3 � εT
1 AεT

1 + BεT
2 + CαhεT

5 
T
,

Π4 � εT
2 εT

4 
T
,

Π5 � εT
1 εT

2 
T
,

Π6 � AεT
1 + BεT

2 + CαhεT
5 (1 − β)εT

4 
T
,

Π7 � ε1 − ε2,

Π8 � ε1 + ε2 − 2ε5,

Π9 � ε1 − ε2 + 6ε5 − 12ε7,

Π10 � ε1 + ε2 − 12ε5 + 60ε7 − 120ε9,

Π11 � ε2 − ε3,

Π12 � ε2 + ε3 − 2ε6,

Π13 � ε2 − ε3 + 6ε6 − 12ε8,

Π14 � ε2 + ε3 − 12ε6 + 60ε8 − 120ε10,

ε0 � Aε1 + Bε2 + Cαhε5,

Υ � ΠT
7 Π

T
8 Π

T
9 Π

T
10 Π

T
11 Π

T
12 Π

T
13 Π

T
14 

T
,

Θ � diag Q3, 3Q3, 5Q3, 7Q3( ,

(15)

and εi ∈R
n×10n is defined as εi � 0n×(i− 1)n In 0n×(10− i)n 

for i � 1, 2, . . . , 10.

Proof. Introduce an LKF candidate as

V xt(  � V1 xt(  + V2 xt(  + V3 xt(  + V4 xt( , (16)

where

V1 xt(  �

x(t)


t

t− h
x(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

P

x(t)


t

t− h
x(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

V2 xt(  � 
t

t− h(t)

x(s)

_x(s)
 

T

Q1
x(s)

_x(s)
 ds,

V3 xt(  �
x(t)

x(t − h(t))
 

T

Q2
x(t)

x(t − h(t))
 ,

V4 xt(  � h 
t

t− h


t

u
_x
T
(s)Q3 _x(s)ds du.

(17)

Calculate the derivative of V(xt) along the solution of
system (1) as follows:

_V1 xt(  � 2
x(t)


t

t− h
x(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

P
_x(t)

x(t) − x(t − h)
 

� 2
x(t)


t

t− h
x(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

P
Ax(t) + Bx(t − h(t)) + C 

t

t− h(t)
x(s)ds

x(t) − x(t − h)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(18)

_V2 xt(  �
x(t)

_x(t)
 

T

Q1
x(t)

_x(t)
  − (1 − _h(t))

x(t − h(t))

_x(t − h(t))
 

T

Q1
x(t − h(t))

_x(t − h(t))
 

�

x(t)

Ax(t) + Bx(t − h(t)) + C 
t

t− h(t)
x(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

Q1

x(t)

Ax(t) + Bx(t − h(t)) + C 
t

t− h(t)
x(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

− (1 − _h(t))
x(t − h(t))

_x(t − h(t))
 

T

Q1
x(t − h(t))

_x(t − h(t))
 ,

(19)

_V3 xt(  � 2
x(t)

x(t − h(t))
 

T

Q2
_x(t)

(1 − _h(t)) _x(t − h(t))
 , (20)
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� 2
x(t)

x(t − h(t))
 

T

Q2
Ax(t) + Bx(t − h(t)) + C 

t

t− h(t)
x(s)ds

(1 − β) _x(t − h(t))

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦, (21)

_V4 xt(  � h
2

_x
T

(t)Q3 _x(t) − h 
t

t− h
_x
T
(s)Q3 _x(s)ds. (22)

According to (18)–(22), we can obtain
_V xt(  � ζT

(t) sym ΠT
1 PΠ2  +ΠT

3 Q1Π3 − (1 − β)ΠT
4 Q1Π4

+ Sym ΠT
5 Q2Π6  + h

2εT
0 Q3ε0ζ(t)

− h 
t

t− h
_x
T

(s)Q3 _x(s)ds,

(23)

where

ζ(t) � (t) xT(t) xT(t − h(t)) xT(t − h) _xT(t − h(t)) πT
1 (t) πT

2 (t) πT
3 (t) 

T
,

π1(t) � 1
h(t)


t

t− h(t)
x

T
(s)ds 1

h− h(t)


t− h(t)

t− h
x

T
(s)ds 

T

,

π2(t) � 1
h(t)2


t

t− h(t)


t

u
x

T
(s)ds du 1

(h− h(t))2


t− h(t)

t− h


t− h(t)

u
x

T
(s)ds 

T

,

π3(t) � 1
h(t)3


t

t− h(t)


t

u


t

v
x

T
(s)ds dvdu 1

(h− h(t))3


t− h(t)

t− h


t− h(t)

u


t− h(t)

v
x

T
(s)ds dvdu 

T

.

(24)

Let α � (h(t)/h), then 1 − α � (h − h(t)/h), applying
Lemma 2, and we have

− h 
t

t− h
_x
T
(s)Q3 _x(s)

� − h 
t

t− h(t)
_x
T
(s)Q3 _x(s)ds − h 

t− h(t)

t− h
_x
T
(s)Q3 _x(s)ds

≤ −
h

h(t)
ζT

(t) ΠT
7 Q3Π7 + 3ΠT

8 Q3Π8 + 5ΠT
9 Q3Π9 + 7ΠT

10Q3Π10 ζ(t)

−
h

h − h(t)
ζT

(t) ΠT
11Q3Π11 + 3ΠT

12Q3Π12 + 5ΠT
13Q3Π13 + 7ΠT

14Q3Π14 ζ(t)

� −
1
α
ζT

(t) ΠT
7 Q3Π7 + 3ΠT

8 Q3Π8 + 5ΠT
9 Q3Π9 + 7ΠT

10Q3Π10 ζ(t)

−
1

1 − α
ζT

(t) ΠT
11Q3Π11 + 3ΠT

12Q3Π12 + 5ΠT
13Q3Π13 + 7ΠT

14Q3Π14 ζ(t)

� − ζT
(t)ΥT

1
α
Θ 0

0
1

1 − α
Θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Υζ(t).

