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Copyright © 2020 Jing Xiao et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to make the performance evaluation of community detection algorithms more accurate and deepen our analysis of
community structures and functional characteristics of real-life networks, a new benchmark constructing method is designed
from the perspective of directly rewiring edges in a real-life network instead of building a model. Based on the method, two kinds
of novel benchmarks with special functions are proposed.-e first kind can accurately approximate the microscale and mesoscale
structural characteristics of the original network, providing ideal proxies for real-life networks and helping to realize performance
analysis of community detection algorithms when a real network varies characteristics at multiple scales.-e second kind is able to
independently vary the community intensity in each generated benchmark and make the robustness evaluation of community
detection algorithms more accurate. Experimental results prove the effectiveness and superiority of our proposed method. It
enables more real-life networks to be used to construct benchmarks and helps to deepen our analysis of community structures and
functional characteristics of real-life networks.

1. Introduction

Community structure is one of the most important char-
acteristics of complex networks, which has been commonly
found in social networks, biological networks, traffic net-
works, etc [1–3]. Community detection provides an effective
tool to gain insights into the nontrivial internal organization
of networks, allowing us to unearth in-depth network in-
formation that may not be obtained from direct observation
[1–3], e.g., functional and dynamic characteristics [2, 3]. In
recent years, we have experienced an increasing demand for
detecting communities from a wide range of science do-
mains, such as online targeted advertising [4], social crisis
response [5, 6], disease prevention, and medical diagnosis
[7].

Generally speaking, an accurate detection of community
structures is the basis of analysing the deep information
hidden in real-life networks, so the high-precision of
community detection algorithms is vitally important. In the
past decades, a large number of community detection al-
gorithms based on different knowledge backgrounds have

been proposed to improve the accuracy and stability of
detection results [1–3, 8–13]. However, the problem remains
in our opinion severely limited for two reasons. First, there
are no universal protocols on the fundamental ingredients,
such as the accurately mathematical definition of commu-
nity structures [1–3, 14, 15]. Second, there are not enough
benchmark networks available with high-precision and di-
verse functional features, and as a result the crucial issue of
estimating the performance of algorithms is still open
[14, 15].

Benchmark networks have a significant influence on
evaluating the quality of community detection algorithms,
and it is also a meaningful tool for us to deeply analyse
community structural characteristics of real-life networks.
In the existing community detection studies, both real-life
and synthetic networks are widely used as standard
benchmarks [1, 3, 9]. Real-life networks with precisely
known community structures (i.e., the ground truth) are
considered to be ideal benchmarks for algorithm tests
[1, 3, 9]. However, unfortunately, owing to the actual
community structure is often difficult to be obtained and
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many features (e.g., degree distribution, transitivity, and size
of communities) are not possible to be controlled, the
number of real-life networks used as benchmarks in sci-
entific research studies is very limited [3, 15–20]. -erefore,
most of the performance evaluation for detection algorithms
is conducted on synthetic benchmarks [3, 15–20], among
which the built-in community structures are determined
during the process of network construction and can be
adjusted according to different performance evaluation
requirements.

Currently, the most commonly used artificial synthetic
benchmarks mainly include the Girvan–Newman (GN) [21]
and Lancichinetti–Fortunato–Radicchi (LFR) [14]. GN is
generally considered not to be a good proxy for real-life
networks because of the same degree of all nodes and the
same size of all communities [1, 3, 14, 20, 21]. -e above-
mentioned problems have been addressed by LFR, which is
constructed based on a configuration model and charac-
terized by a heterogeneous distribution of node degree and
community size [1, 3, 14, 20, 21]. In recent years, several
variants of the standard LFR have been introduced to
construct more complex and realistic benchmarks
[15, 22–27]. Specially, Lancichinetti and Fortunato designed
Hierarchical LFR benchmarks (HLFR) for directed and
weighted networks with overlapping communities [15].
Orman and Labatut proposed amodified LFR network based
on a preferential attachment model, which considers more
realistic properties in real-life networks such as degree
correlation and transitivity [23]. Elhadi and Agam provided
a new LFR network that can be used to analyse and assess the
performance of structures and attributes clustering methods
[24]. In [25], a new kind of hierarchical LFR network (RB-
LFR) was developed by Yang et al. to generate hierarchical
community structures that appear in social, biological, and
technical systems. Le et al. devised a Generalized LFR
(GLFR) network with heterogeneous community mixing
fractions, avoiding a fixed fraction of intercommunity links
for every community in the same network [26]. Muscoloni
and Cannistraci proposed a nonuniform Popularity-Simi-
larity-Optimization model (nPSO) to generate realistic
complex networks with communities in the hyperbolic space
[27].

-ough many novel artificial synthetic benchmarks have
been devised, it is still hard for them to satisfy the increasing
demand of algorithm performance evaluation in terms of
accuracy and functionality. First, there are still great dif-
ferences between available artificial benchmarks and real-life
networks in structural characteristics, which may seriously
affect the performance of algorithms. Taking LFR bench-
marks for example, during the process of network con-
struction, structural characteristic parameters are set
according to some fixed priority [14]. -erefore, each pa-
rameter cannot be adjusted independently, and low-priority
microscale characteristics are often overlooked or sacrificed.
-e results of algorithm evaluation obtained on these
benchmarks may not provide us accurate and reliable ref-
erences for studying real-life networks [1, 3]. Second, the
existing real-life benchmarks cannot be directly used to
estimate the robustness of an algorithm. As the number of

each real-life network is only one and the community in-
tensity within the network cannot be adjusted, it is im-
possible to know how the detection accuracy of the
algorithm changes when the network community structure
gradually blurs. -erefore, in the existing research studies,
the robustness evaluation of algorithms still needs to rely on
synthetic benchmarks, such as GN and LFR, which can be
constructed as a series of networks with gradually varied
community intensity [12, 13, 28–31]. However, the modi-
fication of mesoscale structures (i.e., community) in existing
synthetic benchmarks, often changes with microscale
characteristics, which affects the accuracy of robustness
assessment.

