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-is article is concerned with the exponential synchronization of a class of the chaotic systems with external disturbance via the
saturation control. -rough appropriate coordinate transformation, the exponential synchronization is translated into the
asymptotic stability of the error system. By using the Lyapunov stability theory, a novel sufficient condition which possesses the
exponential convergence rate λ is presented.-e rich choices of the exponential convergence rate λ turn our scheme more general
than some existing approaches. Numerical simulations are employed to the Genesio chaotic system and the Coullet chaotic system
to illustrate the ability and effectiveness of the presented approach.

1. Introduction

Synchronization exists in many systems, such as chaotic
system, complex network system, and neural network sys-
tem. Since Pecora and Carroll [1] proposed the drive-re-
spond synchronization scenario in 1990, chaos
synchronization has turned out to be a hot topic. So far,
many kinds of synchronization schemes have been proposed
by the experts, such as the complete synchronization [1], lag
synchronization [2], phase synchronization [3], projective
synchronization [4], and combination synchronization [5].
Chaos synchronization, owing to its great application in
engineering science, medicine, secure communication, and
telecommunications, has attracted widespread concern in a
variety of areas and has been studied extensively during the
last decades [6–12]. However, most of the synchronization
schemes are based on asymptotic stability. From a practical
point of view, chaos systems are required not only to be
synchronized but also with a fast synchronizing rate. -us,
the exponential synchronization, which can quantify the rate
of convergence and possesses the faster convergence speed
than that of general asymptotic stability, has received much

attention in many research fields. For example, the study in
[13] investigated the exponential synchronization of the
chaotic Lur’e systems via the stochastic sampled-data con-
troller. -e authors in paper [14] discussed the exponential
synchronization of a class of fractional-order chaotic sys-
tems based on the discontinuous input. -e exponential
synchronization of a special chaotic system which has no
linear term was considered in paper [15] by using the ex-
ponential stability theorem. -e study in [16] discussed the
exponential synchronization of a class of fractional-order
chaotic systems with uncertainty. A new criterion was
proposed by using the linear matrix inequalities approach.
-e exponential synchronization between two identical xian
chaotic systems was considered in paper [17]. By using al-
gebraic Riccati equation, a linear feedback controller was
presented.

In the literature, most of the published papers concerned
the exponential synchronization (see [13–17] for example),
and the convergence rate is fixed which means that the
convergence speed is constant. From a practical point of
view, it is to be hoped that the exponential synchronization
can be achieved as soon as possible. On the other hand, it is
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well known that every physical actuator is subject to satu-
ration. When the actuator is saturated, the performance of
the designed control system will be deteriorated seriously. In
order to improve the control performance, the effect of
saturation should be incorporated into the design of the
controlled system.

Motivated by such circumstances, in this paper, we
investigate the exponential drive-response synchronization
of a class of chaotic systems with plant uncertainties via the
saturation control. A novel synchronization controller, in
which a variable convergence rate is incorporated into the
control law, is proposed. Numerical studies are provided to
verify the effectiveness of the given scheme.

-e remainder of this paper is organized as follows. In
Section 2 and Section 3, the problem formulation and drive-
response synchronization schemes are proposed, respec-
tively. -e numerical example is provided in Section 4 to
demonstrate the effectiveness and the benefit of the pro-
posed control scheme. Finally, the concluding remarks are
drawn in Section 5.

2. Problem Formulation

In order to observe the chaotic synchronization phenom-
enon, in this paper, the following system is considered as the
drive system:

_x1 � x2,

_x2 � x3,

· · ·

_xn− 1 � xn,

_xn � f(x) + dm,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where x � (x1, x2, . . . , xn)T is the state variable, f(x) is a
continuous function, and dm is the external disturbance.

Based on system (1), the response system is given as

_y1 � y2,

_y2 � y3,

· · ·

_yn− 1 � yn,

_yn � g(y) + dr + u,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where y � (y1, y2, . . . , yn)T is the state variable, g(y) is a
continuous function, and dr is the external disturbance. u is
the controller which is defined as

u �

u0, v> u0,

v, |v|≤ u0,

− u0, v< − u0,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where u0 is a constant which can be designed by the
controller.

