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In this paper, the finite-time stabilization and destabilization of a class of quaternion-valued neural networks (QVNNs) with
discrete delays are investigated. In order to surmount the difficulty of noncommutativity of quaternion, a new vector matrix
differential equation (VMDE) is proposed by employing decomposition method. And then, a nonlinear controller is designed to
stabilize the VMDE in a finite-time interval. Furthermore, under that controller, the finite-time stability and instability of the
QVNNs are analyzed via Lyapunov function approach, and two criteria are derived, respectively; furthermore, the settling time is
also estimated. At last, by two illustrative examples we verify the correctness of the conclusions.

1. Introduction

In 1961, in order to investigate the transient performance of
the system, Perter Dorato gave a definition of short-time
stability, which was also called finite-time stability later [1].
*ere are some differences between finite-time stability and
classical stability theory, Lyapunov stability. Actually, the
finite-time stability mainly reveals the transient dynamic
characteristics of the system in a short and desired time
interval; however, the Lyapunov stability mainly reveals
dynamical behavior of the system in an infinite time in-
terval [2–4]. For a long time, the research concerning the
finite-time stability only focused on the stability analysis.
However, very limited references considered the problem
of controllability due to the difficulty in designing the
control strategy [3,5–8]. In fact, many practical systems are
required to reach their desired state quickly, such as flight
control system, communication network system, and robot
control [9–16].*erefore, lots of scholars are devoted to the
controllability of finite-time stability, and some interesting
and meaningful results have been reported [2,4,9,17–28].

Nersesov et al. extended the finite-time stability theory and
gave a control strategy to reach finite-time stability [2]. For
the delayed complex-valued memristive neural networks, a
new nonlinear delayed controller was designed to get the
finite-time stabilization [4]. When discussing scalar linear
systems, a finite-time controller was proposed in [22].
Based on state and output feedback, several especial finite-
time controllers were firstly proposed for the stochastic
system in [23]. On the other hand, it is also interesting to
destabilize a stable system in a finite-time interval, such as
preventing eavesdropping and signal encryption. Wang
and Shen proposed some finite-time destabilization alge-
braic criteria for memristive neural networks, and a more
general controller was designed to realize the finite-time
destabilization for delayed complex-valued memristive
neural networks [24]. However, the controllers designed in
existing references are invalid to QVNNs because of the
noncommutativity of quaternion. And many effective
methods for studying the finite-time stability of QVNNs
are yet to be discovered, which stimulates us to do this
research.
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Like x � c + di + ej + fk, c, d, e, f ∈ R, we call number
x a quaternion proposed in 1843, and it satisfies the fol-
lowing rule:

i × i � j × j � k × k � − 1, i × j � − j × i � k,

j × k � − k × j � i, k × i � − i × k � j.
(1)

Quaternion has been widely used in space control,
computer 3D image processing, and attitude control of
spacecraft [29]. Up to now, the neural network has obtained
great development in many fields, such as signal processing,
artificial intelligence, and optimization. Particularly, for the
real-valued neural networks (RVNNs),many researchers have
carried out a lot of work [30–33], as well as complex-valued
neural networks (CVNNs) [3,4,34–37]. Since there are three
imaginary parts of quaternion, combined with many ad-
vantages of neural network, QVNNs have many properties
that RVNNs and CVNNs do not have and have been applied
in many practical fields, such as high-dimensional data
processing, image compression, pattern recognition, and
optimization. While, much fewer attentions are given to the
dynamical behavior of QVNNs [20,38–47]. Li and Zheng
investigated the globally exponential passivity of quaternion-
valued memristor-based neural networks with time delays
[29]. Tu et al. investigated the globally asymptotical stability
and exponential stability of a class of QVNNs with mixed
delays via nonseparating technologies [42]. Based on frac-
tional-order QVNNs, quasi-synchronization and bifurcation
were also considered [43]. Nevertheless, according to our
knowledge, it is still open and significative to study the finite-
time stabilization of delayedQVNNs, such as how to carry out
the finite-time stabilization of QVNNs and how to design the
controller to stabilize the instable systems remain unresolv-
able. Some new theory and methods should be explored to
resolve those problems. We mainly want to discuss the finite-
time stability of QVNNs in this paper. By constructing a new
vector Lyapunov candidate function and designing a non-
linear vector-matrix controller, both finite-time stabilization
and destabilization of delayed QVNNs are analyzed. Fur-
thermore, we only need to adjust the appropriate parameters,
and the finite-time stabilization and destabilization can be
realized. We sort out the chief contributions of this article as
follows:

(1) It is the first time that the finite-time stabilization and
destabilization of QVNNs with discrete delays are
studied. A new vector Lyapunov function is con-
structed and a new nonlinear vector-matrix controller
is designed to investigate the aforementioned problem.

(2) Based on the new developed method, some easily
checked results for the finite-time stabilization and
destabilization of QVNNs are provided, respectively.
Compared to [4], the obtained criteria are more
concise and natural.

(3) *e influence of initial condition of the system and
parameter of the designed controller to the settling
time is analyzed in detail.

