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In this article, a behavioral study of three-dimensional (3D) squeezing flow of nanofluids withmagnetic effect in a rotating channel
has been performed. Using Navier–Stokes equations along with suitable similarity transformations, a nonlinear coupled ordinary
differential system has been derived which models the 3D squeezing flow of nanofluids with lower permeable stretching porous
wall where the channel is also rotating.�e base fluid in the channel is considered to be water that contains different nanoparticles
including silicon, copper, silver, gold, and platinum. �e homotopy perturbation method (HPM) is employed for the solution of
highly nonlinear coupled system. For validation purpose, system of equations is also solved through the Runge–Kutta–Fehlberg
(RK45) scheme and results are compared with homotopy solutions, and excellent agreement has been found between analytical
and numerical results. Also, validation has been performed by finding average residual error of the coupled system. Furthermore,
the effects of various parameters such as nanoparticle volume fraction, suction parameter, characteristic parameter of the flow,
magnetic parameter, rotation parameter, and different types of nanoparticles are studied graphically.

1. Introduction

Fluids exhibiting good thermal conductivity properties
are a major requirement of many industrial applications
involving heat transfer equipment. Typical examples are
those of vehicular cooling systems, refrigerants, building
services, and conventional industrial processing systems,
such as petro-chemical, textile, paper, and food processing
plants, to name a few [1–3]. To reduce costs and be energy
efficient, the research and industrial community has
continuously worked to develop and utilize fluids bearing
high thermal conductivity. �e concept of nanofluids was
introduced in [4] which utilized suspended metallic

nanoparticles (with a typical size of 100 Å) in conventional
heat transfer fluids such as water or engine oil. Since
metallic solids reflect heat conductivity of orders greater
than conventional heat transfer fluids, this engineered
form of fluids was received quite well by the industrial and
research community. A comparison can be made on the
basis of silver, 429W/(m K); water, 0.613W/(m K); and
engine oil, 0.145W/(m K) at 300 k; and liquid sodium,
89.44W/(m K) at 371 k. Moreover, since the surface area
to volume ratio is inversely proportional to the radius of a
particle, suspended metals of nanometer scales would give
better heat conductivity as compared to micrometer-sized
particles.
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Since the convective heat transfer coefficient is derived
from continuity, momentum, and energy equations, its
behaviour is significantly dependent on the velocity and
temperature profile of the nanofluid’s base fluid [1, 5].
Moreover, the heat andmomentum transfer mechanisms are
essentially the same and hence can be comparable on the
basis of analogies. For instance, Reynold’s analogy is ap-
plicable towards turbulent flows, Prandtl’s analogy for
laminar flows, von Korman’s analogy for both laminar and
turbulent flows with a buffer layer in between, and Chil-
ton–Colburn analogy for transport independent flows [6].
�e velocity is also dependent on the concentration of
nanoparticles in a nanofluid such that a higher concentra-
tion may result in a flattening of the velocity profile [7].
Studies have also shown that the velocity profile is not
uniform. For instance, near-wall velocity profile measure-
ments have shown increased velocity gradient, with no slip,
relative to the equivalent base fluid [8]. As such, the in-
vestigation of the velocity profile under different boundary
conditions and flow models is of particular interest to the
research community.

With this, a considerable volume of literature started to
address the behaviour of nanofluids in context of different
boundary conditions (convective [9], porous medium
[10, 11]), characterization parameters of different fluids and
suspended metals (Cu/Cu-TiO2 [12, 13], Cu-H2O/Cu-Ker-
osene [14]), and thermodynamic [15, 16] and magnetohy-
drodynamic [17–19] properties using analytical and/or
numerical approaches. A comprehensive review of these
aspects in general is presented in [1, 3, 20].