For the purpose of facilitating the analysis and design,
the controller u is represented as

u � v − ϕ(v), (4)

where

ϕ(v) �

v − u0, v> u0,

0, |v|≤ u0,

v + u0, v< − u0.

⎧⎪⎪⎨

⎪⎪⎩
(5)

-e error variable is defined as e � (e1, e2, . . . , en)T �

(y1 − x1, y2 − x2, . . . , yn − xn)T. By subtracting system (1)
from system (2), the following error system is obtained:

_e1 � e2,

_e2 � e3,

· · ·

_en− 1 � en,

_en � g(y) − f(x) + dr − dm + u.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Assumption 1. Suppose dr, dm, and ϕ(v) are all bounded
which means that there is a constant M> 0 such that

dr − dm − ϕ(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M, (7)

where M is known in advance.

Remark 1. It is well known that the chaos attractor is
bounded which means that ϕ(v) is also bounded. In addi-
tion, the external disturbances dr and dm are bounded, and
thus, Assumption 1 is reasonable.

Definition 1. System (1) and system (2) are said to be
globally exponentially synchronized if there exist constants
α(>0) and λ(>0) such that |ei|≤ αe− λt hold for any initial
values and t≥ 0, where λ is called as the exponential con-
vergence rate, i � 1, 2, . . . , n.

3. Synchronization Schemes

Lemma 1. (see [18]). Suppose _x � − δx + ϕ(t). If δ > 0 and
limt⟶∞ϕ(t) � 0, then limt⟶∞x(t) � 0, where x ∈ R is the
state variable and ϕ(t) is a continuous function.

Now, we introduce the new variable zi which is
expressed as

zi � e
λt

ei, i � 1, 2, . . . , n. (8)

According to system (6), one obtains

_zi � λe
λt

ei + e
λt

_ei, i � 1, 2, . . . , n − 1. (9)

-us, system (6) can be converted into the following
system (10):
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_z1 � λz1 + z2,

_z2 � λz2 + z3,

⋮ ⋮
_zn− 1 � λzn− 1 + zn,

_zn � λzn + e
λt

g(y) − f(x) + dr − dm + v − ϕ(v)( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Theorem 1. If limt⟶∞zi � 0, then there exists α> 0 and
λ> 0 such that |ei|≤ αe− λt which means that system (1) and
system (2) can reach exponential synchronization, where
i � 1, 2, · · · , n.

Proof. If limt⟶∞zi(t) � 0, then for any ϵ> 0, there exists
time T> 0 such that for t>T, we have |zi|≤ ε. Since the state
variables of chaotic systems are bounded, therefore for
t ∈ [0, T], there exists ϵ1 > 0 such that |zi|≤ ε1. Let
α � max ε1, ε􏼈 􏼉; then, for any t≥ 0, we obtain |zi|≤ α. Note
that

ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � e

− λt
zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ αe

− λt
. (11)

-us, based on Definition 1, we conclude that system (1)
and system (2) can reach exponential synchronization. □

Theorem 2. If limt⟶∞z1 � 0, then limt⟶∞zi � 0 which
means that system (1) and system (2) can reach exponential
synchronization, where i � 1, 2, . . . , n.

Proof. Suppose limt⟶∞z1 � 0, then limt⟶∞ _z1(t) � 0. In
view of that

_z1 � λz1 + z2, (12)

we have

lim
t⟶∞

_z1 � lim
t⟶∞

λz1 + lim
t⟶∞

z2 � 0, (13)

which implies that

lim
t⟶∞

z2 � 0. (14)

In the same way, we can obtain
limt⟶∞zi � 0, i � 3, 4, . . . , n. According to -eorem 1, we
know that system (1) and system (2) can reach exponential
synchronization. □

Theorem 3. If

v � f(x) − g(y) − λζ − ξ − Msign e
λtζ􏼐 􏼑,

ξ � C
0
n(λ + β)

n
e1 + C

1
n(λ + β)

n− 1
e2 + C

2
n(λ + β)

n− 2
e3 + · · · + C

n− 1
n (λ + β)en,

ζ � C
0
n− 1( λ + β)

n− 1
e1 + C

1
n− 1(λ + β)

n− 2
e2 + C

2
n− 1(λ + β)

n− 3
e3 + · · · + C

n− 1
n− 1en,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

then system (1) and system (2) can reach exponential syn-
chronization, where β> 0.

