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Nonlinear time series denoising is the prerequisite for extracting effective information from observation sequence. An effective
chaotic signal denoising method not only has a good signal-to-noise ratio (SNR) enhancement performance, but also can remain
as a good unpredictable denoised signal. However, the inherent characteristics of chaos, such as extreme sensitivity to initial values
and broadband spectrum, pose challenges for noise reduction of polluted chaotic signals. To address these issues, an adaptive
smoothing multiscale morphological filtering (ASMMF) is proposed to reconstruct chaotic signals. In the process of noise
reduction for contaminated chaotic signals, firstly, a multiscale morphological filter is constructed adaptively according to the
multiscale permutation entropy (MPE) of morphological filter residuals, and the contaminated signals are filtered. Secondly, the
weight coefficients of scale structural element are calculated by the residual sum of squares operation, and the chaotic signals are
reconstructed. Finally, the resampled filter signals are smoothed by cubic B-spline interpolation operation. In the experiment, the
Lorenz signal with white Gaussian noise, the measured sunspot, and the chaotic vibration signal are reconstructed by four
comparison methods. 0e test results show that the proposed ASMMF method has obvious advantages in noise suppression and
topological trajectory restoration.

1. Introduction

Chaos is a seemingly random irregular motion that occurs in a
deterministic system [1]. It is vital to preprocess observation
data to effectively extract desired chaotic information. In the
process of analyzing the existing chaotic phenomena, the
measured chaotic behavior is susceptible to noise interference.
0erefore, it is desirable to preprocess the noise of observation
data without distorting the dynamic characteristics of under-
lying signals [2, 3]. Owing to chaotic signals usually having a
broadband spectrum that overlaps with the spectrum of noise
[4], the conventional linear low-pass filtering method is in-
effective for chaotic signal denoising. If these methods are
applied in noise reduction of chaos signals, the clean chaotic
signals may be oversmoothed severely [5]. 0erefore, it is of
great significance to study the corresponding noise reduction
methods according to the characteristics of chaotic signals.

Over the past decades, a number of approaches for
chaotic signal noise reduction have been proposed [3, 6–13].

0e singular spectrum analysis method [6] and local pro-
jection method [7, 8] are denoising algorithms based on
phase space reconstruction; due to their different dynamic
characteristics after reconstructing, the chaotic signals are
separated from noise. But it is difficult to accurately de-
termine the noise boundary points of noise reduction by
singular spectrum analysis, and the parameter selection
method of local projection has limitations. 0erefore, the
noise reduction ability will decrease if the noises of denoising
chaotic signals are severe. 0e threshold denoising method
based on time-frequency analysis, such as the wavelet
threshold (WT) denoising method [3], and empirical mode
decomposition (EMD) [9, 10] are noise suppression algo-
rithms which decompose the noisy signal in time-frequency
domain and separate the signal from the noise by threshold
processing. However, the denoising performance of the WT
method is greatly impacted by the wavelet basis and the
number of layers, which reduces the adaptability of the
method. Although the EMD threshold denoising overcomes
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the issue that WTmust select the appropriate wavelet basis
according to the signal characteristics, it is still hard to
determine the threshold properly. 0e local curve fitting
method [11], which smooths the noisy signal by segments,
uses the least square polynomial fitting to realize the signal
denoising, and it is arduous to reconstruct precisely by local
linear approximation due to the high nonlinearity of chaos.
Cooperative filtering denoising [12] uses the self-similarity
of chaotic signals in time domain to group similar blocks,
and the noise suppression effect of the reconstructed signal
after filtering is obvious. Nevertheless, for the reason that the
selection of filtering parameters of this method is not
adaptive, the application of this method is still limited.Wang
et al. [13] further improved the cooperative filtering
denoising method; the complexity of chaotic signals is an-
alyzed and the optimal filtering parameters are adaptively
selected according to the smallest permutation entropy (PE)
[14]. Most of the existing noise suppression methods are
proposed on the basis of low-pass filter [15, 16]. Analyzing
the above research results, the study trend of chaotic signal
noise suppression is developing from global noise reduction
to local noise reduction, and the noise reduction methods
proposed for dynamic characteristics of chaotic signal have
better effect.

Morphological filtering (MF) is a nonlinear filtering
technique [17]. It can be employed to make translation
matching and local correction of the original signal from
front to back by constructing a certain structuring element
(SE), and the morphological characteristics of the original
signal are preserved while the noises are suppressed [18].
Currently, morphological filtering has been widely used in
image processing [19, 20], signal analysis [21], feature ex-
traction [22], and other fields. In this paper, the MF is first
introduced to reduce the noise of contaminated chaotic
signal. Combined with the self-similar characteristics of
chaotic signals, an adaptive smooth multiscale morpho-
logical filtering (ASMMF) method for chaotic signal
denoising is proposed on the basis of existing algorithms.
Within this scheme, the scale range of structural element is
determined in accordance with the self-similarity of tem-
poral waveform of chaotic signal. 0e multiscale permuta-
tion entropy (MPE) [23] of the residual signal is calculated to
select the optimal combination of morphological filtering
scales, and the residual variance is calculated to determine
the weight coefficients of different scale filtering results. 0e
chaotic signal is reconstructed by weighted optimal scale
combination of morphological filtering results. To solve the
problem of topping distortion in morphological filtering, the
reconstructed signal is resampled and smoothed by cubic
B-spline interpolation. In order to distinguish ASMMF from
the adaptive multiscale morphological filtering without
smoothing, the latter is called multiscale morphological
filtering for short. 0e ASMMF is an improved algorithm on
the basis of AMMF.