*e remaining sections of this article will be arranged as
follows. In Section 2, an equivalent VMDE of QVNNs is

established and several correlative definitions, lemmas, and
assumptions are presented. In Section 3, a new nonlinear
vector-matrix controller is given, and both the finite-time
destabilization and stabilization of QVNNs with discrete
delays is analyzed. In Section 4, the validity of our proposed
criteria is checked by two illustrative examples. In Section 5,
a summary of the paper is given and some thoughts on the
future work of finite-time problems are conceived.

Notations. *e symbol R expresses the real number set, the
symbol C expresses complex number set, and the symbol Q
expresses quaternion set. We call Rm× l and Qm × l all m × l

real matrices set and quaternion matrices set, respectively.
Ql is said to be l-dimensional quaternion space. A contin-
uous mapping from [t0 − τ, t0] to Ql is
ϕ ∈ C([t0 − τ, t0];Q

l). *e transpose of B is noted by symbol
BT. We can use B> 0 (B< 0) to represent a positive definite
(negative definite) matrix, respectively. A vector
y � (y1, y2, . . . , yl)

T ∈ Rl < 0 means that yi < 0, i � 1,

. . . , l. *e 1-norm of vector Q ∈ Rl is written as
‖Q‖ � 

l
i�1 |Q|i. When b(t) � (b1(t), b2(t), . . . , bl(t))T ∈ Rl

and c ∈ R, |b(t)|c � (|b1(t)|c, |b2(t)|c, . . . , |bl(t)|c)T,
sgn(b(t)) � (sgn(b1(t)), sgn(b2(t)), . . . , sgn(bl(t)))T.
|B| � (|bij|) ∈ Rl×l, where B � (bij) ∈ Rl×l. A continuous
function α: [0, a)⟶ [0, +∞) is a class K function if it is
strictly increasing and α(0) � 0. I � (1, 1, . . . , 1)T ∈ Rl. E is
an identity matrix.

2. Preliminaries

Based on the following QVNNs model with discrete time-
varying delays, we will analyze how to stabilize and desta-
bilize the QVNNs in a finite- and short-time interval:

_x(t) � − Cx(t) + Mg(x(t)) + Ng(x(t − τ(t))) + I(t),

(2)

where x(t) � (x1(t), x2(t), . . . , xl(t)) ∈ Ql is called a l-di-
mensional state variable at time t, C � diag c1,

c2, . . . , cl} ∈ Rl×l is called a self-feedback link weight matrix
with ci > 0, i � 1, 2, . . . , l, M, N∈ Ql×l denote link weight
matrices, g(x(·)) � (g1(x1(·)), g2(x2(·)), . . . , gl(xl(·)))T

∈ Ql is activation function, τ(t) satisfies
0< τ(t)< τ, 0< τ < +∞, which is the time-varying delay,
and I(t) � (I1(t), I2(t), . . . , Il(t))T ∈ Ql denotes outer
input vector which will be designed later. *e initial con-
dition is given by x(s) � ψ(s) ∈ Ql, s ∈ [t0 − τ, t0], where
ψ(s) � ψ(r)(s) + ψ(i)(s)i + ψ(j)(s)j + ψ(k)(s)k.

Let

x(t) � x
(r)

(t) + x
(i)

(t)i + x
(j)

(t)j + x
(k)

(t)k,

M � M
(r)

+ M
(i)

i + M
(j)

j + M
(k)

k,

N � N
(r)

+ N
(i)

i + N
(j)

j + N
(k)

k,

g(x(t)) � g
(r)

x
(r)

(t)  + g
(i)

x
(i)

(t) i

+ g
(j)

x
(j)

(t) j + g
(k)

x
(k)

(t) k,

(3)
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where x(p)(t), g(p)(x(p)(t)) ∈ Rl and M(p), N(p) ∈ Rl×l,
p � r, i, j, k.

Remark 1. In general, let x � x(r) + x(i)i + x(j)j + x(k)k, and
the activation function g(x) should be written as follows:

g(x) � g
(r)

x
(r)

, x
(i)

, x
(j)

, x
(k)

  + g
(i)

x
(r)

, x
(i)

, x
(j)

, x
(k)

 i

+ g
(j)

x
(r)

, x
(i)

, x
(j)

, x
(k)

 j

+ g
(r)

x
(r)

, x
(i)

, x
(j)

, x
(k)

 k.

(4)

However, in this paper, to reduce the difficulty of re-
search and simplify the results of finite-time stability of

QVNNs, we employ a special activation function introduced
above, such as the activation functions of illustrative ex-
amples later.

By means of decomposition methods as those used in
[41,47], we decompose QVNNs (2) into four RVNNs equally
and combine them into a equivalent VMDE as follows

_Q(t) � − CQ(t) + Ag(Q(t)) + Bg(Q(t − τ(t))) + I(t),

(5)

Q(s) � Ψ(s), s ∈ t0 − τ, t0 , (6)

where

C � diag C, C, C, C{ } ∈ R4l×4l
,

A �

M
(r)

− M
(i)

− M
(j)

− M
(k)

M
(i)

M
(r)

− M
(k)

M
(j)

M
(j)

M
(k)

M
(r)

− M
(i)

M
(k)

− M
(j)

M
(i)

M
(r)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R4l×4l

, B �

N
(r)

− N
(i)

− N
(j)

− N
(k)

N
(i)

N
(r)