�e study of squeezing flows that is normal to two
parallel plates is an important problem in the area of fluid
dynamics, having applications in hydraulic machinery,
electric motors, food industry, bioengineering, and au-
tomobile engines, amongst others. �e mechanics of these
studies in context of turbulent, laminar, and transitional
flows, and different non-Newtonian fluid models (e.g.,
power law [21], grade 2/3 [22], and Casson [23, 24]) have
proved to be a significant challenge to the research
community due to the involved nonlinearities. �e
squeezing flow response in context of parallel plates ap-
pears in [13, 25, 26], parallel moving plates are given in
[27–29], orthogonal moving plates are discussed in [10],
moving surface in [30], stretching surface in [31–33], and
stretching cylinders are given in [34]. Likewise, the re-
sponse to Casson flow is discussed in [16, 19, 32, 34],
Hiemenz flow in [35], and bioconvection flows in [19, 36].
�e studies have also been extended to nanofluids
[1, 17, 25, 36, 37]. In [38], Naz et al. solved analytically the
problem of variable thermophysical features of the three-
dimensional flow of a non-Newtonian yield manifesting
liquid with heat and mass transport in the presence of
gyrotactic microorganisms over a nonlinear stretched
surface. �ey utilized the boundary-layer theory to de-
velop the governing partial differential equations. �ey
concluded that the mounting values of the fluid parameter
and magnetic parameter retard the fluid flow. Moreover
[39], Ahmed et al. investigated analytically the problem of
Jeffery–Hamel flow for second-grade fluid between two

nonparallel walls having a source or a sink at the cusp.
Soret and Dufour effects are incorporated in the energy
and concentration equations. For solution purposes, the
authors used the homotopy analysis method (HAM).
Variations in temperature and concentration profiles for
varying in grained physical parameters in the flow model
are discussed graphically. Also, Nusselt number and the
skin friction coefficient along with Sherwood number are
extracted numerically and analytically. In [40], Khan et al.
investigated viscous incompressible fluid between two
nonparallel plane walls, known as Jeffery–Hamel flow,
under the influence of thermal radiation. �ey used the
similarity technique to solve for the governing equations.
Moreover, the same problem is solved numerically and a
comparison between the two methods is conducted that
yields a great result. �ey presented the rates of heat and
mass transfer. Furthermore, the effects of the investigated
parameters on the flow and heat transfer are discussed and
analyzed. Additionally [41], Khan et al. studied analyti-
cally by employing similarity technique along with
Runge–Kutta and homotopy analysis algorithms the
unsteady magnetohydrodynamics flow with heat gener-
ation/absorption of H2O saturated by tiny nanosized
particles with various shapes over a thin slit. �ey found
out that as the magnetic field increases, the nanofluid
temperature increases and the motion decreases. In ad-
dition [42], Khan et al. investigated the flow of nanofluid
over a curved Riga surface; they studied the impact of the
freezing temperature and the diameter of the nano-
particles on the flow field and the heat transfer. �ey
found out that the nanofluid velocity dropped by in-
creasing the flow parameters c and S, and an abrupt
decrement occurred at the surface of the Riga sheet. Also
[43], Naz et al. investigated the entropy analysis of 3D flow
of Maxwell nanofluid containing gyrotactic microor-
ganism in the presence of homogeneous-heterogeneous
reactions with improved heat conduction and mass dif-
fusion models over a stretched surface. �ey found out
that entropy generation increases for higher values of
radiation parameter and Brinkman number, whereas the
Bejan number is reduced for the higher values of radiation
and magnetic parameters.

From a numerical perspective, the various behaviours
are explained on the basis of solutions over discrete points
distributed throughout the problem domain. Solutions for
remaining points are obtained by means of interpolation.
For reasons of performance and accuracy, these points
appear amidst regular geometries. In context of simpler
domains, reduced number of dimensions is sufficient for
such studies. However, by considering richer intricacies of
involved physics, the simplified problem domain is com-
promised, giving failed predictions. In such situations,
studies on the basis of 3D domain models, even for simpler
geometry configurations, are imperative. �e common ap-
proach in terms of nanofluids is the fourth-order Run-
ge–Kutta family of integration methods [44, 45]. �e same is
also true from an analytical perspective that takes into ac-
count simplified assumptions. �e usual approach for
boundary value problems is the usage of perturbation
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techniques. However, due to assumptions of small or large
parameters, this is not sufficient. In this regard, a seminal
work that combined these perturbation techniques with
homotopy was proposed as the homotopy perturbation
method (HPM) in [46–49]. Since its introduction, the
method has been applied to different nonlinear equations
[50–56]. Specifically, in the case of nanofluids, the method
has been applied in [57–60]. Other approximation tech-
niques that have been used for the case of fluid dynamics
include the homotopy analysis method (HAM) [61] and
optimal homotopy asymptotic method (OHAM) [62].