To address the issue, in this study we design a new
benchmark construction method by the framework of
directly rewiring edges of real-life networks, which has not
received much attention in studies of community detec-
tion. Based on the rewiring-edge method, two kinds of
novel benchmarks with special functions are proposed as
follows.

First, a set of synthetic benchmarks can be constructed
based on a single real-life network of any kind, which can
accurately and stably approximate the microscale and me-
soscale structural characteristics of the original network.-e
new benchmarks provide desired proxies for real-life net-
works and thus making the evaluation of community de-
tection algorithms more accurate. Multiscale structure
characteristic analysis of a real-life network can also be
realized by employing random edge rewiring null models
with different orders in the construction of benchmarks.

Second, a series of synthetic benchmarks with gradually
varied community intensity can be constructed based on a
single real-life network. Specially, the community intensity
in each benchmark can be adjusted independently without
interfering withmicroscale characteristics of the original real
network. -e new benchmarks enable more real-life net-
works to be adopted to evaluate the robustness of com-
munity detection algorithms with higher precision.

From the abovementioned research studies, more kinds
of benchmarks with higher accuracy and functional diversity
can be obtained, providing us more accurate and reliable test
criteria for evaluating community detection algorithms. In
addition, the proposed benchmarks also help to deepen our
understanding and analysis of the structure and functional
characteristics of real-life networks.

2. The Proposed Benchmarks by Rewiring
Edges of a Real-Life Network

2.1. Benchmarks that Accurately Approximate a Real-Life
Network. In experimental tests of community detection
algorithms based on artificial synthetic benchmarks, because
the structure does not accurately reflect the real properties of
nodes and communities found in real-life networks
[14, 15, 23–27], the accuracy and reliability of test results are
affected. In order to obtain benchmarks with structural
characteristics closer to reality, a new class of benchmarks is
designed by directly rewiring edges of the real-life network
according to a constrained rewiring algorithm, which can
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accurately approximate the original network in terms of
micro- and mesoscale characteristics simultaneously.

-e random edge rewiring null model used in the
benchmark construction refers to the randomized synthetic
network generated based on the original real-life network, by
disconnecting all the feasible edges in the network and
reconnecting new edges randomly. -e null model has
properties Pd (termed dK-series), where d� 0, 1 . . ., 4 of Pd
corresponds to k� 0, 1, . . ., 4 of dK-series [32–34]. -e null
model with different orders is able to maintain structural
characteristics of the original real-life network at different
levels. In addition, null models with different orders are
interrelated, i.e., 0k⊇ 1k⊇ 2k· · · (n− 1)k⊇ nk, and any nk null
model contains the characteristics of (n− 1)k null model.
Specifically, 1k null model ensures that the degree distri-
bution of nodes remain unchanged; 2k null model maintains
the joint degree distribution of nodes; 3k null model retains
the same clustering coefficient of all the nodes [32–34].

Constructing this class of real-life benchmarks proceeds
through the steps shown in Algorithm 1. For a real network
Gorigin, if it has n nodes and m edges, we assume that the
number of edges in the original real-life network that
successfully performed the rewiring operation is mrewired,
and the current and maximum number of executions of the
random edge rewiring operation are ntry and nmaxtry, re-
spectively. -e value of nmaxtry is set to be 5m. Let δ be the
threshold value of significant errors between two different
community divisions. After parameter settings, in Step 2, the
community partition of Gorigin is detected by a typical and
efficient community detection algorithm (e.g., CNM [35])
and will be utilized in the following Steps 3 and 4. -en, in
Step 3.1, based on the initial community partition, the
random rewiring process for all the edges of Gorigin is op-
erated according to the random rewiring null model with a
specific order ranging from 1k to 3k [32–34], and then a
random rewiring network Grewired can be obtained. At the
same time, the corresponding microscale characteristic of
the original real-life network Gorigin can be preserved in
Grewired. -e operation of edge rewiring stops when the
number of successfully rewired edges mrewired reaches 2m (m
is the number of edges in the original network). Experi-
mental experience has shown that when the number of
rewired edges Grewired reaches 2m, the main structural
characteristics of Grewired no longer changes strongly as the
number of rewired edges increases, indicating that the
original network has been sufficiently randomized. How-
ever, because each edge rewiring operation may fail, if
mrewired cannot reach 2m, in order to ensure that the network
structure of the generated benchmark is random enough, the
edge rewiring operation will be carried out until the total
number of executions reaches 5m, i.e., ntry � nmaxtry. After
the edge rewiring operation in Step 3.1, based on the initial
community partition, we recalculate the modularity Q and
the fuzzy coefficient μ (i.e., the ratio of the intercommunity
edges and total edges) of the Grewired in Step 3.2. In Step 4,
repeat the same random edge rewiring operation in Step 3.1
to adjust the mesoscale structural characteristics of Grewired.
Since the community partition remains unchanged, the
mesoscale structural characteristic values of Grewired will

fluctuate slightly up and down [33]. By utilizing this fluc-
tuation property, we can get a modified Grewired that is as
close as possible to the Gorigin in mesoscale structure
characteristics. -e adjustment operation stops if the ac-
curacy error of Grewired and Gorigin in terms of community
intensity is less than or equal to the threshold value δ (i.e.,
|Q(Grewired) − Q(Gorigin)|≤ δ or |μ(Grewired) − μ(Gorigin)|≤
δ). If the abovementioned condition cannot be met, the
modified Grewired with Q and μ values closest to the Gorigin
will be selected as the output. Finally, in Step 5, the network
Grewired after adjustment is the output as the final generated
benchmark Gbenchmark, which accurately approximates Gorigin
in terms of mesoscale characteristic as well as the microscale
characteristic with a specific order.