− N
(k)

N
(j)

N
(j)

N
(k)

N
(r)

− N
(i)

N
(k)

− N
(j)

N
(i)

N
(r)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R4l×4l

,

Q(t) � x
(r)

(t)
T
, x

(i)
(t)

T
, x

(j)
(t)

T
, x

(k)
(t)

T
 

T
∈ R4l

,

Ψ(s) � Ψ � ψ(r)
(t)

T
,ψ(i)

(t)
T
,ψ(j)

(t)
T

,ψ(k)
(t)

T
 

T
∈ R4l

,

I(t) � I
(r)
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T
, I

(i)
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T
, I

(j)
(t) 

T
, I

(k)
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T
 

T
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(r)
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T
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(i)
x

(i)
(t)  

T
, g

(j)
x

(j)
(t)  

T
, g

(k)
x

(k)
(t)  

T
 

T

∈ R4l
,

g(Q(t − τ(t))) � g
(r)

x
(r)

(t − τ(t))  
T
, g

(i)
x

(i)
(t − τ(t))  

T
, g

(j)
x

(j)
 t − τ(t))  

T
,

g
(k)

x
(k)

(t − τ(t)) 
T
∈ R4l

.

(7)

Remark 2. In fact, system (5) is a real-valued system. Evi-
dently, the dynamic characteristics of QVNNs (2) are in
accord with those of system (5) by considering that
x(t)=x(r)(t)+ x(i)(t)i+x(j)(t)j+x(k)(t)k corresponds to
Q(t). *erefore, one only needs to analyze system (5)’s
dynamical characteristics instead of system (2), and the
difficulty of noncommutativity of quaternion can be
overcome.

In order to explicitly present main results, some defi-
nitions, assumptions, and lemmas should be introduced
firstly.

Assumption 1. g: Rl⟶ Rl (or g � (g1, g2, . . . , gl)
T),

which is a continuous function, is called a function of class
Δ α1, α2, . . . , αl ; if g(x) satisfies gi(0) � 0 and for each
a, b ∈ R, a≠ b, there exist αi > 0 such that

0≤
gi(a) − gi(b)

a − b
≤ αi, i � 1, 2, . . . , l, (8)

and let Δ � diag α1, α2, . . . , αl .

Definition 1 (see [7]). System (5)can reach a stable state in a
finite time if a initial condition Ψ is given such that the
system (5) is Lyapunov stable and any solution Q(t,Ψ) of (5)
satisfies Q(t,Ψ) � 0, ∀t≥T(Ψ), where
T(Ψ): R4l⟶ R+ ∪ 0{ } is the settling time function.

Remark 3. *e convergence time interval of finite-time
stability must be given in advance, but it is difficult to es-
timate the upper boundary of the time interval. In this paper,
some new vector-matrix analysis techniques are developed
to derive the upper boundary, and the vector-matrix tech-
niques can be used to investigate the finite-time synchro-
nization of QVNNs in future work.

Assumption 2. If Assumption 1 holds, one obtains
g � ((g(r))T, (g(i))T, (g(j))T, (g(k))T)T = ( g1, g2, · · ·, g4l)

T:
R4l⟶ R4l, g ∈ Δ α1, α2, . . . , αl, α1, α2, . . . , αl, α1,
α2, . . . , αl, α1, α2, . . . , αl} and Δ � diag Δ,Δ,Δ,Δ{ }.

Lemma 1 (see [48]). �e system VMDE (5) is called to be
finite-time stable; if under Assumption 1 and the initial
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condition ψ ∈ Ω, a continuous function
V: [0, +∞) ×Ω⟶ R+ (α, r ∈K ) can satisfy:

(1) V(t, 0) � 0, α(‖ψ‖)≤V(t,ψ), t ∈ [0, +∞).

(2) D+V(t,ψ)≤ − r(V(t,ψ))with
ε
0(dz/r(z))< +∞,

for allε> 0,ψ ∈ Ω.

And the settling time is estimated to be
T≤ 

V(0,ψ)

0 (dz/r(z)). Moreover, when r(V) � kVσ

(k> 0, 0< σ < 1), the settling time can be estimated by the
following inequality:

T≤ 
V(0,ψ)

0

dz

r(z)
�

V
1− σ

(0,ψ)

k(1 − σ)
. (9)

Lemma 2 (see [49]). Let Qj ≥ 0 for j � 1, 2, . . . , l, and
0< a≤ 1, b> 1; then, the following inequalities hold:



l

j�1
Qj

⎛⎝ ⎞⎠

a

≤ 
l

j�1
Q

a
j , l

1− b


l

j�1
Qj

⎛⎝ ⎞⎠

b

≤ 
l

j�1
Q

b
j. (10)

Lemma 3 (see [48]). If system (5) can reach a finite-time
stable state, then we can find a function r ∈K, which is a

continuous and positive definite, such that, for all Lyapunov
functionsV(t,ψ) (V(t,ψ) is the same asV(t,ψ) in Lemma 1),

D
−

V(t,ψ)≥ − r(V(t,ψ)), (11)


ε

0

1
r(z)

dz < +∞, (12)

always hold.