In this article, we provide a comprehensive description of
the three-dimensional squeezing flow of nanofluids, con-
sidering a geometry involving a rotating channel. �e flow is
characterised on the basis of water as base fluid and different
suspended nanoparticles. �e study is performed on the basis
of Navier–Stokes equations using similarity transforms. Both
analytical and numerical solutions are obtained using the
homotopy perturbation method and Runge–Kutta–Fehlberg
scheme. Furthermore, validation of results has been per-
formed by finding the average residual error of the coupled
system. After validation, we present characterization of dif-
ferent configurations of nanofluids using parameters such as
volume fraction, suction, flow, magnetism, and rotation.

In the remaining part of the paper, Section 2 includes
mathematical formulation of the problem. Section 3 presents
the basic theory of numerical approach. Section 4 comprises
the results and discussion. Finally, conclusion is presented in
Section 5.

2. Mathematical Formulation

We consider a 3D rotating incompressible and electrically
conducting viscous nanofluid flow between two infinite
horizontal plates. �e lower plate is positioned at y � 0 and is
stretched with a velocity U0(t) � ax/(1 − ct) in x, where a is
the stretching rate of the lower plate, and c is a characteristic
constant. �e upper plate is at a variable distance
h(t) �

����������
]f(1 − ct)/a

􏽱
. �e fluid is squeezed with a velocity

vh � dh/dt in negative y-axis.�e angular velocityΩ between
the fluid and channel around y isΩ � ω􏽢J/(1 − ct), where J is
the flux. �e lower plate intakes the flow with a velocity
− V0/(1 − ct). A magnetic field with density B0/

�����
1 − c

􏽰
is

applied along the y-axis. �e system is rotating along the
y-axis (see Figure 1). �ese are then introduced to obtain
similarity solutions by reducing the governing equations into
a system of ordinary differential equations. �e governing
relation for continuity and momentum of nanofluid flow in
the rotating frame of reference is given as follows:

∇ · V � 0, (1)

ρnf
zV

zt
+(V · ∇)V + 2Ω × V􏼢 􏼣 � ∇ · T + J × B, (2)

where T is the Cauchy stress tensor, J is the magnetic flux,
and B is the current density. �e abovementioned governing
equations can also be described by the following set of
Navier–Stokes equations:
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where ρnf is the nanofluid density, vnf � μnf /ρnf is the
nanofluid kinematic viscosity, σ is the electrical conduc-
tivity, B0 is the magnetic field, and c is a characteristic
parameter representing inverse time, and ct< 1. �e con-
stants for the model are given as

μnf �
μf

(1 − ϕ)
2.5,

ρnf � (1 − ϕ)ρf + ϕρs,

(4)

where μf is the fluid fraction viscosity, ϕ is the nanoparticle
volume fraction, and ρf and ρs are the densities of the fluid
and of solid fractions. �e thermophysical properties of
different materials are given in Table 1 for reference. �e
boundary conditions at y � 0 are given as

y = 0

x, u

y, v

B0

U0 (t)

Vh (t)

Ω

z, w

y = h (t)

Figure 1: Geometry for the problem. A nanofluid is squeezed
between two infinite horizontal parallel plates. �e lower plate is at
position y � 0 and stretched with a velocity U0(t), while the upper
plate is at a variable height of h(t). By movement of the upper plate
in negative y-axis, the nanofluid is squeezed at a velocity of vh(t).Ω
represents the angular velocity, while B0 is the magnetic field
density applied along y.
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u(x, y, t) � U0 �
ax

1 − ct
,

v(x, y, t) � −
V0

1 − ct
,

w(x, y, t) � 0.