0e compendium of this paper is organized as follows. In
Section 2, the process of ASMMF is described in detail.
Section 3 analyses the parameters of the algorithm and
proposes the corresponding optimization scheme. More-
over, a noisy Lorenz signal is taken to describe the

optimizing process. Section 4 applies the proposed method
and three comparison methods to denoise different noisy
chaotic signals. 0e ultimate conclusions are drawn in
Section 5.

2. Adaptive Smoothing Multiscale
Morphological Filtering

In order to denoise the contaminated chaotic signals, a novel
method called ASMMF is presented in this paper. And this
algorithm is divided into three steps: multiscale morpho-
logical filtering, signal reconstruction, and signal smoothing.
Figure 1 shows the noise reduction process.

2.1. Multiscale Morphological Filtering. Set f(n) as a one-
dimensional (1D) signal, which is a discrete function over
the domain F � (0, . . . , N − 1), set g(m) as the SE, which is
a function over the domain G � (0, . . . , M − 1), and the
stipulated value of N should be larger than that of M. 0e
dilation operation and the erosion operation are two kinds
of basic operations of mathematical morphology (MM)
[24], which can be denoted as symbols ⊕ and Θ, re-
spectively, and the signal process can be represented as
follows [17]:

(f⊕g)(n) �max[f(n − m) + g(m)] (m � 0,1, . . . ,N − 1),

(fΘg)(n) �min[f(n + m) − g(m)] (m � 0,1, . . . ,N − 1).
(1)

A number of basic operators are used in MF. 0e
opening operation and closing operation of a set f(n) by SE
g(m) are the most widely used; they can be defined as

(f ∘g)(n) � (fΘg⊕g)(n),

(f • g)(n) � (f⊕gΘg)(n),
(2)

where symbols ∘ and • stand for the opening operation and
closing operation, respectively. 0e opening operation
flattens the positive impulses and matches the negative ones,
and the closing operation can flatten the negative impulses
and matches the positive ones [20]. On the basis of the
sequential operation of opening and closing, the open-
closing operator and the close-opening operator are defined
as [25, 26]

FOC(f(n)) � (f ∘g •g)(n),

FCO(f(n)) � (f • g ∘g)(n).
(3)

0e output signals of the open-closing operator and
the close-opening operator have the problem of median
bias; thus, the combined morphological filter (CMF) is
used in signal processing. 0e combined morphological
filter is able to smooth the signal by eliminating the
positive and the negative impacts in the signal simulta-
neously. 0e combination morphological filter is further
defined as

CMF(f(n)) �
(FOC(f(n)) + FCO(f(n)))

2
. (4)

For complex noisy signals, morphological filtering of
single-scale structural element has limited accuracy in
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reconstructing. It is necessary to construct multiscale
morphological filters to denoise target signals at different
levels and scales. Let λg be the SE at scale λ, which is ob-
tained by λ − 1 times dilation operation; λg is described as
[27]

λg � g⊕g⊕ · · ·⊕g
􏽼√√√√√􏽻􏽺√√√√√􏽽

λ− 1 times

.
(5)

0e multiscale CMF can be redefined as

yλ(n) �
(f ∘ λg • λg)(n) +(f • λg ∘ λg)(n)

2
. (6)

CMF noise reduction results can effectively restore the
original signal waveform. Also, the weighted average op-
eration can restrain the statistical bias of denoising results.
Indeed, compared with a single-scale CMF, the multiscale
CMF is more effective in noise reduction.

2.2. Signal Reconstruction. 0ese results of morphological
filtering at different scales can be obtained by multiscale
morphological analysis of noisy signal. Each filtering result
at single scale reflects a specific component contained in the
signal. 0e different components of chaotic signals should
appear in multiple scales as a processed signal. 0e recon-
structed signal is obtained by aggregating the filtering results
of different scales as follows:

Y � 􏽘

j

j�1
ωjyj 􏽘

j

j�1
ωj � 1⎛⎝ ⎞⎠, (7)

where yj is a result of morphological filtering on scale j, ωj is
the weight coefficient of yj, and Y is the reconstruction
result.