Remark 4. Lemma 1 is a sufficient condition for judging
finite-time stability, and Lemma 3 is a necessary condition
about finite-time stability. Lemma 3 can be used when we
judge finite-time instability of that QVNN. Lemma 2 will be
used to derive D+V(t,ψ)≤ − r(V(t,ψ)) and D− V(t,ψ)≥ −

r(V(t,ψ)) in the proof of *eorems 1 and 2 later.

3. Main Results

In this section, by designing several suitable nonlinear
controllers, some criteria are proposed to carry out stabi-
lization and destabilization of system (5) in a finite time.*e
following controllers are designed:

I
(r)

(t) � − λ(r)
1 x

(r)
(t) − λ(r)

2 x
(r)

(t)



σ1

 
T

sgn x
(r)

(t)  − θ(r)
x

(r)
(t − τ(t))



 
T

sgn x
(r)

(t) ,

I
(i)

(t) � − λ(i)
1 x

(i)
(t) − λ(i)

2 x
(i)

(t)



σ1

 
T

sgn x
(i)

(t)  − θ(i)
x

(i)
(t − τ(t))



 
T

sgn x
(i)

(t) ,

I
(j)

(t) � − λ(j)
1 x

(j)
(t) − λ(j)

2 x
(j)

(t)



σ1

 
T

sgn x
(j)

(t)  − θ(j)
x

(j)
(t − τ(t))



 
T

sgn x
(j)

(t) ,

I
(k)

(t) � − λ(k)
1 x

(k)
(t) − λ(k)

2 x
(k)

(t)



σ1

 
T

sgn x
(k)

(t)  − θ(k)
x

(k)
(t − τ(t))



 
T

sgn x
(k)

(t) ,

(13)

and the vector form
I(t) � − Λ1Q(t) − Λ2Q

σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t)),

(14)

where σ1 > 0, and λ(p)
1 , λ(p)

2 , θ(p) ∈ R, p � r, i, j, k,

Λ1 � diag λ(r)
1 , . . . , λ(r)

1 , λ(i)
1 , . . . , λ(i)

1 , λ(j)
1 , . . . , λ(j)

1 , λ(k)
1 , . . . , λ(k)

1  ∈ Q4l×4l
,

Λ2 � diag λ(r)
2 , . . . , λ(r)

2 , λ(i)
2 , . . . , λ(i)

2 , λ(j)
2 , . . . , λ(j)

2 , λ(k)
2 , . . . , λ(k)

2  ∈ Q4l×4l
,

Θ � diag θ(r)
, . . . , θ(r)

, θ(i)
, . . . , θ(i)

, θ(j)
, . . . , θ(j)

, θ(k)
, . . . , θ(k)

  ∈ Q4l×4l
,

Qt � diag x
(r)
1 (t)



, . . . , x
(r)
l (t)



, x
(i)
1 (t)



, . . . , x
(i)
l (t)



, x
(j)
1 (t)



, . . . , x
(j)

l (t)


, x
(k)
1 (t)



, . . . , x
(k)
l (t)



  ∈ Q4l×4l
,

Qt− τ � diag x
(r)
1 (t − (τ)t)



, . . . , x
(r)
l (t − (τ)t)



, x
(i)
1 (t − (τ)t)



, . . . , x
(i)
l (t − (τ)t)



, x
(j)
1 (t − (τ)t)



, . . . , x
(j)

l (t − (τ)t)


,

x
(k)
1 (t − (τ)t)



, . . . , x
(k)
l (t − (τ)t)



 ∈ Q
4l×4l

,

sgn(Q(t)) � sgn x
(r)

(t) 
T

, sgn x
(i)

(t) 
T
, sgn x

(j)
(t) 

T
, sgn x

(k)
(t) 

T
 

T

∈ Q4l
.

(15)
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Theorem 1. When Assumptions 1 and 2 hold, 0< σ1 < 1 and
Λ2 > 0, given positive diagonal matrices Λ1 and Θ such that

I
T

− C + Λ1  +|A|Δ < 0,

I
T
(|B|Δ − Θ )< 0,

(16)

then under controller (14), the VMDE (5) will reach a stable
state in a finite-time interval. T is the settling time and can be
prescribed by T≤ (1/λ2min(1 − σ1))V(0)1− σ1 , where
λ2min � min λ(μ)

2 , μ � r, i, j, k.

Proof. *e following Lyapunov candidate functional will be
considered by us:

V(t) � ‖Q(t)‖. (17)

Based on the solution trajectories of system (5) to cal-
culate the upper-right Dini derivative of V(t), one obtains

D
+
V(t) � sgn(Q(t))

T _Q(t)

� sgn(Q(t))
T

− CQ(t) + Ag(Q(t)) + Bg(Q(t − τ(t))) − Λ1Q(t) − Λ2Q
σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t)) 

≤ − I
T C + Λ1 |Q(t)| + I

T
|A‖g(Q(t))| + I

T
|B‖g(Q(t − τ(t)))| − I

TΛ2Q
σ1
t I − I

TΘQt− τI

≤ − I
T C + Λ1 |Q(t)| + I

T
|A|Δ|Q(t)| + I

T
|B|Δ|Q(t − τ(t))| − I

TΘQt− τI − I
TΛ2Q

σ1
t I

≤ − I
T C + Λ1 |Q(t)| + I

T
|A|Δ|Q(t)| + I

T
(|B|Δ − Θ )Qt− τI − I

TΛ2Q
σ1
t I

� I
T

− C + Λ1  + |A|Δ |Q(t)| + I
T
(|B|Δ − Θ )|Q(t − τ(t))| − I

TΛ2Q
σ1
t I,

(18)