About the benchmark constructing method in Algo-
rithm 1, there are three points that need further explanation
as follows. (1) In the random edge rewiring operation, an
intracommunity edge should still be located in the same
community after rewiring, while an intercommunity edge
should be located between the original two communities
after rewiring. For example, if two intracommunity edges
lintra1 and lintra2 are selected, both of them are disconnected
and another two new intracommunity edges lintra1′ and
lintra2′ are constructed within the same community. However,
if the two selected edges are intercommunity edges linter1 and
linter2, another two new intercommunity edges linter1′ and
lintra2′ will be connected between the same two communities.
(2) Any reconnected edges should meet the specific mi-
croscale characteristic restricted by the rewiring operations.
For example, if 1k null model is selected to construct the
benchmarks, all the reconnected edges should not destroy
the degree distribution of the original network. If the two
newly generated edges cannot meet the condition, they will
not be retained in the benchmark and the current rewiring
operation is considered a failure.-en, the algorithm will try
to randomly rewire another two edges which meets the
constraint until the termination conditions are satisfied. (3)
-ere is no strict requirement for the selection of com-
munity detection algorithm in Algorithm 1. From the
perspective of preserving the mesoscale characteristic of the
original real-life network, the selection of different com-
munity detection algorithms has little impact on the per-
formance of the generated benchmarks. Any kinds of
community detection algorithms with relatively higher
performance on the target real-life network can be selected.
However, in order to make the community partition rep-
resent the ground truth of the original real-life network as
accurately as possible and thus ensuring the quality of the
generated benchmarks, it is necessary to choose the com-
munity detection algorithm with relatively good perfor-
mance on the target real-life network. Moreover, when the
precisions of several algorithms are almost the same, the
algorithm with low time complexity is preferred to speed up
the benchmark construction.

-e computational complexity of Algorithm 1 mainly
depends on Steps 2-3. -e time complexity of the parameter
settings in Step 1 can be negligible. In addition, the com-
plexity of Step 4 should be negligible compared to Steps 2-3
because there are usually very few edges to adjust, especially

Complexity 3



in the 3k benchmarks. In Step 2, the computational com-
plexity is closely related to the community detection algo-
rithm adopted, such as O(n log2n) for CNM [35]. Step 3
consists of two substeps with a different time complexity. In
the first substep of random edge rewiring, because the
microscale structural characteristics calculation involves
only a small number of local nodes around the newly
reconnected edges, the complexity can be roughly estimated
as O(m). In the second substep, the mesoscale structural
characteristics can be calculated in time O(n+m) [1].
-erefore, the total time complexity of Algorithm 1 can be
estimated as O(n log2n) +O(m) +O(n+m), which can be
further simplified to O(n log2n) +O(n+m).

-e performance of the abovementioned benchmark is
tested. Four real-life networks with different types and sizes
are employed as the original real-life network, respectively,
including a social network (i.e., Karate [36]), a biological

network (i.e., an anatomical connection network of the
macaque cortex [37, 38]), an engineering network (i.e.,
PowerGrid [39]), and a communication network (i.e., PGP
[40]). Among the classical datasets, PowerGrid and PGP
are relatively large, where the PowerGrid network has 4941
nodes and 6594 edges and the PGP network has 10680
nodes and 24316 edges. In the construction of the proposed
1k–3k benchmarks, the community structure detected by
the CNM algorithm [35] is adopted as the input for Al-
gorithm 1. -e traditional GN and LFR, and two kinds of
up-to-date benchmark construction methods (HLFR and
nPSO), are adopted for performance comparison. On each
real-life network, each kind of benchmark construction
method is conducted to generate 100 benchmarks, re-
spectively, adopting the optimal parameter settings ob-
tained from the original real-life network to approximate
the actual structural characteristics as accurately as

Input: A real-life network Gorigin
Output: Synthetic benchmark Gbenchmark

(1) Parameter Settings
Set mrewired to represent the current total number of edges that are successfully rewired. Set ntry and nmaxtry (nmaxtry � 5m) to

represent the current execution times and maximum execution times of the random edge rewiring operation respectively. -e
threshold value of significant error between community structures is set to be δ.

(2) Discover the community partition of the original real-life network Gorigin.
(3) Initial Benchmark Construction

3.1 Random edge rewiring operation
while mrewired < 2m and ntry < nmaxtry do
Randomly select two edges lintra1 and lintra2 within a random community of Gorigin or two edges linter1 and linter2 between two

random communities of Gorigin.
ntry � ntry + 1
If lintra1 and lintra2 are selected do

Disconnect edges lintra1 and lintra2, and construct two new intracommunity edges lintra1′ and lintra2′ that meet the topological
characteristic requirements of the selected 1k–3k null model within the same community.

If the above operation is successful then
mrewired � mrewired + 2

else
continue

end if
else if linter1 and linter2 are selected do

Disconnect edges linter1 and linter2, and construct two new intercommunity edges linter1′ and linter2′ that meet the topological
characteristic requirements of the selected 1k–3k null model between the same two communities.

If the above operation is successful then
mrewired � mrewired + 2

else
continue

end if
end if

end while
-e random rewiring network Grewired is generated.
3.2 Mesoscale Structure Characteristic Calculation
Calculate the modularity Q and the fuzzy coefficient μ of the Grewired obtained in Step 3.1.

(4) Microadjustment of Mesoscale Structure Characteristics
while|Q(Grewired) − Q(Gorigin)|> δand|μ(Grewired) − μ(Gorigin)|> δdo

Repeat the random edge rewiring operation in Step 3.1 by using the same order null model.
Adjust the network structure of Grewired slightly to approximate the mesoscale characteristic of Gorigin as accurately as possible.

end while
(5) Output the Grewired as the generated benchmark Gbenchmark.

ALGORITHM 1: Constructing the benchmarks that accurately approximate a real-life network.
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possible. Structural characteristics of the benchmarks
generated by all the methods on each real-life network are
summarized in Tables 1–4, respectively. All of the
benchmarks are compared on the basis of microscale
(average degree <k>, assortativity coefficient r, and clus-
tering coefficient c), mesoscale (the number of community
Cn and modularity Q), and macroscale (average shortest
path length l) characteristics. In Tables 1–4, the values of
structural characteristics presented in the first row corre-
spond to each original real-life network. -e values shown
in the other rows correspond to seven kinds of generated
benchmarks, where each data represents the average of the
characteristic values calculated on the 100 benchmarks and
the data in parentheses represents the corresponding
standard deviation. In addition, the average values of
modularity Q and community number Cn of all kinds of
generated benchmarks are calculated based on the com-
munity structures discovered by the same community
detection algorithm (i.e., CNM). For the 1k–3k bench-
marks, it is recommended to use the same community
detection algorithm for the performance evaluation as that
used in the construction. It can be more accurate to reflect
the similarity between the obtained benchmarks and the
original real-life network in terms of the community
structure characteristics.