0e weight coefficient directly affects the effect of
multiscale morphological filtering. For the purpose of
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Figure 1: Flowchart of the denoising algorithm for chaotic signals based on ASMMF.
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obtaining a better denoising result, the square operation of
residual amplitude difference (RAD) before and after fil-
tering processing is used to determine the weight coefficients
adaptively. 0e RAD can be defined as

Rj(n) � f(n) − yj(n). (8)

0e weight coefficient can be expressed as

ωj �
􏽐nRj(n)2

􏽐j􏽐nRj(n)2
. (9)

2.3. Signal Smoothing. It is found that the waveform of the
aggregated signal is not smooth enough, and the local
waveform is slightly rough. Owing to the morphological
filter with large-scale SE blurring the detail information of
signal and bringing the top-weakening distortion in the
process of reducing noise, the signal directly gathered by the
results of morphological filtering at different scales is not
smooth enough. However, the occurrence of the top-
weakening distortion is regular all the way. 0e distortion
only made some local waveforms a little rough, but did not
change the general shape of the whole waveform. In order to
reduce the top-weakening distortion, a new method of
resampling the filtered signal is proposed according to the
regularity of the distortion. 0e cubic B-spline interpolation
method is proposed to smooth the filtered signal after
resampling.

Let di(i � 0, 1, . . . , n) be the de Boor point, where i is the
serial number and n is the number of the de Boor point. 0e
k-th B-spline function is defined as follows [28, 29]:

P(t) � 􏽘
n

i�0
diBi,k(t), t ∈ [0, 1],

Bi,0(t) �
1, ti ≤ t≤ ti+1( 􏼁,

0, (others),

⎧⎨

⎩

Bi,k(t) �
t − ti

ti+k− 1 − ti

Bi,k− 1(t) +
ti+k − t

ti+k − ti+1
Bi+1,k− 1(t),

(10)

where t0, t1, . . . , tn+k+1 are node vectors and Bi,k(t) is a base
function of the node vector. When the denominator in
equation (10) is 0, the value is specified as 0. When k is 3, the
cubic uniformB-spline function defined in [0, 1] is described as

p(t) �
(1 − t)3

6
d0 +

3t3 − 6t2 + 4
6

d1 +
− 3t3 + 3t2 + 3t + 1

6
d2 +

t3

6
d3.

(11)

Equation (11) is a cubic polynomial divided into uniform
segments; the signal processed by cubic B-spline interpo-
lation has the characteristics of detail smoothness and linear
independence.

3. Algorithmic Parameter Analysis and
Adaptive Optimization

In this section, the Lorenz signal with superimposed
Gaussian white noise is taken as an example to discuss the

influence of algorithm parameters on noise reduction per-
formance.0e equation of Lorenz system is expressed as [30]

_x � − a(x − y),

_y � − xz + cx − y,

_z � xy − bz,

⎧⎪⎪⎨

⎪⎪⎩
(12)

where a � 10, b � 8/3, and c � 28; the system is in chaos.0e
fourth-order Runge–Kutta method is used to solve the
equation, and the sampling time is set to 0.01. Chaotic
signals are generated by the state variable x. Figure 2(a)
shows the waveform of state variables changing with time.
0e chaotic signal is superimposed with white Gaussian
noise of different intensities. Figure 2(b) shows a Lorenz
signal with a superimposed signal to noise ratio (SNR) of
15 dB noise. 0e SNR is defined as [31]

SNR � 10 log10
􏽐ts

2(t)

􏽐t(x(t) − s(t))2
, (13)

where s(t) is the original chaotic time series. When calculating
the signal-to-noise ratio of the input signal (SNRin), the x(t) is
regarded as a noisy chaotic signal. Nevertheless, if the calcu-
lated object is the output signal to noise ratio (SNRout), the x(t)

is regarded as the denoised signal.
0e ASMMF method makes full use of the self-similar

structure characteristics of chaotic signals and has good
chaotic attractor reduction performance. Just like all the MF
based algorithms, ASMMF algorithm also needs to specify
the shape and select the optimal scale combination of SE.

3.1.+e Shape Selection of Structural Element. 0e SE can be
used as a filter window in the process of MF, and its geo-
metric feature matches the signal much better, and then
main waveform of this part of the signal can be retained. 0e
shape and size of structural element play an important role
in the application of mathematical morphology. 0e tri-
angular SE, the sinusoidal SE, and the linear SE are widely
used SEs for signal analysis [32–36].

Morphological operation is a numerical operation of
adding or subtracting extreme values. Flat SE is defined as the
linear SE with height of 0, which can retain the shape feature of
the impulse as much as possible [34]. And it has the simplest
algorithm and higher operation efficiency [35]. However, if the
raw signal is processed by a scale far away from the theoretical
central scale, the filtered result is often heavily polluted.
Fortunately, multiscale morphological filtering with adaptive
weighting can solve this problem [36]. 0erefore, the flat SE is
therefore chosen in filtering chaotic signal.

3.2. +e Selection of Optimal Scale Combination. Set the
initial SE to {0, 0, 0}. Scale of flat SE is used to represent the
length of SE, and define the scale of initial SE to be λ � 1.0e
difference between flat structural element at different scales
is the number of zeros. 0e selection of scale coefficients of
structural element of morphological filters has a significant
effect on the denoising results. If the scale of structural
element is relatively small, as shown in Figure 3(a), the effect
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of morphological filter on noise suppression is not obvious.
On the contrary, when the scale of structural element is too
large, the effect of noise reduction is obvious as shown in
Figure 3(b), but the waveform has serious distortion.