Here, by Assumption 2, |gi(Qi(t)) − gi(0)|≤ αi|Qi(t) −

0 | (i � 1, . . . , 4l) is used.
In view of IT[− (C + Λ1) + |A|Δ]< 0, IT(|B|Δ − Θ )< 0,

and Lemma 2, the following inequality can be established:

D
+
V(t)≤ − I

TΛ2Q
σ1
t I

≤ − λ2min I
T

QtI 
σ1

� − λ2min‖Q(t)‖
σ1

� − λ2minV
σ1(t),

(19)

where λ2min � min λ(μ)
2 , μ � r, i, j, k,Λ2 > 0.

And for all ε> 0, one has


ε

0

1
λ2minz

σdz �
1

λ2min 1 − σ1( 
ε1− σ1 < +∞. (20)

Hence, by Lemma 1, we obtain that system (5) is finite-
time stable under controller (14). And the settling time is
prescribed by

T≤ 
V(0)

0

1
λ2minz

σ1( 
dz �

1
λ2min 1 − σ1( 

V(0)
1− σ1 . (21)

□

Remark 5. Obviously, the settling time is related to the
parameters λ2min and V(0) under 0< σ1 < 1. *e results

obtained here is more general; let σ1 choose some special
value, and the exponentially stable and power stable can be
obtained. If σ1 � 1, the VMDE (5) is exponentially stable.
However, when σ1 > 1, t � 

V(0)

V(t)
1/λ2minzσ1dz � V(t)1− σ1 −

V(0)1− σ1 /λ2min(σ1 − 1) or V(t) � [V(0)1− σ1 + λ2min
(σ1 − 1)t]1/1− σ ; then, we know VMDE (5) is power stable
with power rate (1/1 − σ1).

Theorem 2. When Assumptions 1 and 2 hold, σ1 > 1 and
Λ2 > 0, given negative definite diagonal matrices Λ1 and Θ ,
such that

I
T C + Λ1 +|A|Δ < 0, (22)

I
T
[|B|Δ + Θ ]< 0, (23)

then under controller (14), the VMDE (5) cannot reach a
stable state in a finite time.

Proof. Choose the same Lyapunov candidate function as
*eorem 1:

V(t) � ‖Q(t)‖. (24)

Computing the lower-right Dini derivative of V(t) based
on the solution trajectories of system (5), one
obtains&ecmath;
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D
−

V(t) � sgn(Q(t))
T _Q(t)

� sgn(Q(t))
T

− ĈQ(t) + Âĝ(Q(t)) + B̂ĝ

· − Λ1Q(t) − Λ2Q
σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t))( 

≥ − I
T

Ĉ + Λ1 |Q(t)| − I
T
|Â‖ĝ(Q(t)) − I

T
B̂



�����ĝ

· (Q(t − τ(t)) − I
T

 Λ2Q
σ1
t I − I

TΘQt− τI

≥ − I
T

Ĉ + Λ1 |Q(t)| − I
T
|Â|Δ̂|Q(t)| − I

T
|B̂|Δ̂|Q

· (t − τ(t))| − I
TΘQt− τI − I

TΛ2Q
σ1
t I

≥ − I
T

Ĉ + Λ1 |Q(t) − I
T



Â|Δ̂|Q(t) − I
T

 |B̂|Δ̂ + Θ )

· Qt− τI − I
TΛ2Q

σ1
t I

� − I
T

Ĉ + Λ1 +|Â|Δ̂ |Q(t)| − I
T
(|B̂|Δ̂ + Θ )|Q

· (t − τ(t))| − I
T

 Λ2Q
σ1
t I.

(25)
Here, by Assumption 2, |gi(Qi(t)) − gi(0)|≤ αi|Qi(t) −

0|(i � 1, . . . , 4l) is employed.
And it follows from C + Λ1 + |A|Γ < 0, |B|tΓn + qΘh < 0,

and Lemma 2 that

D
−

V(t)≥ − I
TΛ2Q

σ1
t I

≥ − (4l)
1− σ1( )λ2max I

T
QtI 

σ1

� − (4l)
1− σ1( )λ2max‖Q(t)‖

σ1 ,

(26)

where λ2max � max λ(p)
2 , p � r, i, j, k, Λ2 > 0.

*erefore,

D
−

V(t) ≥ − (4l)
1− σ1( )λ2maxV

σ1(t). (27)

However, by σ1 > 1, for all ε> 0,


ε

0

1

(4l)
1− σ1( )λ2maxz

σ1
dz �

(4l)
σ1− 1( )

λ2max 1 − σ1( 

· ε1− σ1 − lim
z⟶0+

z
1− σ1  � +∞.