Proof. Based on -eorem 2, we know that if

lim
t⟶∞

z1 � 0, (16)

then system (1) and system (2) can reach exponential
synchronization. In order to obtain

lim
t⟶∞

z1 � 0, (17)

in the first step, we choose the Lyapnov function V1 as

V1 �
1
2
z
2
1. (18)

Its derivative is

_V1 � z1 _z1 � z1 λz1 + z2( 􏼁 � − βz
2
1 + z1 (λ + β)z1 + z2( 􏼁

� − βz
2
1 + z1 C

0
1(λ + β)z1 + C

1
1z2􏼐 􏼑.

(19)

Let us suppose that limt⟶∞(C0
1(λ + β)z1 + C1

1z2) � 0.

In this case, we can show that z1 is bounded. In fact, If z1 is

unbounded, i.e., limt⟶∞z1 �∞. -en, there exists a finite
time T, such that when t>T, we have

_V1 � − βz
2
1 + z1 C

0
1(λ + β)z1 + C

1
1z2􏼐 􏼑< 0. (20)

In light of the Lyapunov stability theory, we obtain
limt⟶∞z1 � 0 which is contradicted with limt⟶∞z1 �∞.

-erefore, z1 is bounded; then, limt⟶∞z1(C0
1(λ + β)z1 +

C1
1z2) � 0. According to Lemma 1, we know that

limt⟶∞z1 � 0.
Based on the above analysis, one can derive that if

limt⟶∞(C0
1(λ + β)z1 + C1

1z2) � 0, then limt⟶∞z1 � 0.
Now, in order to obtain limt⟶∞(C0

1(λ + β)z1 + C1
1z2) � 0,

in the second step, we choose the Lyapnov function V2 as

V2 �
1
2

C
0
1(λ + β)z1 + C

1
1z2􏼐 􏼑

2
. (21)

-e derivative of V2 is
_V2 � (λ + β)z1 + z2( 􏼁 (λ + β) _z1 + _z2( 􏼁

� (λ + β)z1 + z2( 􏼁 (λ + β) λz1 + z2( 􏼁 + λz2 + z3( 􏼁

� − β (λ + β)z1 + z2( 􏼁
2

+ (λ + β)z1 + z2( 􏼁

· C
0
2(λ + β)

2
z1 + C

1
2(λ + β)z2 + C

2
2z3􏼐 􏼑.

(22)
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Similarly, according to Lemma 1, if

lim
t⟶∞

C
0
2(λ + β)

2
z1 + C

1
2(λ + β)z2 + C

2
2z3􏼐 􏼑 � 0, (23)

then

lim
t⟶∞

C
0
1(λ + β)z1 + C

1
1z2􏼐 􏼑 � 0. (24)

In view of step 1, we have

lim
t⟶∞

z1 � 0. (25)

Suppose that in the ith step, we have proven that if
limt⟶∞ρ � 0, then limt⟶∞z1 � 0, where

ρ � C
0
i (λ + β)

i
z1 + C

1
i (λ + β)

i− 1
z2 + C

2
i (λ + β)

i− 2
z3

+ C
3
i (λ + β)

i− 3
z4 + · · · + C

i− 1
i (λ + β)zi + C

i
izi+1.

(26)

Taking

Vi+1 �
1
2
ρ2, (27)

then we have _Vi+1 � ρ _ρ � − βρ2 + ρ( _ρ + βρ).