As we can see from Table 1, the structural characteristics
of the generated GN, LFR, HLFR, and nPSO benchmarks are
significantly different from those of the original Karate
network. GN maintains the same number of nodes and
communities. LFR maintains the same number of nodes and
modularity value and shows a different performance to the
original Karate network in the other structural character-
istics. HLFR and nPSO can also maintain the same number
of nodes and communities, and they are closer to the original
Karate network in terms of clustering coefficient and
modularity. In the process of constructing the above-
mentioned four kinds of benchmarks, although we set the
control parameters strictly according to the characteristics of
the original Karate network, the generated benchmarks are
not guaranteed to have the same number of edges.-e 1k–3k
benchmarks generated by Algorithm 1 show significant
performance advantages in almost all the structural char-
acteristics listed in Table 1, and they are able to accurately
approximate most of the structural characteristics of the
original Karate network. Furthermore, by increasing the
order of null models, the structural characteristics of con-
structed benchmarks are more and more similar to those of
the original network. Specially, when the order is greater
than or equal to 2k, the generated benchmarks can accu-
rately approximate all the microscale and mesoscale char-
acteristics, providing desired proxies for the original
network. In addition to Table 1, the results in Figure 1 also
prove the advantages of the proposed 1k–3k benchmarks in
accurately approximating the degree distribution of the
original Karate network.

Experiment results in Tables 2–4 further prove the
performance advantage of the proposed 1k–3k benchmarks
in approaching the structural characteristics of real-life
networks with different types and sizes. In addition, the

proposed benchmarks have advantages of network diver-
sification, that is, based on a single real-life network, mul-
tiple synthetic benchmarks that are not identical but have the
same high-precision characteristics can be constructed. It
helps us to obtain more accurate and reliable evaluation
results for any community detection algorithm. Moreover,
by comparing the benchmarks with different orders, mul-
tiscale structural characteristics of the original network can
be further analysed.

In order to further clarify the difference between the
generated benchmarks and the original real network in
terms of network structure, we calculated the average ratio of
the number of shuffled edges in the generated 1k–3k
benchmarks on all the real-life networks in Table 5. As can be
seen from Table 5, in the 1k benchmarks generated based on
all the real-life networks, the number of shuffled edges is
always the highest, and the average shuffled-edge ratio in the
large-scale network PowerGrid reaches 89.28%. Further-
more, in each real-life network, as the order of the null
model increases, the average number of shuffled edges in the
corresponding benchmarks decreases. It means that the
diversity of generated benchmarks is decreasing because
fewer edges can be rewired, making the network structures
similar to the original network. However, even for the 3k
benchmarks, there is still a certain percentage of edges that
have been be rewired. Especially, in the PowerGrid network,
still more than 62% edges have been reconnected. -e
abovementioned experimental results show that the pro-
posed benchmarks can actually lead to significant changes in
the original real-life networks, providing diversified test
networks for performance evaluation of community de-
tection algorithms.

2.2. Benchmarks with Varying Community Intensity.
Real-life benchmarks can be utilized to evaluate the accuracy
of community detection algorithms. However, the robust-
ness of algorithms can hardly be tested on real-life bench-
marks directly because we do not know exactly how well the
algorithms will perform if the community intensity of the
original network changes. -erefore, in most previous
studies, evaluating the robustness of a community detection
algorithm can only be carried out on artificial synthetic
benchmarks (e.g., GN and LFR) [8–13, 28–31], whose
structural characteristics differ significantly from real-life
networks [14, 15, 23–27].

To solve the abovementioned problems, a new class of
benchmarks with independently modified community in-
tensity is constructed based on a real-life network. A set of
synthetic benchmarks with gradually modified community
intensity can be achieved by directly rewiring edges. Spe-
cially, in all of these benchmarks, the community intensity
can be both increased and decreased, and at the same time,
other main structural characteristics of the original real-life
network can be preserved as much as possible.

Constructing the benchmarks proceeds through the
steps as follows. For a real-life network of any kind, we first
divide it into multiple communities by employing a typical
community detection algorithm (e.g., Infomap [41]). -en,
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with the original microscale structures (e.g., degree se-
quence) unmodified, the intracommunity and intercom-
munity edges are randomly reconnected to adjust the
significance of community structures. For example, for a
simple network with two communities shown in Figure 2(a),

in order to enhance community structures, a pair of in-
tercommunity edges A1–B1 and A5–B3 are randomly se-
lected to disconnect. At the same time, the corresponding
two intracommunity edges A1–A5 and B1–B3 are built with
the degrees of four nodes unchanged. As we can see from the

Table 1: Structural characteristics of the original Karate network and seven kinds of generated benchmarks. Each data represents the average
value of the characteristic calculated on 100 generated benchmarks and the data in parentheses represents the corresponding standard
deviation. Note that the best results closest to the original karate network on each characteristic are highlighted in bold.