(28)

By Lemma 1, one obtains that system (5) under con-
troller (14) cannot be finite-time stable. □

Remark 6. *e time-varying delays of system (5) under
controller (14) can be understood as follows. In fact, the third
term − ΘQt− τsgn(Q(t)) in controller (14) and scaling tech-
niques is employed to reduce its influence. And if the time
delays are infinite, the system cannot achieve finite-time sta-
bilization; therefore, τ(t) is supposed to be finite. Furthermore,
we cannot ignore time delays’ influence when discussing the
short-time stability of various dynamical systems. However,
fewer literature utilized the time delays in their controllers;

hence, this paper attempts to design a nonlinear controller with
time delays, which is a meaningful work.

Remark 7. IT[− (C + Λ1) + |A|Δ]< 0, as well as (16), (22),
and (23), indicate the column summations of square ma-
trices are negative. And they are algebraic expressions which
can be easily checked.

Remark 8. Zhang et al. [4] considers stability and instability
of a complex value neural network in a finite time. In this
paper, the analysis method of [4] is generalized to the finite-
time stability and instability of QVNNs. Compared to [4],
though the derivation process of this paper is very brief, it
can also explain the stability and instability of QVNNs well.
*erefore, the vector-matrix analysis method can be widely
used for the other stability analysis of neural networks.
Furthermore, there is no result to discuss the finite-time
stability and instability of QVNNs with discrete delays. *is
paper is one of the first to do this attempt.

4. Illustrative Examples

In this section, the validity and superiority of the proposed
criteria will be checked via two illustrative examples. And we
will show that our vector-matrix methods are more suitable
for calculating some problems of high-dimension systems by
computer programming.

Example 1. Consider the QVNNs model as follows:

_x(t) � − Cx(t) + Mg(x(t)) + Ng(x(t − τ(t))) + I(t),

(29)

where

M �
− 6 + 5i + 5j + 5k − 4 + 2i − 3j + 1k

4 − 2i + 3j + 1k 9 + 5i + 1j + 6k

⎛⎝ ⎞⎠,

N �
3 + 2i + 3j + 1.3k 4 + 4i − 4j − 2k

− 4 − 4i + 4j + 3k 2 + 2i + 3j + 4k

⎛⎝ ⎞⎠,

C � diag 18, 7{ }, τ(t) � 0.45 sin t + 0.35,

g(x(t)) �
x

(r)
(t) + 1



 − x
(r)

(t) − 1




2

+
x

(i)
(t) + 1



 − x
(i)

(t) − 1




2
i

+
x

(j)
(t) + 1



 − x
(j)

(t) − 1




2
j

+
x

(k)
(t) + 1



 − x
(k)

(t) − 1




2
k.

(30)
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Under I(t) � 0 and initial condition

x(s) �
2
3  +

− 3
2.5 i +

− 3
− 3.1 j +

3
4 k, s ∈ [0.8, 0],

the state trajectories of system (29) are shown in Figure 1(a),
which shows that system (29) is unstable. By Assumptions 1
and 2, choose Δ � diag 0.01, 0.01, 0.01, 0.01, 0.01,{

0.01, 0.01, 0.01}. To reach the finite-time stable conditions of
*eorem 1, by (14), the following controller is designed:

I(t) � − Λ1Q(t) − Λ2Q
σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t)),

(31)

where

σ1 � 0.5,

Λ2 � diag 20, 20, 20, 20, 20, 20, 20, 20{ }.
(32)

*en, when consider appropriate Δ,Λ1 such that
− C − Λ1 + AΔ< 0, the LMI toolbox inMATLAB is used, and
then it is easy to check IT(− C − Λ1 + AΔ)< 0. So, the fol-
lowing feasible solutions of Λ1 and Θ can be obtained:

Λ1 � diag 417.7830, 417.7830, 417.7830, 417.7830, 417.7830, 417.7830, 417.7830, 417.7830{ },

Θ � diag 423.9499, 423.9499, 423.9499, 423.9499, 423.9499, 423.9499, 423.9499, 423.9499{ },

I
T

− C − Λ1 +|A|Δ  � − 434.5630, − 423.9430, − 434.4430, − 423.9030, − 434.5030, − 423.8330, − 434.2130, − 423.2530{ }< 0,

I
T
(− Θ + |B|Δ) � − 423.3759, − 422.9399, − 422.9669, − 422.8299, − 423.1369, − 422.8899, − 422.9669, − 422.8899{ }< 0.

(33)

*erefore, condition (16) of *eorem 1 can be veri-
fied. Hence, by *eorem 1, under controller (31), system
(29) can reach the stable state in finite time, and one can
estimate the settling time T≤ 0.9716. Furthermore, the
state trajectories of x(t) of system (29) under controller
(31) are shown in Figure 1(b), which shows that any
solution of system (29) can converge to zero in a finite-
time interval. *erefore, the correctness of *eorem 1 is
verified.

Now, we analyze the effect of the parameter Λ2 and
initial condition on the settling time T. When initial con-
dition x(t) � 0, obviously, T � 0. Fix other values and in-
crease the value λ2min; the settling time will decrease, which
can be shown in Figure 2. *erefore, the settling time in
*eorem 1 is reasonable.