0e experimental analysis shows that the optimal scale
combination is affected by the signal characteristics and noise
level, and structural element directly affects the effect of
morphological filtering. In order to achieve the best filtering
result, it is necessary to select the appropriate scale combi-
nation of structural element. 0is optimal filtering parameter
is constantly changing in practical application. How to realize
the automatic optimization of filter parameters determines
the adaptability of the algorithm. In order to increase the
adaptability of the algorithm, an adaptive method for de-
termining the optimal scale combination parameter is pro-
posed in this paper. 0e flowchart to determine the optimal
size combination is shown in Figure 4.

As shown in Figure 4, the adaptive selection process of
optimal scale combination is divided into two steps.

Step 1. 0e selection of the maximum scale structural ele-
ment. An appropriate maximum scale SE is able to reduce
the computational complexity and operating time. 0e
maximum scale of structural element is denoted as λmax. 0e
experiment shows that the optimal length of the SE is closely
related to the sampling frequency of the signal and the
number of sampling points in the fault period. λmax should
be smaller than the sampling point in the fault period, which
is corresponding to a period of Lorenz signal. 0e number of
sampling points corresponding to a period is denoted by
fs/f0, where fs is sampling frequency (fs � 100Hz) and f0
is the characteristic frequency of signal. According to the
calculation method of Reference [37], the characteristic
frequency is defined as
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Figure 2: Time domain waveform of (a) noise-free signal and (b) noisy signals.
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Figure 3: Time domain waveform of (a) morphological filtering result at scale 1 and (b) morphological filtering result at scale 25.
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f0 � 􏽘
t

2πN(t)

t
, (14)

where N(T) is the number of turns performed in T.

λmax � ⌊
fs

f0
⌋, (15)

where symbol ⌊•⌋ represents round down the number.
0e characteristic frequency of Lorenz signal is

f ≈ 7.04Hz; therefore, fs/f ≈ 1.40Hz Hz. λmax should be
less than 15, so set λmax to 14 adaptively.

Step 2. 0e multiscale permutation entropy of residual
signal is used to select the optimal scale combination of SE
adaptively. MPE is an average entropy parameter developed
on the basis of PE [14] to describe the irregularity degree and
self-similarity of time series at different scales. 0e calcu-
lation process of MPE is described as follows.

Set x(t), t � 1, 2, . . . , N{ } to be a time series, and the
scale τ represents the window length of coarsening. In the first
place, the time series is coarsely granulated under the con-
dition of scale factor τ. And the resampling of scale τ is carried
out; the sequence after coarse granulation is denoted as

z
(τ)
j􏽮 􏽯 �

1
τ

􏽘

jτ

t�(j− 1)τ+1
xt, (16)

where j � 1, 2, . . . , ⌊N/τ⌋, and ⌊•⌋ denotes downward
rounding.

0en, the phase space of time series
z(τ)(j), j � 1, 2, . . . , N􏼈 􏼉 is reconstructed as

Z
(τ)

(j) � 􏼨z
(τ)

(j), z
(τ)

(j + ε), . . . , z
(τ)

(j +(m − 1)ε)􏼩,

(17)

where m indicates the embedded dimension and ε indicates
the delay time.0e m data points of z(τ)(j) are rearranged in
ascending order as

Z
(τ)

(j) � 􏼨z
(τ)

j + j1 − 1( 􏼁ε( 􏼁≤ z
(τ)

j + j2 − 1( 􏼁ε( 􏼁

≤ · · · ≤ z
(τ)

j + jm − 1( 􏼁ε( 􏼁􏼩,

(18)

where jd, d � 1, 2, . . . , m is the column index of each ele-
ment in the reconstructed component. In case there are m!

symbol sequences at most, k≤m!. 0e frequency of oc-
currence of each permutation is recorded as
f

(τ)
k , k � 1, 2, . . . k, 􏽐kfk � 1; afterwards, the probability of

each sequence in ε scale is described as

p
(τ)
k �

f
(τ)
k

(N − (m − 1)ε)
. (19)

According to Reference [14, 15], the MPE is ultimately
defined as

P(τ)
� − 􏽘

m!

k�1
p

(τ)
k lnp

(τ)
k . (20)

In order to facilitate the analysis, the MPE is normalized
by the maximum value of lnm!, that is,

P(τ)
�

P(τ)

lnm!
0<P(τ) < 1􏼐 􏼑. (21)

0eMPE vector can be described as P � [P(1), P(2), . . .].
0eMPE consists of four parameters: embedding dimension
m, time delay ε, length of time series N, and scale factor τ.
0e PE value highly depends on the selected embedding
dimension m and the scale factor τ. 0e PE method works
with the embedding dimension 3≤m≤ 7 [38], and the
embedding dimension m and time series N should satisfy
the condition 5m!≤N [39]; then, the embedding dimension
is set to 4 in this paper. According to Reference [40], the
delay time is set to 1. 0e selection criterion of scale factor is
given as τ ≤ ⌊N/(m + 1)!⌋ in Reference [41], and the max-
imum value of scale factor is 10 in this paper. Figure 5 shows
the MPE analysis of morphological filtering results at dif-
ferent scales.