Networks n m <k> r c Cn Q l
Karate 34 78 4.59 -0.48 0.57 4 0.42 2.41
GN 34 89 5.24 (±0.18) −0.16 (±0.07) 0.12 (±0.03) 4 (±0.00) 0.24 (±0.01) 2.20 (±0.03)
LFR 34 79 4.65 (±0.38) −0.29 (±0.08) 0.44 (±0.11) 3 (±0.49) 0.42 (±0.05) 2.42 (±0.08)
HLFR 34 66 3.91 (±0.62) −0.22 (±0.11) 0.35 (±0.16) 4 (±1.17) 0.49 (±0.06) 2.85 (±0.19)
nPSO 34 65 3.82 (±0.01) −0.15 (±0.02) 0.43 (±0.11) 4 (±0.80) 0.52 (±0.02) 2.73 (±0.05)
1k benchmark 34 78 4.59 (±0.00) −0.47 (±0.01) 0.57 (±0.03) 4 (±0.00) 0.42 (±0.00) 2.14 (±0.03)
2k benchmark 34 78 4.59 (±0.00) −0.48 (±0.00) 0.57 (±0.01) 4 (±0.00) 0.42 (±0.00) 2.39 (±0.01)
3k benchmark 34 78 4.59 (±0.00) −0.48 (±0.00) 0.57 (±0.00) 4 (±0.00) 0.42 (±0.00) 2.41 (±0.01)
Note. n: number of nodes; m: number of edges; <k>: average degree; r: assortativity coefficient; c: clustering coefficient; Cn: community number; Q:
modularity; and l: average shortest path length. Parameters of GN benchmarks: n: 34; <k>: 4.59; Cn: 4; and Zout: 2. Parameters of LFR benchmarks: n: 34; <k>:
4.59; maxk: 17; mu: 0.20; minc: 5; and maxc: 12. Parameters of HLFR benchmarks: n: 34; <k>: 4.59; maxk: 17; mu1: 0.09; minc: 5; maxc: 6; minC: 11; maxC: 12;
and mu2: 0.56. Parameters of nPSO benchmarks: n: 34; <k>: 4.59; Cn: 4; T: 0.1; gamma: 3; and plot_flag: 1. Parameters of 1k–3k benchmarks: n: 34;m: 78; and
δ: 0.01.

Table 2: Structural characteristics of the original anatomical connection network of the macaque cortex and seven kinds of generated
benchmarks. Each data represents the average value of the characteristic calculated on 100 generated benchmarks and the data in pa-
rentheses represents the corresponding standard deviation. Note that the best results closest to the original karate network on each
characteristic are highlighted in bold.

Networks n m <k> r c Cn Q l
Anatomical connection 71 438 12.34 0.09 0.50 4 0.39 2.24
GN 71 538 15.02 (±0.16) −0.14 (±0.04) 0.22 (±0.01) 4 (±0.00) 0.23 (±0.01) 1.82 (±0.01)
LFR 71 427 12.05 (±0.42) 0.01 (±0.13) 0.42 (±0.02) 4 (±0.75) 0.45 (±0.02) 2.06 (±0.05)
HLFR 71 405 11.43 (±0.43) −0.13 (±0.01) 0.39 (±0.02) 2 (±0.40) 0.50 (±0.05) 2.12 (±0.04)
nPSO 71 405 11.41 (±0.00) 0.08 (±0.03) 0.56 (±0.01) 4 (±0.00) 0.46 (±0.01) 2.12 (±0.02)
1k benchmark 71 438 12.34 (±0.00) 0.04 (±0.02) 0.46 (±0.01) 4 (±0.00) 0.38 (±0.01) 2.17 (±0.01)
2k benchmark 71 438 12.34 (±0.16) 0.09 (±0.00) 0.50 (±0.01) 4 (±0.00) 0.39 (±0.01) 2.23 (±0.01)
3k benchmark 71 438 12.34 (±0.16) 0.09 (±0.00) 0.50 (±0.00) 4 (±0.00) 0.39 (±0.00) 2.24 (±0.01)
Note. n: number of nodes; m: number of edges; <k>: average degree; r: assortativity coefficient; c: clustering coefficient; Cn: community number; Q:
modularity; and l: average shortest path length. Parameters of GN benchmarks: n: 71; <k>: 12.34; Cn: 4; and Zout: 6. Parameters of LFR benchmarks: n: 71; <k>:
12.34; maxk: 28; mu: 0.27; minc: 7; and maxc: 28. Parameters of HLFR benchmarks: n: 71; <k>: 12.34; maxk: 28; mu1: 0.12; minc: 7; maxc: 16; minC: 20; maxC:
28; andmu2: 0.59. Parameters of nPSO benchmarks: n: 71; <k>: 12.34; Cn: 4; T: 0.1; gamma: 3; and plot_flag: 1. Parameters of 1k–3k benchmarks: n: 71;m: 438;
and δ: 0.01.

Table 3: Structural characteristics of the original PowerGrid network and seven kinds of generated benchmarks. Each data represents the
average value of the characteristic calculated on 100 generated benchmarks and the data in parentheses represents the corresponding
standard deviation. Note that the best results closest to the original karate network on each characteristic are highlighted in bold.

Networks n m <k> r c Cn Q l
PowerGrid 4941 6594 2.67 0.003 0.08 40 0.94 18.99
GN 4941 12989 5.26 (±0.01) −0.02 (±0.01) 0.01 (±0.01) 40 (±0.00) 0.44 (±0.01) 5.43 (±0.01)
LFR 4941 5501 2.23 (±0.01) −0.08 (±0.01) 0.04 (±0.01) 72 (±15.85) 0.97 (±0.01) 14.46 (±0.01)
HLFR 4941 4827 1.95 (±0.02) 0.04 (±0.01) 0.01 (±0.01) 74 (±18.00) 0.97 (±0.01) 15.21 (±0.01)
nPSO 4941 4940 2.00 (±0.01) −0.05 (±0.01) 0.00 (±0.00) 70 (±3.98) 0.97 (±0.01) 9.80 (±0.21)
1k benchmark 4941 6594 2.67 (±0.00) 0.004 (±0.01) 0.02 (±0.01) 40 (±0.00) 0.93 (±0.01) 18.31 (±0.48)
2k benchmark 4941 6594 2.67 (±0.00) 0.003 (±0.00) 0.04 (±0.01) 40 (±0.00) 0.93 (±0.01) 18.51 (±0.40)
3k benchmark 4941 6594 2.67 (±0.00) 0.003 (±0.00) 0.08 (±0.00) 40 (±0.00) 0.94 (±0.01) 18.99 (±0.07)
Note. n: number of nodes; m: number of edges; <k>: average degree; r: assortativity coefficient; c: clustering coefficient; Cn: community number; Q:
modularity; and l: average shortest path length. Parameters of GN benchmarks: n: 4941; <k>: 2.67; Cn: 40; and Zout: 0.09. Parameters of LFR benchmarks: n:
4941; <k>: 2.67; maxk: 19; mu: 0.0343; minc: 18; andmaxc: 207. Parameters of HLFR benchmarks: n: 4941; <k>: 2.67; maxk: 11; mu1: 0.006; minc: 18; maxc: 129;
minC: 131; maxC: 207; and mu2: 0.62. Parameters of nPSO benchmarks: n: 4941; <k>: 2.67; Cn: 40; T: 0.1; gamma: 3; and plot_flag: 1. Parameters of 1k–3k
benchmarks: n: 4941; m: 6594; and δ: 0.01.
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new benchmark after reconnection shown in Figure 2(b), the
community density has been obviously enhanced. Repeating
the abovementioned reconnection operation until no
existing edges can be rewired, we obtain a set of synthetic
benchmarks with community structures gradually
strengthened, and at the same time maximally maintaining
the microscale characteristic of the original network. On the