-us, we have

_Vi+1 � − βρ2 + ρ C
0
i (λ + β)

i λz1 + z2( 􏼁 + C
1
i (λ + β)

i− 1
􏼐

· λz2 + z3( 􏼁 + C
2
i (λ + β)

i− 2 λz3 + z4( 􏼁

+ C
3
i (λ + β)

i− 3 λz4 + z5( 􏼁 + · · · + C
i− 1
i (λ + β)

· λzi + zi+1( 􏼁 + C
i
i λzi+1 + zi+2( 􏼁

+ β C
0
i (λ + β)

i
z1 + C

1
i (λ + β)

i− 1
z2 + C

2
i (λ + β)

i− 2
z3􏼐

+ C
3
i (λ + β)

i− 3
z4 + · · · + C

i− 1
i (λ + β)zi + C

i
izi+1􏼑􏼑

� − βρ2 + ρ C
0
i (λ + β)

i+1
z1 +(λ + β)

i
C
0
i + C

1
i􏼐 􏼑z2􏼐

+( λ + β)
i− 1

C
1
i + C

2
i􏼐 􏼑z3

+ · · · +(λ + β) C
i− 1
i + C

i
i􏼐 􏼑zi+1 + C

i
izi+2􏼑.

(28)

Using the mathematical formula

C
m
n + C

m− 1
n � C

m
n+1, (29)

we obtain

_Vi+1 � − βρ2 + ρ C
0
i+1(λ + β)

i+1
z1 + C

1
i+1(λ + β)

i
z2􏼐

+ C
2
i+1(λ + β)

i− 1
z3

+ · · · + C
i
i+1(λ + β)zi+1 + C

i+1
i+1zi+2􏼑, i≤ n − 2.

(30)

-en, by Lemma 1, we know that if

lim
t⟶∞

C
0
i+1(λ + β)

i+1
z1 + C

1
i+1(λ + β)

i
z2 + C

2
i+1(λ + β)

i− 1
z3􏼐

+ · · · + C
i
i+1(λ + β)zi+1 + C

i+1
i+1zi+2􏼑 � 0,

(31)

then

lim
t⟶∞

z1 � 0. (32)

In the above equation, if we set i � n − 2, then one can
conclude that

lim
t⟶∞

ρ1 � 0, (33)

which implies that

lim
t⟶∞

z1 � 0, (34)

where

ρ1 � C
0
n− 1(λ + β)

n− 1
z1 + C

1
n− 1(λ + β)

n− 2
z2

+ C
2
n− 1(λ + β)

n− 3
z3 + · · · + C

n− 2
n− 1(λ + β)zn− 1 + C

n− 1
n− 1zn.

(35)

-e derivative of ρ1 is

_ρ1 � C
0
n− 1(λ + β)

n− 1 λz1 + z2( 􏼁 + C
1
n− 1(λ + β)

n− 2 λz2 + z3( 􏼁

+ C
2
n− 1(λ + β)

n− 3 λz3 + z4( 􏼁 + · · · + C
n− 2
n− 1(λ + β) λzn− 1 + zn( 􏼁

+ C
n− 1
n− 1 λzn + e

λt
g(y) − f(x) + dr − dm − ϕ(v) + v( 􏼁􏼐 􏼑.

(36)

Choose the following Lyapunov function:

Vn �
1
2
ρ21. (37)

-e derivative of Vn is

_Vn � ρ1 _ρ1 � − βρ21 + ρ1 _ρ1 + βρ1( 􏼁. (38)

-us, we have

_Vn � − βρ21 + ρ1 C
0
n− 1(λ + β)

n− 1 λz1 + z2( 􏼁 + C
1
n− 1(λ + β)

n− 2 λz2 + z3( 􏼁􏼐

+ C
2
n− 1(λ + β)

n− 3 λz3 + z4( 􏼁 + · · · + C
n− 2
n− 1(λ + β) λzn− 1 + zn( 􏼁

+ C
n− 1
n− 1 λzn + e

λt
g(y) − f(x) + dr − dm − ϕ(v) + v( 􏼁􏼐 􏼑

+ β C
0
n− 1(λ + β)

n− 1
z1 + C

1
n− 1(λ + β)

n− 2
z2 + C

2
n− 1(λ + β)

n− 3
z3􏼐 .