According to the analysis, with the increase of structural
element scale, we find that the MPE values decrease grad-
ually. And the complexity of the sequence decreases with the
increase of the scale. 0e increase in scale makes the filtered
sequence more orderly; however, it does not mean that the
signal reduction effect is better. As shown in Figure 3(b), the
filtering results with too large scale of structural element will
also have smaller PE values.

In this paper, the optimal filtering scale is determined by
the residual multiscale permutation entropy of the filtering

Select the maximum scale

Start

Computation of periodic
sampling points

Morphological filtering

Residual calculation

Multiscale permutation entropy
calculation

Select the appropriate scale
combination

End

The optimal
scale selection

The maximum
scale selection

Step 1:

Step 2:

Figure 4: Flowchart of the optimal scale combination selection.
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result. If the residual MPE is the largest, it means that the
randomness of residual is the strongest and the filtering
effect is the best. 0e MPE of multiscale morphological
filtering residuals is shown in Figure 6.

As shown, PE of the residuals corresponding to different
τ changes with the increase of λ, and all go through the
process of gradually increasing from small to a maximum
and then gradually decreasing. λ corresponding to the
maximum of τ scale can be used as the optimal filtering scale
coefficient of chaotic signal at this scale λbestτ .
Λ � λbest1, λbest2, . . . , λbestτ􏼈 􏼉is initially determined to be the
optimal combination of scale coefficients. 0ose repeat
scales should be removed to ensure that each scale appears
only one time. Finally, the optimal combination of scale
coefficients for noisy signals as shown in Figure 2(b) turns
out to be Λ � 1, 4, 6, 7, 8, 9, 13{ }.

After determining the optimal combination of filtering
scales, the weighting coefficients of filtering results are
calculated according to equation (9), and the chaotic signal is
aggregated according to equation (7). 0e aggregation result
is the noise reduction result by AMMF, which is shown in
Figure 7(a). Compared with the noisy chaotic signal and the
original signal, the waveform of the aggregated signal is
similar to the original signal as a whole, but the local details
are slightly rough. However, after smoothing, as shown in
Figure 7(b), the reconstructed signal waveform is basically
the same as the original signal.

4. Experimental Analysis

In order to verify the effectiveness of proposed ASMMF for
different chaotic signals, the existing EMD-CIT [9], WT [3],
and AMMF methods are applied for comparison, and the
noise suppression results of the Lorenz signals with different
intensities of Gaussian white noises, the sunspot chaotic
signals, and chaotic vibration signals are, respectively, shown
in this section.

4.1. Lorenz Chaotic Signal Denoising. 0e total length of the
original chaotic Lorenz signal is set at 8000. SNRout and the
root mean square error (RMSE) [42] indexes are both used
to evaluate the noise reduction performance. RMSE can be
defined as follows:

RMSE �

����������
1
N

􏽘
t

R(t)
2

􏽳

. (22)

Figure 8 shows the denoising results of different noisy
signals processed by four different algorithms. In the results,
when the signal-to-noise ratio of input signal is low, SNRout
of the unsmoothed adaptive multiscale morphological fil-
tering is slightly lower than that of the EMD threshold
method and the wavelet threshold method. As the noise
intensity increases gradually, its performance index grad-
ually exceeds the wavelet threshold method, but the overall
denoising performance is poor. 0e morphological filtering
algorithm after smoothing is superior to the other three
methods in both the aspects.

In order to intuitively reflect the denoising results of
different algorithms, the phase diagrams based on the
chaotic characteristic are drawn ulteriorly. Figure 9 shows
the denoising output results by four methods for noisy
chaotic signal with input signal-to-noise ratio of 10 dB. 0e
two-dimensional phase diagrams of the clean signal and the
noisy signal are plotted in Figures 9(a) and 9(b). 0e noise
reduction results of WT and EMD-CIIT are shown in
Figures 9(c) and 9(d). According the phase diagrams, both of
them can restore the attractor shape of chaotic signals
smoothly, but the self-similarity structure of the system
cannot be clearly expressed due to the orbital deformation.
Unsmoothed morphological filtering result is shown in
Figure 9(e) 0e shape of the attractor restored is not smooth
enough, and the effect is not good enough. Furthermore, the
cancellation distortion of local waveform in the process of
noise reduction is obvious. 0e ASMMF is an improvement
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Figure 5: 0e MPE of morphological filtering results: (a) τ � 1, 2, . . . , 5; (b) τ � 6, 7, . . . , 10.
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algorithm of AMMF. After smoothing the rough waveform
of morphological filtering, the shape and self-similar
structure of chaotic attractors can be restored more clearly.