contrary, we can also get a series of benchmarks with
gradually weakened community structures by employing the
method of edge rewiring, as shown in Figure 3.

About the second kind of benchmark construction
method, there are some points that need further explanation
as follows. (1)-e abovementioned benchmark constructing
method is only applicable to the unweighted and undirected

Table 4: Structural characteristics of the original PGP network and seven kinds of generated benchmarks. Each data represents the average
value of the characteristic calculated on 100 generated benchmarks and the data in parentheses represents the corresponding standard
deviation. Note that the best results closest to the original karate network on each characteristic are highlighted in bold.

Networks n m <k> r c Cn Q l
PGP 10680 24315 4.55 0.24 0.27 110 0.88 7.49
GN 10680 23468 4.39 (±0.01) 0.01 (±0.02) 0.01 (±0.01) 110 (±0.00) 0.74 (±0.01) 7.93 (±0.01)
LFR 10680 19035 3.56 (±0.10) −0.29 (±0.02) 0.16 (±0.01) 85 (±3.96) 0.91 (±0.01) 7.20 (±0.04)
HLFR 10680 32485 6.08 (±0.10) −0.11 (±0.02) 0.14 (±0.01) 36 (±1.50) 0.93 (±0.01) 5.64 (±0.09)
nPSO 10680 21357 4.00 (±0.00) 0.01 (±0.05) 0.38 (±0.01) 57 (±3.72) 0.95 (±0.01) 6.72 (±0.14)
1k benchmark 10680 24315 4.55 (±0.00) 0.15 (±0.01) 0.09 (±0.02) 110 (±0.00) 0.86 (±0.01) 6.79 (±0.01)
2k benchmark 10680 24315 4.55 (±0.00) 0.24 (±0.00) 0.14 (±0.03) 110 (±0.00) 0.87 (±0.01) 7.22 (±0.01)
3k benchmark 10680 24315 4.55 (±0.00) 0.24 (±0.00) 0.27 (±0.00) 110 (±0.00) 0.88 (±0.01) 7.47 (±0.01)
Note. n: number of nodes; m: number of edges; <k>: average degree; r: assortativity coefficient; c: clustering coefficient; Cn: community number; Q:
modularity; and l: average shortest path length. Parameters of GN benchmarks: n: 10680; <k>: 4.55; Cn: 110; and Zout: 1. Parameters of LFR benchmarks: n:
10680; <k>: 4.55; maxk: 194; mu: 0.08; minc: 6; and maxc: 664. Parameters of HLFR benchmarks: n: 10680; <k>: 4.55; maxk: 72; mu1: 0.04; minc: 6; maxc: 97;
minC: 107; maxC: 664; and mu2: 0.79. Parameters of nPSO benchmarks: n: 10680; <k>: 4.55; Cn: 110; T: 0.1; gamma: 3; and plot_flag: 1. Parameters of 1k–3k
benchmarks: n: 10680; m: 24315; and δ: 0.01.

Table 5: -e average ratio of the number of actually changed edges in the generated 1k–3k benchmarks on four real-life networks with
different types and sizes.

Networks Karate (%) Anatomical connection (%) PowerGrid (%) PGP (%)
1k benchmarks 21.79 28.77 89.28 61.11
2k benchmarks 14.10 16.21 90.14 16.84
3k benchmarks 7.69 1.83 62.09 5.01
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Figure 1: Degree distribution of the original Karate network and seven kinds of generated benchmarks.
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networks; the influence of the weight information and di-
rectional characteristics of edges on the benchmark con-
struction are not considered. (2) -ere is no strict
requirement for the selection of community detection al-
gorithm in the first step. From the perspective of providing a
reference standard for constructing a series of benchmarks
with gradually changed community intensity, the selection
of different community detection algorithms has little im-
pact on the generated benchmarks. -e functionality of the
generated benchmarks (i.e., evaluating the robustness of
different community detection algorithms) will not be af-
fected. Anyway, in order to keep the mesoscale characteristic
of the original real-life network as accurately as possible, we
try to choose the community detection algorithms with
relatively higher performance on real-life networks. More-
over, when the precisions of several algorithms are almost
the same, the algorithm with low time complexity is pre-
ferred to speed up the benchmark construction.

-e computational complexity of the abovementioned
method mainly depends on the two steps in the benchmark
construction. In the first step, the computational complexity
is determined by the community detection algorithm
adopted, such as O(n(n+m)) for Infomap. In the second
step, there are two different kinds of random edge rewiring
operations with a different computational complexity.
Specifically, for the operation to strengthen the community
structure, the complexity is no more than the total number
of edges between any two communities. For the operation to
weaken the community structure, the complexity is no more
than the total number of edges within all communities.
-erefore, the computational complexity of the second step
is less than O(m). To sum up, the computational complexity
of the benchmark construction method can be roughly
estimated as O(n(n+m)) +O(m) when using Infomap,
which can be further simplified to O(n(n+m)).