Example 2. Consider the QVNNs model as follows:

_x(t) � − Cx(t) + Mg(x(t)) + Ng(x(t − τ(t))) + I(t),

(34)

where

M �
− 3 + 2i + 2j − 4k − 0.4 − 2i − 3j + 1k

0.4 + 2i + 3j − 1k 3 + 0.5i + 1j + 1.9k

⎛⎝ ⎞⎠,

N �

2 + 2i + 3j + 1.3k − 1.4 + 0.4i − 4j − 1.2k

1.4 − 0.4i + 4j + 1.2k 2 + 2i + 3j + 4k

⎛⎝ ⎞⎠,

C � diag 20, 20{ },

τ(t) � 0.45 sin t + 0.1,

g(x(t)) �
x

(r)
(t) + 1



 − x
(r)

(t) − 1






2

+
x

(i)
(t) + 1



 − x
(i)

(t) − 1




2
i

+
x

(j)
(t) + 1| − |x

(j)
(t) − 1





2
j

+
x

(k)
(t) + 1| − x

(k)
(t) − 1









2
k.

(35)
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Figure 1: *e state trajectories of xr(t), xi(t), xj(t), xk(t) of QVVNs (29). (a) With I(t)� 0. (b) Under controller (31).
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Figure 2: Continued.
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Figure 2: Effect of the change of Λ2 on the settling time of QVNNs model (29). (a) Λ2 � 20×E, (b) Λ2 � 100× E, (c) Λ2 � 500×E, and
(d) Λ2 � 750×E.
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Figure 3: *e state trajectories of x(r)(t), x(i)(t), x(j)(t), andx(k)(t) of QVVNs model (34). (a) With I(t)� 0. (b) Under controller (31).
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Under I(t) � 0 and initial condition

x(s) �
2

− 1  +
3
1.2 i +

− 3.2
− 2.1 j +

− 2
1 k, s ∈ [0.55,

0], the state trajectories of system (34) are shown in
Figure 3(a), which shows that system (34) is stable. By
Assumptions 1 and 2, we let Δ � diag 5, 5, 5, 5, 5, 5, 5, 5{ }. To
reach the finite-time instable conditions of *eorem 1, by
(14), the following controller is designed:

I(t) � − Λ1Q(t) − Λ2Q
σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t)),

(36)

where

σ1 � 1.1,

Λ2 � diag 10, 10, 10, 10, 10, 10, 10, 10{ }.
(37)

*en, similarly, to realize
C + Λ1 + |A|Δ< 0, Θ + |B|Δ< 0, the LMI toolbox in MAT-
LAB is used and the following feasible solutions ofΛ1 and Θ
can be obtained:

Λ1 � diag − 18361, − 18361, − 18361, − 18361, − 18361,{

− 18361, − 18361, − 18361},

Θ � diag − 18337, − 18337, − 18337, − 18337, − 18337,{

− 18337, − 18337, − 18337}.

(38)

And it so happened that

I
T C + Λ1 +|A|Δ  � 104 ∗ − 1.7779, − 1.8002, − 1.7779,{

− 1.7897, − 1.7874, − 1.8040, − 1.7931,

− 1.7954}< 0,

I
T

(Θ +|B|Δ) � 104 ∗ − 1.8023, − 1.7753, − 1.7595,{

− 1.7582, − 1.8032, − 1.8019, − 1.7937,

− 1.7924}< 0,

(39)

*erefore, conditions (22) and (23) of *eorem 2 can be
verified. *e state trajectories of x(t) of system (34) are
shown in Figure 3(b), which shows that the state variables of
system (34) can become big enough from zero point in a
finite time, i.e., system (34) can reach the instable state in a
finite-time interval under (36). Hence, the correctness of
*eorem 2 is verified.

Remark 9. *rough the analysis of these two examples, the
advantages of the vector-matrix method processing finite-
time stabilization and destabilization of QVNNs are
checked, which is easy to calculate by computer program-
ming. Furthermore, this approach is applicable when dis-
cussing other high-dimensional systems.

5. Conclusion

In this paper, we analyze two interesting problems, the fi-
nite-time stabilization and destabilization of QVNNs with
discrete delays, respectively. Utilizing the decomposition
method, a new, vector-matrix and suitable nonlinear con-
troller is constructed to carry out the finite-time stabilization
and destabilization of the discussed QVNNs, which is used
by fewer references. Furthermore, the obtained criteria are
compact, effective, and easily checked. *rough two nu-
merical examples, the correctness, the convenience, and the
applicability of the two criteria are all verified. In addition,
the problems of fixed-time stabilization and preassigned-
time control of QVNNs are also interesting and challenging,
which we will consider in the near future. Moreover, in this
paper, the activation functions in model (2) are special
functions; hence, we will also discuss the finite-time stability
of QVNNs with more general activation functions in future
work.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was supported in part by the National Natural
Science Foundation of China under Grant no. 61877033,
Natural Science Foundation of Shandong Province under
Grant no. ZR2019MF021, Natural Science Foundation
Project of Chongqing, China, under Grant no.
cstc2018jcyjAX0588, and Scientific and Technological Re-
search Program of Chongqing Municipal Education Com-
mission under Grant no. KJQN201901206.

References

[1] P. Dorato, “Short time stability in linear time-varying sys-
tems,” in Proceedings of the IRE International Convention
Record Part, pp. 83–87, New York, NY, USA, January 1961.