4.2. Sunspot Chaotic Signal Denoising. Sunspots are a phe-
nomenon of temperature change on the surface of the solar
photosphere, and their activity will directly affect the
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Figure 7: Results of denoising: (a) unsmoothed morphological filtering and (b) smooth morphological filtering.
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Figure 8: Analysis of signal denoised by different algorithms: (a) SNRout; (b) RMSE.
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changes of the Earth’s magnetic field and climate. Recently,
chaos theory has become an important means to study the
rule of sunspot activity. 0e observed sunspot signal is al-
ways chaotic and noisy [10, 31], so it is necessary to effec-
tively reduce the noise of the observed data. 0e sunspot
sequence from January 1749 to September 2016 provided by
NASA is selected as experimental data (http://solarscience.
msfc.nasa.gov/green-wch.shtml). 0e Lyapunov exponent
(LE) of the attractor represents the predictability and the
sensitivity of dynamical system. 0erefore, the LE is an
important feature for the study of chaotic behavior. For a

chaotic system, the largest Lyapunov exponent (LLE) is
positive [43]. Referring to the calculation method in Ref-
erence [36], the LLE is 0.7615.

To investigate the method for different kinds of noise,
EMD-CIT, WT, AMMF, and ASMMF are used to denoise
the sunspot data. Compared with the original sunspot ob-
served data shown in Figure 10(a), there is obvious mea-
surement noise in the observed data. Figures 10(b)–10(e)
show the denoising results. As shown in the figures, we can
notice that all the techniques significantly reduce the noise
obviously. But the waveform of EMD-CIT, WT, and AMMF
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Figure 9: Phase diagram of Lorenz attractor: (a) original signal; (b) noisy signals; (c) signal denoised by EMD thresholding; (d) signal
denoised by wavelet thresholding; (e) signal denoised by AMMF; (f ) signal denoised by ASMMF.
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noise reduction results is not smooth enough. And the
waveform of ASMMF after noise reduction is the smoothest.

0e projection of the attractor reconstructed from the
data sequence on the two-dimensional plane before and after
noise reduction is shown in Figure 11. It is clear that the
chaotic attractor phase diagram of the measured lunar
sunspot signal is very disordered due to the noise inter-
ference, and the attractor trajectory in the phase diagram
space is not smooth. No regular geometric structure is
shown in Figure 11(a). Noise reduction results of four
mentioned methods are shown in Figures 11(b)–11(e); all of
them obviously reduce the noise and obtain the geometric
structure of attractor with strong regularity. Moreover, the
attractor orbits obtained by the ASMMF method are
smoother and clearer than those of the other three methods.
It shows that this method has certain advantages in reducing
noise and enhancing the inherent deterministic components
of chaotic sequences.

In order to intuitively verify the advantages and disad-
vantages of noise reduction methods, MPE is used to describe
the complexity and regularity of time series on multiple time
scales. Figure 12 shows the analysis results by MPE.

By direct comparison, the four methods all perform
obvious effect in chaotic signal denoising. 0e result of
noise reduction by these methods is that the MPE value
decreases compared with the signal before noise reduc-
tion, and the signal after noise reduction is more regular.
If the time scale is small, the PE of the unsmoothed

adaptive multiscale morphological filtering is lower than
that of the EMD threshold method and the wavelet
threshold method. As the time scale increases gradually,
its performance index gradually exceeds the wavelet
threshold method, but the overall denoising performance
is poor. 0e denoising result using ASMMF algorithm has
the lowest complexity in different time scales. It indicates
that the intrinsic deterministic components of chaotic
sequences are enhanced after noise reduction. 0e sim-
ulation results show that compared with WT, EMD-CIIT,
and AMMF, ASMMF has a better denoising effect on the
observed sunspot sequence, with a smoother phase dia-
gram, and higher self similarity.

4.3. Chaotic Vibration Signal Denoising. Detection of faults
of rotating machinery by the complex noisy vibration
signals is very important and difficult. In recent years,
features of chaotic behavior are very good for fault diag-
nosis and identification. But the features of the LLE, ap-
proximate entropy, and correlation dimension are easily
affected by noise. Clear attractor orbits and signals that do
not damage nonlinear dynamical structures are helpful to
obtain chaotic behavior characteristics accurately. So,
detecting chaotic vibration signals in noise environment is
a significant task.

In the experiment, the Bently RK-4 rotor system test bed
was used to simulate the fault; it is equipped with a signal
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Figure 10: (a) Observation data of monthly mean number of sunspot plane. (b) 0e noise reduction result by EMD thresholding. (c) 0e
noise reduction result by wavelet thresholding. (d) 0e noise reduction result by AMMF. (e) 0e noise reduction result by ASMMF.
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preadapter, speed control device, and bearing and oil pump
system for oil film instability, which can realize the oil film
whirl and oil film oscillation test. Eddy current sensors were
installed on both sides of the single-disk rotor to measure
radial vibration displacement of rotating shaft. ZonicBook/
618E produced by Iotech Company in the United States
collects vibration signals of rotors during rotation with
sampling frequency of 1280Hz. When the rotation speed is
maintained at 4560 r/min, the rotor system shows obvious
resonance oil film oscillation phenomenon, and the time-
domain waveform is shown in Figure 13.