-e performance of the new benchmark construction
method is tested on two kinds of real-life networks with
different types and sizes, including a social network (i.e.,
American college football [21]) and a biological network
(i.e., an anatomical connection network of the macaque
cortex [37, 38]). For the Football network, by using the initial
community partition detected by DECD [42] and the 1k
random edge rewiring null model, 230 benchmarks with
different community structures are generated which have
gradually modified community intensity. Among all the
benchmarks, the community intensity of the first 30
benchmarks is stronger than that of the original Football
network, while the subsequent 199 benchmarks have weaker
community intensity. In addition, the 1k microscale char-
acteristic of all the 230 benchmarks (i.e., degree distribution)
is the same as the original network. -e generated bench-
marks are utilized to evaluate the accuracy and robustness of
several typical community detection algorithms, including
KClique [43], CNM [35], GN [44], LPA [45], LENC [46],
Infomap [41], and DECD [42]. Modularity (Q) [47] and
Normalized Mutual Information (NMI) [48] are used to
evaluate the quality of community detection algorithms.
Statistical results are presented in Figures 4 and 5, where
each data represents an average optimal value of Q and NMI

obtained by each algorithm after 10 independent runs on
each benchmark.

Figure 4 exhibits the accuracy variation of detection
results achieved by each algorithm as the ambiguity of
community structure increases. -e position where the x-
coordinate is zero represents the detection results on the
original network. As we can see, taking this position as the
baseline, continuously enhancing the community intensity
(the value of x-coordinate ranges from −30 to 0) has no
significant impact on detection results because the modu-
larity values obtained by all the algorithms remain basically
unchanged. On the contrary, continuously weakening the
community intensity (the value of x-coordinate ranges from
0 to 200), the accuracy of all the algorithms significantly
decreases, among which KClique, LPA, and Infomap show
the most dramatic performance degradation, and all of them
cannot get meaningful community divisions when the
number of reconnected edges exceeds 100. By contrast,
CNM, DECD, LENC, and GN show a continuous and
relatively stable downward trend in accuracy. When the
community structure is fuzzy to a certain extent (the x-
coordinate is greater than 120), the detection accuracy of the
four algorithms is basically unchanged at a certain level.
According to the abovementioned experimental results, we
can see that compared with KClique, LPA, and Infomap
algorithms, CNM, DECD, LENC, and GN show the stronger
robustness because the accuracy of their detection perfor-
mance is less affected by modifying the community
structures.

In Figure 5, the accuracy variation of community
detection results achieved by all of the seven algorithms
are further evaluated by the NMI index. -e community
partition detected by the DECD on the original real
network is used as the ground truth to calculate NMI. As
can be seen from Figure 5, as the ambiguity of community
structure increases, the NMI values obtained by all the
algorithms also show a trend of gradual decline, indicating
that the accuracy of all the algorithms gradually decreases.
-rough further careful observation, it is found that when
the community intensity increases gradually, the NMI
values of the seven community detection algorithms are
basically unchanged, indicating that all the algorithms
have good stability when the community structure is
obvious. However, when the community intensity is
gradually weakened, the NMI values of GN, DECD, CNM,
and LENC algorithms decline gently, while the NMI
values of KClique, LPA, and Infomap algorithms decline
sharply, so their robustness is relatively poor. Among the
seven kinds of algorithms, except GN algorithm, the
robustness of most algorithms under NMI is basically the
same as that under Q. -e robustness and accuracy of GN
underNMI is obviously better than that underQ. -is may
be because the NMI index is sensitive to the number of
clusters of the detected partition and may attain larger
values when the number of clusters is large [1]. In our
experiments, we find that the detection results of GN
contain many communities with a small scale. -e
abovementioned experimental results show that the
generated benchmarks can effectively evaluate the
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robustness of each algorithm when different performance
indexes are used. -e diversified evaluation results under
different indexes (Q and NMI) also make the robustness
evaluation of community detection algorithms more
comprehensive and reliable.

In order to further prove that when the community
intensity of benchmarks gradually modifies from strong to
weak, other main structural characteristics of the original
real-life network can be preserved as much as possible. -e

performance variation of the benchmarks with different
orders in four typical micro- and macrocharacteristics are
plotted in Figure 6. In order to facilitate performance
comparison, based on the same original Football network,
two sets of benchmarks are constructed by using the random
edge rewiring model with different orders. -e benchmarks
generated based on 1k null model is represented by red line,
and the benchmarks generated based on 2k null model is
represented by blue line. -e blue lines stop when the
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Figure 2: -e operation of edge rewiring for strengthening community structures.
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Figure 5: -e average optimal value of NMI obtained by typical community detection algorithms on a set of benchmarks with gradually
modified community intensity, which are generated based on the American College Football (ACF) network. Each data point is obtained
based on averaging 10 independent runs of each algorithm on each benchmark.-e negative and positive values of the abscissa represent the
number of rewired edges when the community structure is strengthened and weakened, respectively.
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number of rewired edges achieves 180 because the number
of benchmarks generated based on the 2k null model is not
as large as that of the 1k null model.

Experimental results in Figure 6 show that, in the 1k
benchmarks, only one microscale characteristic of the
original Football network (i.e., average degree <k>) can be
kept strictly within each benchmark network. In contrast, in
the 2k benchmarks, both of the average degree <k> and the
assortativity coefficient r of the original Football network can
be strictly maintained. In the two sets of benchmarks, al-
though the 3k microscale characteristic (i.e., clustering co-
efficient c) and the average shortest path length l change as
the number of rewired edges increases, the range of their
variation is limited. When more structure characteristics of
the original real network remain unchanged, the robustness
evaluation of community detection algorithms suffers less
interference, thus ensuring the accuracy and reliability of

evaluation results. However, the 1k benchmark has greater
diversity than high-order models, which helps to completely
reflect the variation tendency of the algorithm performance
when the community intensity varies from strong to weak.