[2] S. G. Nersesov, C. Nataraj, and J. M. Avis, “Design of finite-
time stabilizing controllers for nonlinear dynamical systems,”
International Journal of Robust and Nonlinear Control, vol. 19,
no. 8, pp. 900–918, 2009.

[3] R. Rakkiyappan, G. Velmurugan, and J. Cao, “Finite-time
stability analysis of fractional-order complex-valued mem-
ristor-based neural networks with time delays,” Nonlinear
Dynamics, vol. 78, no. 4, pp. 2823–2836, 2014.

[4] Z. Zhang, X. Liu, D. Zhou, C. Lin, J. Chen, and H. Wang,
“Finite-time stabilizability and instabilizability for complex-
valued memristive neural networks with time delays,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 48, no. 12, pp. 2371–2382, 2018.

10 Complexity



[5] L. Weiss, “On uniform and nonuniform finite-time stability,”
IEEE Transactions on Automatic Control, vol. 14, no. 3,
pp. 313-314, 1969.

[6] P. Dorato, L. Weiss, and E. Infante, “Comment on “Finite-
time stability under perturbing forces and on product
spaces”,” IEEE Transactions on Automatic Control, vol. 12,
no. 3, p. 340, 1967.

[7] W. Lu, X. Liu, and T. Chen, “A note on finite-time and fixed-
time stability,” Neural Networks, vol. 81, pp. 11–15, 2016.

[8] D. Yang, X. Li, J. Shen, and Z. Zhou, “State-dependent
switching control of delayed switched systems with stable and
unstable modes,” Mathematical Methods in �e Applied
Sciences, vol. 41, no. 16, pp. 6968–6983, 2018.

[9] F. Wang, J. Wang, K. Wang, C. Hua, and Q. Zong, “Finite-
time control for uncertain systems and application to flight
control,” Nonlinear Analysis-Modelling and Control, vol. 25,
no. 2, pp. 163–182, 2020.

[10] Y. Hong, Y. Xu, and J. Huang, “Finite-time control for robot
manipulators,” Systems & Control Letters, vol. 46, no. 4,
pp. 243–253, 2002.

[11] X. Yu, Z. Liu, and Y. Zhang, “Fault-tolerant flight control
design with finite-time adaptation under actuator stuck
failures,” IEEE Transactions on Control Systems and Tech-
nology, vol. 25, no. 4, pp. 1431–1440, 2017.

[12] H. Gui and G. Vukovich, “Global finite-time attitude tracking
via quaternion feedback,” Systems & Control Letters, vol. 97,
pp. 176–183, 2016.

[13] C. Huang, J. Lu, G. Zhai, J. Cao, G. Lu, and M. Perc, “Stability
and stabilization in probability of probabilistic boolean net-
works,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 99, pp. 1–11, 2018.

[14] J. Lu, L. Sun, Y. Liu, D. W. C. Ho, and J. Cao, “Stabilization of
boolean control networks under aperiodic sampled-data
control,” SIAM Journal on Control and Optimization, vol. 56,
no. 6, pp. 4385–4404, 2018.

[15] S. Zhu, Y. Liu, Y. Lou, and J. Cao, “Stabilization of logical
control networks: an event-triggered control approach,”
Science in China Series F: Information Sciences, vol. 63, no. 1,
Article ID 112203, 2020.

[16] S. Zhu, J. Lu, and Y. Liu, “Asymptotical stability of prob-
abilistic boolean networks with state delays,” IEEE Trans-
actions on Automatic Control, vol. 65, no. 4, pp. 1779–1784,
2020.

[17] R. Li and J. Cao, “Finite-time stability analysis for markovian
jump memristive neural networks with partly unknown
transition probabilities,” IEEE Transactions on Neural Net-
works, vol. 28, no. 12, pp. 2924–2935, 2017.

[18] P. Liu, L. Li, K. Shi, and J. Lu, “Pinning stabilization of
probabilistic boolean networks with time delays,” IEEE Access,
vol. 8, pp. 154050–154059, 2020.

[19] F. Amato, M. Darouach, and G. De Tommasi, “Finite-time
stabilizability and detectability of linear systems. Part I:
necessary and sufficient conditions for the existence of output
feedback finite-time stabilizing controllers,” in Proceedings of
the 2016 European Control Conference (ECC), pp. 1412–1417,
Aalborg, Denmark, June, 2016.

[20] X. Chen, Q. Song, Z. Li, Z. Zhao, and Y. Liu, “Stability analysis
of continuous-time and discrete-time quaternion-valued
neural networks with linear threshold neurons,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 29, no. 7, pp. 2769–2781, 2018.

[21] X. Fan, X. Zhang, L. Wu, and M. Shi, “Finite-time stability
analysis of reaction-diffusion genetic regulatory networks
with time-varying delays,” IEEE/ACM Transactions on

Computational Biology and Bioinformatics, vol. 14, no. 4,
pp. 868–879, 2017.

[22] E. Moulay, M. Dambrine, N. Yeganefar, and W. Perruquetti,
“Finite-time stability and stabilization of time-delay systems,”
Systems & Control Letters, vol. 57, no. 7, pp. 561–566, 2008.

[23] Z. Yan, G. Zhang, J. Wang, and W. Zhang, “State and output
feedback finite-time guaranteed cost control of linear itô
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