(39)

-us, we have
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_Vn � − βρ21 + ρ1 C
0
n− 1(λ + β)

n− 1 λz1 + z2( 􏼁 + C
1
n− 1(λ + β)

n− 2 λz2 + z3( 􏼁􏼐

+ C
2
n− 1(λ + β)

n− 3 λz3 + z4( 􏼁 + · · · + C
n− 2
n− 1(λ + β) λzn− 1 + zn( 􏼁

+ C
n− 1
n− 1 λzn + e

λt
g(y) − f(x) + dr − dm − ϕ(v) + v( 􏼁􏼐 􏼑

+ β C
0
n− 1(λ + β)

n− 1
z1 + C

1
n− 1(λ + β)

n− 2
z2 + C

2
n− 1(λ + β)

n− 3
z3􏼐

+ · · · + C
n− 2
n− 1(λ + β)zn− 1 + C

n− 1
n− 1zn􏼑

� − βρ21 + ρ1 C
0
n(λ + β)

n
z1 + C

1
n(λ + β)

n− 1
z2 + C

2
n(λ + β)

n− 2
z3􏼐

+ · · · + C
n− 2
n (λ + β)

2
zn− 1 + C

n− 1
n (λ + β)zn

+ C
n
ne

λt
g(y) − f(x) + dr − dm − ϕ(v) + v( 􏼁􏼑.

(40)

Note that

e
λtξ � C

0
n(λ + β)

n
z1 + C

1
n(λ + β)

n− 1
z2 + C

2
n(λ + β)

n− 2
z3

+ · · · + C
n− 2
n (λ + β)

2
zn− 1 + C

n− 1
n (λ + β)zn,

e
λtζ � ρ1,

(41)

ρ1e
λt

g(y) − f(x) + dr − dm − ϕ(v) + v( 􏼁

� ρ1e
λt

dr − dm − ϕ(v) − λζ − ξ − Msign e
λtζ􏼐 􏼑􏼐 􏼑

≤ − ρ1e
λtξ − λρ21 + e

λt ρ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌M − e
λtρ1Msign e

λtζ􏼐 􏼑

≤ − ρ1e
λtξ − λρ21.

(42)

By substituting (15), (41), and (42) into (40), one has

_Vn ≤ − (λ + β)ρ21. (43)

According to Lyapunov’s stability theory, we obtain

lim
t⟶∞

ρ1 � 0. (44)

-erefore, limt⟶∞z1 � 0. According to -eorem 1, we
know that system (1) and system (2) can reach exponential
synchronization. □

Remark 2. From -eorem 1, one can see that the conver-
gence rate of system (6) is λ. Since λ is variable and can be
chosen freely by the controller, -eorem 3 ensures that
system (1) and system (2) can reach exponential synchro-
nization with variable convergence rates via the saturation
control.

Remark 3. -e convergence rate of many published papers
[13–17] concerned that the exponential synchronization is
fixed which means that the convergence speed is constant.
However, from -eorem 3, it is easy to see that the con-
vergence rate of the exponential synchronization is variable.
In addition, the control schemes proposed in papers [13–17]
have not taken into consideration the effect of saturation.
Note that in reality, the physical actuator is usually subject to
saturation; therefore, our control strategy is applicable to the
practical systems.

In view of that most of the chaotic systems are 3- or
4-dimension systems, now we discuss two special cases.

Case 1. -e chaotic system is a 3-dimension system, i.e.,
n � 3. Based on -eorem 2, in this case, we obtain

v � − g(y) + f(x) − (λ + β)
3
e1 + 3(λ + β)

2
e2 + 3(λ + β)e3􏼐 􏼑

− λ (λ + β)
2
e1 + 2(λ + β)e2 + e3􏼑􏼐 􏼑

− Msign e
λt

(λ + β)
2
e1 + 2(λ + β)e2 + e3􏼐 􏼑􏼐 􏼑.

(45)

Case 2. -e chaotic system is a 4-dimension system, i.e.,
n � 4. Based on -eorem 2, in this case, we have

v � − g(y) + f(x) − (λ + β)
4
e1 + 4(λ + β)

3
e2 + 6(λ + β)

2
e3􏼐

+ 4(λ + β)e4􏼁

− λ (λ + β)
3
e1 + 3(λ + β)

2
e2 + 3(λ + β)e3 + e4􏼐 􏼑

− Msign e
λt

(λ + β)
3
e1 + 3(λ + β)

2
e2 + 3(λ + β)e3 + e4􏼐 􏼑􏼐 􏼑.