Secondly, on the biological brain network (i.e., an an-
atomical connection network of the macaque cortex), by
using the initial community partition detected by DECD
[42] and the 1k random edge rewiring null model, 170
benchmarks with different community structures are gen-
erated which have gradually modified community intensity.
Among all the real-life benchmarks, the community in-
tensity of the first 20 benchmarks is stronger than that of the
original Football network, while the subsequent 149
benchmarks have weaker community intensity. Robustness
of seven well-known community detection algorithms, in-
cluding GN [44], LPA [45], LENC [46], Infomap [41],
Louvain [49], Walktrap [50], and DECD [42], are tested on
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Figure 6: Structural characteristic of the benchmarks generated based on the football network, including average degree <k>, assortativity
coefficient r, clustering coefficient c, and average shortest path length l. Red lines correspond to the benchmarks generated based on the 1k
null model, and blue lines correspond to the benchmarks generated based on the 2k null model. -e negative and positive values of the
abscissa represent the number of rewired edges when the community structure is strengthened and weakened, respectively.
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Figure 8: -e average optimal value of NMI obtained by typical community detection algorithms on a set of benchmarks with gradually
modified community intensity, which are generated based on the anatomical connection network of macaque cortex. Each data point is
obtained based on averaging 10 independent runs of each algorithm on each benchmark. -e negative and positive values of the abscissa
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the benchmarks. -e performance of all the algorithms
evaluated by the indexes of Q and NMI are shown in Fig-
ures 7 and 8, respectively.

-e experimental results in Figure 7 show that when the
community structure is clear, the detection results of Q for
most algorithms are stable, while only LPA algorithm
fluctuates greatly. However, when the community structure
is gradually blurred, the performance of Infomap and LPA
declines almost linearly. When the number of rewired edges
is greater than 10, both of them can hardly get effective
detection results. In contrast, the algorithms of Louvain,
DECD, LENC, and Walktrap show strong stability. Al-
though their precision decreases with the gradual weakening
of community structures, the performance changes relatively
gently. Compared with the values ofQ, the evaluation results
under the NMI index are significantly different. -e

community partition detected by DECD on the original real
network is used as the ground truth to calculate NMI. As
shown in Figure 8, the value of NMI obtained by GN is not
high, but basically remains unchanged when the community
structure becomes weak. Algorithms of Walktrap, Louvain,
DECD, and LENC show strong robustness under Q index,
but theirNMI values drop significantly when the community
structure is weakened. In addition, the precision ofWalktrap
becomes better than that of Louvain and LENC when the
number of rewired edges is greater than 30. -e experi-
mental results in Figures 7 and 8 show that on the
benchmarks generated based on the biological brain net-
work, the robustness of different kinds of community de-
tection algorithms can also be effectively evaluated.

In addition, in Figure 9, we also plot the performance
variation of the generated benchmarks in four typical micro-
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Figure 9: Structural characteristic of the benchmarks generated based on the anatomical connection network of the macaque cortex,
including average degree <k>, assortativity coefficient r, clustering coefficient c, and average shortest path length l. Red lines correspond to
the benchmarks generated based on the 1k null model, and blue lines correspond to the benchmarks generated based on the 2k null model.
-e negative and positive values of the abscissa represent the number of rewired edges when the community structure is strengthened and
weakened, respectively.
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and macrocharacteristics and investigate the influence of the
variations in mesoscale characteristic (i.e., community in-
tensity) on the other main structural characteristics. Based
on the original anatomical connection network, two sets of
benchmarks are generated based on the 1k and 2k null
models, respectively. In Figure 9, they are represented by red
and blue lines, respectively. As shown in Figure 9, the blue
lines stop when the number of rewired edges achieves 80
because the number of benchmarks generated based on the
2k null model is not as large as the number of benchmarks
generated based on the 1k null model.

Experimental results in Figure 9 show that the 1k
benchmarks only preserve the original average degree <k>,
but the 2k benchmarks can further maintain the assortativity
coefficient r. In the two sets of benchmarks, although the 3k
microscale characteristic (i.e., clustering coefficient c) and
the average shortest path length l changes as the number of
rewired edges increases, the range of their variations is also
limited. If the benchmarks are generated by using a null
model with a higher order (e.g., 3k null model), they are able
to preserve more structure characteristics of the original
real-life network, but the diversity of benchmarks will be
reduced at the same time. By contrast, the 1k-2k benchmarks
are more suitable to be used for evaluating robustness of
community detection algorithms.

-e abovementioned experiments suggest that the
proposed second kind of benchmarks can not only effec-
tively evaluate the accuracy of community detection al-
gorithms but also directly detect their robustness. In
addition, because the microscale characteristic of the
original real-life network can be maintained in all the
constructed benchmarks as much as possible, the detection
performance is mainly affected by the variation of com-
munity structures, so evaluating the robustness of com-
munity detection algorithms suffers less interference and
can be more accurate.

Moreover, existing real-life benchmarks of community
detection are mostly social networks because the actual
community division of these networks is usually known.-e
prior community information is not required in the
benchmark construction process, so more types of real-life
networks, such as biological networks, engineering net-
works, and communication networks, can be used to build
benchmarks for community detection. As a result, the
performance evaluation of algorithms can be more com-
prehensive and reliable, and our analysis of community
structural characteristics for different types of real networks
will also be more in-depth.

3. Conclusions

In summary, we present a benchmark constructing method
based on edge rewiring of real-life networks, based on which
two kinds of special functions are designed. -e new pro-
posed benchmarks can not only make the performance
evaluation of community detection algorithms more accu-
rate and reliable but also help to deepen our analysis of
community structures and functional characteristics of real-
life networks.

Among the newly designed two kinds of benchmarks,
the first kind can accurately approximate the microscale and
mesoscale structural characteristics of the original network,
and thus making the algorithm evaluation more accurate
and realizing performance analysis of a real network in
different microscale orders. -e second kind is able to in-
dependently modify the community intensity in each gen-
erated benchmark, without interfering with microscale
characteristic of the original network, and thus evaluating
the robustness of detection algorithms can be more accurate.

-e proposed methods of constructing benchmarks can
be applied to any kind of real-life networks because no prior
community structure information is required. -erefore,
more types of real-life networks can be used to construct
benchmarks, making the performance evaluation of com-
munity detection algorithms more comprehensive and re-
liable. At the same time, the community structural
characteristics of different types of real-life networks will
also be further studied. In the future work, we will further
explore whether they can be extended to build real-life
benchmarks in community detection of weighted [47], di-
rected [51], and signed networks [52].
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