As mentioned in Section 4.2, the LE is an important
feature for the study of chaotic behavior. For a chaotic
system, the LLE is positive. Figure 14(a) shows the largest
Lyapunov exponents, and phase diagram for the vibration
signal is positive. So, the collected vibration signal is chaotic.
Figure 14(b) shows the phase diagram for the vibration
signal. Due to the influence of noise, the chaotic attractors
cannot be clearly displayed.

Due to the influence of noise, the chaotic attractors
cannot be clearly displayed. It is necessary to denoise the
collected vibration signal. In the experiment, the contami-
nated chaotic vibration signal is denoised by the 4 noise
reduction methods mentioned. Figure 15 shows the
denoising results.

0e phase diagram of the ASMMF method after noise
reduction is smoother, clearer, and more regular than other
methods. As shown in Figure 16, as the time scale increases
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Figure 11: Phase diagrams for the sunspot signal: (a) observation data; (b) the noise reduction result by EMD thresholding; (c) the noise
reduction result by wavelet thresholding; (d) the noise reduction result by AMMF; (e) the noise reduction result by ASMMF.
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gradually, with the increase of time scale, the PE values of
AMMF, WT, and EMD CIITare not significantly lower than
before noise reduction. 0e PE value of noise reduction
result by WT algorithm on some time scales is even greater

than that before noise reduction, and the overall denoising
performance is poor. 0e MPE of the ASMMF method’s
denoising result is the minimum, which represents that the
result of denoising by this algorithm is the most regular. 0e
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Figure 14: 0e largest Lyapunov exponents and phase diagram for the vibration signal.
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Figure 15: Phase diagrams for the vibration signal: (a) the noise reduction result by EMD thresholding; (b) the noise reduction result by
wavelet thresholding; (c) the noise reduction result by AMMF; (d) the noise reduction result by ASMMF.
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experimental results show that this method can also achieve
good noise reduction effect on the vibration signal, and the
denoising performance is better than the proposed three
other methods.

5. Conclusions

We have proposed an adaptive smoothing morphological
filtering method for denoising contaminated chaotic sig-
nals. 0is algorithm solves the problem of top-weakening
distortion in morphological filtering and can filter the
signal in multilevel and multiscale adaptively. In this paper,
AMMF, EMD-CIIT, and WT are compared with ASMMF.
0e polluted Lorenz signals, the sunspot chaotic signals,
and chaotic vibration signals are denoised by 4 methods,
respectively. 0e ASMMF is superior to the other three
methods in SNRout, RMSE, and MPE for the noise sup-
pression results of contaminated chaotic signals. Moreover,
when the noise of signal is strong, the attractor trajectory of
the EMD-CIIT and the WT denoising results have no
regular geometric structure, but the result obtained by the
proposed method has smoother and more regular attractor
orbits. 0e comparison results show that the topology
structure of the chaotic attractor restored by ASMMF is
closer to the real signal. So, the proposed method has a
certain reference value for actual engineering application.
In the future, denoising of different kinds of chaotic signals
will still be a hot topic. We will apply the proposed al-
gorithm to the noise reduction of hyperchaotic signals and
fractional chaotic signals.

Data Availability

0e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

0e authors declare no conflicts of interest.

Acknowledgments

0is work was supported by the Natural Science Foundation
of Hebei Province, China (grant no. E2019502047), and the
Fundamental Research Funds for the Central Universities
(grant nos. 2017MS190, 2018MS124, and 2019QN132).

References

[1] H. D. I. Abarbanel, T. W. Frison, and L. S. Tsimring,
“Obtaining order in a world of chaos: time-domain analysis of
nonlinear and chaotic signals,” IEEE Signal Procceing Mag-
azine, vol. 15, no. 3, pp. 49–65, 1998.

[2] M. Han, Y. Liu, J. Xi, and W. Guo, “Noise smoothing for
nonlinear time series using wavelet soft threshold,” IEEE
Signal Processing Letters, vol. 14, no. 1, pp. 62–65, 2007.

[3] L.-J. Shang and K.-K. Shyu, “A method for extracting chaotic
signal from noisy environment,” Chaos, Solitons & Fractals,
vol. 42, no. 2, pp. 1120–1125, 2009.

[4] G. Wei and H. Shu, “H∞ filtering on nonlinear stochastic
systems with delay,” Chaos, Solitons & Fractals, vol. 33, no. 2,
pp. 663–670, 2007.

[5] S. A. Billings and K. L. Lee, “A smoothing algorithm for
nonlinear time series,” International Journal of Bifurcation
and Chaos, vol. 14, no. 3, pp. 1037–1051, 2004.

[6] R. Vautard, P. Yiou, and M. Ghil, “Singular-spectrum anal-
ysis: a toolkit for short, noisy chaotic signals,” Physica D,
vol. 58, no. 1–4, pp. 95–126, 1992.

[7] R. Cawley and G.-H. Hsu, “Local-geometric-projection
method for noise reduction in chaotic maps and flows,”
Physical Review A, vol. 46, no. 6, pp. 3057–3082, 1992.