(25)
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For any matrices M1, M2 ∈ R10n×4n and applying Lemma
1, we can obtain

− ΥT

1
α
Θ 0

0
1

1 − α
Θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Υ

≤ − ΥTΣ(α)Υ − Sym ΥT
(1 − α)MT

1

αMT
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠

+ αM1Θ
− 1

M
T
1 +(1 − α)M2Θ

− 1
M

T
2 � η(α).

(26)

From (23)–(26), we get
_V xt( ≤ ζ(t)(ϕ(α, β) + η(α))ζ(t). (27)

By Lemma 2 [20], if the LMI (10) is true for α � 0, 1{ },
β � − u, u{ }, then ϕ(α, β) + η(α)< 0 holds for all α ∈ (0, 1)

and β ∈ [− u, u]. By Lemma 3, LMI (10) holds if and only if
LMIs (11)–(14) hold. -is completes the proof. □

Remark 1. -e integral 
b

a
_xT(s)R _x(s)ds in [9, 13, 20] is

estimated as 
b

a
_xT(s)R _x(s)ds≥ (1/b − a)ΩT

1 RΩ1, 
b

a
_xT(s)

R _x(s)ds≥ (1/b − a)ΩT
1 RΩ1 + (3/b − a)ΩT

2 RΩ2, 
b

a
_xT(s)R _x

(s)ds≥ (1/b − a)ΩT
1 RΩ1 + (3/b − a)ΩT

2 RΩ2 + (5/b − a)ΩT
3

RΩ3, respectively. In this paper, the integral


b

a
_xT(s)R _x(s)ds is estimated as 

b

a
_xT(s)R _x(s)ds≥ (1/b −

a)ΩT
1 RΩ1 + (3/b − a)ΩT

2 RΩ2 + (5/b − a)ΩT
3 RΩ3 + (7/b − a)

ΩT
4 RΩ4, which includes those in [9, 13, 20] as special cases.

So our method can yield less conservative results.

Remark 2. An augmented LKF which contains more in-
formation about time-varying delay h(t) which was pro-
posed to reduce the conservatism. _x(t − h(t)) is added as a
state vector, which may yield less conservative criteria.

3. Numerical Examples

Two numerical examples are given to demonstrate advan-
tages of the proposed criterion.

Example 1. Consider system (1) with

A �
0.0 1.0

− 1.0 − 2.0
 ,

B �
0.0 0.0

− 1.0 1.0
 ,

C �
0 0

0 0
 .

(28)

For different u, Table 1 presents the allowable upper
bound of h(t), which guarantees the stability of system (1).
Table 1 shows that our method produces the larger upper
bound h than those in [7, 12, 13, 16, 17, 21]. In this sense, our

stability criterion is less conservative than those in
[7, 12, 13, 16, 17, 21].

Example 2. Consider system (1) with

A �
− 2 0

0 − 0.9
 ,

B �
− 1.0 0.0

− 1.0 − 1.0
 ,

C �
0 0

0 0
 .

(29)

For different u, Table 2 presents the allowable upper
bound of h(t), which guarantees the stability of system (1).
Table 2 shows that our method produces the larger upper
bound h than those in [7, 11, 13, 15, 16, 21]. In this sense, our
stability criterion is less conservative than those in
[7, 11, 13, 15, 16, 21].

4. Conclusions

-is paper focus on delay-dependent stability analysis for
systems with distributed time-varying delays. -e novelty
relies on the use of some new inequalities which are less
conservative than some existing inequalities. A less con-
servative stability criterion is obtained by constructing some
new augmented LKFs. -e effectiveness of the presented
criterion is demonstrated by two numerical examples. In
addition, the proposed method can be applied to stability
analysis of other dynamic systems such as fuzzy systems with
time-varying delay and neutral systems with time-varying
delay.

Data Availability

No additional data are available for this paper.

Table 1: Upper bound of h for Example 1 with different u.

u 0.1 0.2 0.5 0.8
[13] 6.590 3.672 1.411 1.275
[12] 7.125 4.413 2.243 1.662
[16] 7.148 4.466 2.352 1.768
[17] 7.167 4.517 2.415 1.838
[7] 7.230 4.556 2.509 1.940
[21] 7.297 4.625 2.264 2.038
-eorem 1 10.095 6.808 3.676 2.615

Table 2: Upper bound of h for Example 2 with different u.

u 0.1 0.2 0.5 0.8
[13] 4.703 3.834 2.420 2.137
[11] 4.753 — 2.429 2.183
[16] 4.788 4.060 3.055 2.615
[15] 4.93 4.22 3.09 2.66
[7] 4.910 — 3.233 2.789
[21] 4.996 4.308 3.251 2.867
-eorem 1 5.650 4.913 3.793 3.251
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