(46)

4. Numerical Simulations

In the sequel, the Genesio chaotic system and the Coullet
chaotic system are used to test the effectiveness of the
proposed method.

-e Genesio chaotic system, proposed by Genesio and
Tesi [19], is given as

_x1 � x2,

_x2 � x3,

_x3 � − a1x1 − b1x2 − c1x3 + x
2
1 + dm,

⎧⎪⎪⎨

⎪⎪⎩
(47)

where x1, x2, andx3 are state variables and a1, b1, and
c1(c1b1 < a1) are the positive real parameters. dm is the
external disturbance. When dm � 0, system (47) is chaotic
and the chaos attractor is shown in Figure 1 with
c1 � 1.2, b1 � 2.92, and a1 � 6.

In the synchronization scheme, we suppose that system
(47) is the drive system and the Coullet system [20] is the
response system which is described by
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_y1 � y2,

_y2 � y3,

_y3 � a2y1 − b2y2 − c2y3 − y
3
1 + dr + u,

⎧⎪⎪⎨

⎪⎪⎩
(48)

where y1, y2, andy3 are state variables anda2, b2, and c2 are
positive constants. dr is the external disturbance, and u is the
controller. When dr � 0 and u � 0 and
a2 � 5.5, b2 � 3.5, and c2 � 1.0, system (48) is chaotic and
the chaos attractor is depicted in Figure 2.

Based on (45), the v can be chosen as

v � − a2y1 − b2y2 − c2y3 − y
3
1􏼐 􏼑 + − a1x1 − b1x2 − c1x3 + x

2
1􏼐 􏼑

− (λ + β)
3
e1 + 3(λ + β)

2
e2 + 3(λ + β)e3􏼐 􏼑

− λ λ + tβ( 􏼁
2
e1t + n2q(λ + β)he2+xe3􏼑􏼐 􏼑

− Msign e
λt

(λ + β)
2
e1 + 2(λ + β)e2 + e3􏼐 􏼑􏼐 􏼑,

(49)

where e1 � y1 − x1, e2 � y2 − x2, and e3 � y3 − x3. Accord-
ing to -eorem 3, the exponential synchronization between
system (47) and system (48) will be reached.

In the simulation process, we set
c1 � 1.2, b1 � 2.92, and a1 � 6 and a2 � 5.5, b2 � 3.5, and
c2 � 1 such that the two systems are chaotic. In addition, for
simplicity, we take β � 1, dr � y2

1 + 0.2 cos(t), and
dm � x1 + 0.2 sin(t). -e M and u0 are selected as M � 30
and u0 � 30. -e initial conditions of the drive and response
systems are chosen as (x1(0), x2(0), x3(0)) � (2, 1, − 4) and
(y1(0), y2(0), y3(0)) � (4, − 1, 1), respectively.

-e simulation graphs with λ � 1 and λ � 3 are depicted
in Figures 3–7.

-e time response of synchronization error variables
e1, e2, and e3 are shown in Figures 3–5, respectively.-e time
response of input signal u with λ � 1 and λ � 3 are exhibited
in Figures 6 and 7, respectively. From Figures 3–5, one can
easily see that the synchronization between systems (47) and
(48) is realized. Meanwhile, one can also observe from
Figures 3–5 that the synchronization speed of λ � 3 is faster
than that of λ � 1.
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Figure 1: -e chaos attractor of system (47) with
x1(0) � 2, x2(0) � 1, andx3(0) � − 4.
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Figure 2: -e chaos attractor of system (48) with
y1(0) � 4, y2(0) � − 1, andy3(0) � 1.
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5. Conclusions

In this paper, the exponential synchronization of a class of
n D chaotic systems with external disturbances has been
investigated via the coordinates transformation method.
Based on the Lyapunov stability theory, a new saturation
controller is presented to ensure that the coupled chaotic
systems can achieve synchronization exponentially. -e
proposed controller contains the convergence rate λ which
can be used to control the convergence speed of the syn-
chronization. By selecting different values of λ, the expo-
nential synchronization will be reached with any
prespecified exponential convergence rate. Numerical ex-
amples are proposed to demonstrate the usefulness and
merits of our presented scheme.
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