[8] T. Schreiber and M. Richter, “Fast nonlinear projective fil-
tering in a data stream,” International Journal of Bifurcation
and Chaos, vol. 9, no. 10, pp. 2039–2045, 1999.

[9] Y. Kopsinis and S. Mclaughlin, “Development of emd-based
denoising methods inspired by wavelet thresholding,” IEEE
Transactions on Signal Processing, vol. 57, no. 4, pp. 1351–
1362, 2009.

[10] X. Wang, J. Qu, F. Gao, Y. Zhou, and X. Zhang, “A chaotic
signal denoising method developed on the basis of noise-
assisted nonuniformly sampled bivariate empirical mode
decomposition,” Acta Physica Sinica, vol. 63, no. 17, pp. 18–
26, 2014.

[11] W. W. Tung, J. Gao, J. Hu, and L. Yang, “Detecting chaos in
heavy-noise environments,” Physical Review E, vol. 83, no. 4,
p. 046210, 2011.

[12] Y. Chen, X. L. Z. Wu, Y. Fan, Z. Ren, and J. Feng, “Denoising
of contaminated chaotic signals based on collaborative fil-
tering,” Acta Physica Sinica, vol. 66, no. 21, p. 210501, 2017.

[13] M.Wang, Z. Zhou, Z. Li, and Y. Zeng, “An adaptive denoising
algorithm for chaotic signals based on collaborative filtering,”
Acta Physica Sinica, vol. 67, no. 6, p. 060501, 2018.

[14] X. Xue, C. Li, S. Cao, J. Sun, and L. Liu, “Fault diagnosis of
rolling element bearings with a two-step scheme based on
permutation entropy and random forests,” Entropy, vol. 21,
no. 1, p. 96, 2019.

[15] C. Shen, Y. Zhang, J. Tang, H. Cao, and J. Liu, “Dual-opti-
mization for a MEMS-INS/GPS system during GPS outages
based on the cubature Kalman filter and neural networks,”
Mechanical Systems and Signal Processing, vol. 133, p. 106222,
2019.

[16] C. Shen, J. Yang, J. Tang, J. Liu, and H. Cao, “Note: parallel
processing algorithm of temperature and noise error for
micro-electro-mechanical system gyroscope based on

ASMMF
WT

EMD
AMMF

NOISE
1 2 3 4 5 6

τ 7 8 9 10

0

0.2

0.4

0.6

0.8

1

PE

Figure 16: 0e MPE of denoising results for the chaotic vibration
signal.

Complexity 13



variational mode decomposition and augmented nonlinear
differentiator,” Review of Scientific Instruments, vol. 89, no. 7,
p. 076107, 2018.

[17] P. Cao and R. W. Schafer, “Morphological systems for
multidimensional signal processing,” Proceedings of the IEEE,
vol. 78, no. 4, pp. 690–710, 1988.

[18] J. Serra and L. Vincent, “An overview of morphological fil-
tering,” Circuits Systems and Signal Processing, vol. 11, no. 1,
pp. 47–108, 1992.

[19] V. B. Sebastian, A. Unnikrishnan, K. Balakrishnan, and
P. B. Ramkumar, “Morphological filtering on hypergraphs,”
Discrete Applied Mathematics, vol. 216, pp. 307–320, 2017.

[20] Y. Hao, Z. Zhen, F. Li, and Y. Zhao, “A graph-based pro-
gressive morphological filtering (GPMF) method for gener-
ating canopy height models using ALS data,” International
Journal of Applied Earth Observation and Geoinformation,
vol. 79, pp. 84–96, 2019.

[21] Y. Wu, C. Shen, H. Cao, and X. Che, “Improved morpho-
logical filter based on variational mode decomposition for
MEMS gyroscope de-noising,” Micromachines, vol. 9, no. 5,
p. 246, 2018.

[22] L. Meng, J. Xiang, Y. Zhong, and W. Song, “Fault diagnosis of
rolling bearing based on second generation wavelet denoising
and morphological filter,” Journal of Mechanical Science and
Technology, vol. 29, no. 8, pp. 3121–3129, 2015.

[23] X. Wang, S. Si, Y. Wei, and Y. Li, “0e optimized multi-scale
permutation entropy and its application in compound fault
diagnosis of rotating machinery,” Entropy, vol. 21, no. 2,
p. 170, 2019.

[24] J. Wang, L. Cui, and Y. Xu, “Quantitative and localization
fault diagnosis method of rolling bearing based on quanti-
tative mapping model,” Entropy, vol. 20, no. 7, p. 510, 2018.

[25] P. Maragos and R. Schafer, “Morphological filters—Part I:
their set-theoretic analysis and relations to linear shift-in-
variant filters,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 35, no. 8, pp. 1153–1169, 1987.

[26] P. Maragos and R. Schafer, “Morphological filters—Part II:
their relations to median, order-statistic, and stack filters,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 35, no. 8, pp. 1170–1184, 1987.

[27] W. Tan, X. Chen, and S. Dong, “A new method for machinery
fault diagnoses based on an optimal multiscale morphological
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