(5)

While for y � h(t), are given as

u(x, y, t) � 0,

v(x, y, t) � Vh �
dh

dt
�

− c

2

��������
]f

a(1 − ct)

􏽳

,

w(x, y, t) � 0,

(6)

where a is the stretching rate of the lower plate. �e gov-
erning equations subject to similarity transformation in
order to give ordinary differential equations in terms of a
stream function ψ are given as

ψ �

�����
a]f
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(7)

Substitution of these similarity transforms to the gov-
erning Navier–Stokes equations, we have
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where β � c/a is the characteristic parameter of the flow,
Ω � w/a is the rotation parameter, M2 � σB2

0/ρfa is the
magnetic parameter, and prime denotes differentiation with
respect to η. To squeeze the flow, we take β> 0 for which the
upper plates move downward with a velocity of Vh < 0,
whereas for β< 0, the upper plate moves upwards with
respect to the plane y � 0. β � 0 corresponds to a steady
state. To reduce the number of independent variables as well
as retain the similarity solution, the above are simplified by
cross-differentiation, giving us

f
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(9)

Moreover, the transformed boundary conditions take
the form:

f(0) � w0,

f′(0) � 1,

g(0) � 0,

f(1) � 0.5β,

f′(1) � 0,

g(1) � 0,

(10)

where w0 � V0/ah is the suction parameter. For this problem,
the physical quantity of interest is the skin friction coefficient
Cf along the wall at the lower and upper walls, defined as

Table 1: �ermophysical property for the base fluid, along with
other nanoparticles.

Material ρ(kg/m3)

Water, H2O 997.1
Silver, Ag 10500
Copper oxide, CuO 6320
Silicon, Si 2330
Gold, Au 19300
Aluminium oxide, Al2O3 3970
Copper, Cu 8933
Platinum, Pt 21450
Titanium dioxide, TiO2 4250
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Cf,lower �
μnf(zu/zy)y�0

ρnfU
2
0

,

Cf,upper �
μnf(zu/zy)y�h(t)

ρnfU
2
0

.

(11)

Substituting stream function to the abovementioned, we
obtain

Cf,lower � Cf,lowerRex �
f″(0)

1 − ϕ + ϕρs/ρf􏼐 􏼑(1 − ϕ)
2.5,

Cf,upper � Cf,upperRex �
f″(1)

1 − ϕ + ϕρs/ρf􏼐 􏼑(1 − ϕ)
2.5,

(12)

where Rex � ρfU0h/μf is the local Reynolds number.

3. Basic Theory of Homotopy
Perturbation Method

�e basic theory of HPM can be exhibited using the fol-
lowing differential equation:

L(f) + N(f) − g(r) � 0, r ∈ Ω,

B f,
df

dn
􏼠 􏼡 � 0, r ∈ Υ,

(13)

where Υ is the boundary of the domainΩ, and f is unknown
and g(r) is a known function. L, N, B are linear, nonlinear,
and boundary operators, respectively. We construct a
homotopy θ(r, p): Ω × [0, 1]⟶ R which satisfies

Ψ(θ, q) � (1 − q) L(θ) − L f0( 􏼁􏼂 􏼃 + q[L(θ) + N(θ) − g(r)] � 0,

r ∈ Ω,

(14)

where q ∈ [0, 1] is an embedding parameter, and f0 is the
initial guess of (13) that satisfies the boundary conditions.
From (14), we have

Ψ(θ, 0) � L(θ) − L f0( 􏼁 � 0,

Ψ(θ, 1) � L(θ) + N(θ) − g(r) � 0.
(15)

�us, as q varies from 0 to 1, the solution θ(r, q) ap-
proaches from f0(r) to 􏽥f(r). To obtain an approximate so-
lution, we expand θ(r, q) in a Taylor series about q as follows:

θ(r, q) � θ0 + 􏽘
∞

k�1
θkq

k
. (16)

Setting q � 1, the approximate solution of (13) would be

􏽥U � lim
q⟶1

θ(r, q) � 􏽘

∞

k�1
θk. (17)

Substituting equation (17) in equation (13) will give

R(x) � L[ 􏽥U(x)] + N[ 􏽥U(x)] − g(x). (18)

If R is approaching zero, 􏽥U will then approach towards
the exact solution.

4. Results and Discussion

In this article, an unsteady three-dimensional squeezing flow
of electrically conducting nanofluid between two infinite
horizontal planes in a rotating channel is considered. �e
composition of the nanofluid is made on the basis of dif-
ferent nanoparticles, including Silicon (Si), Copper (Cu),
Silver (Ag), Gold (Au), and Platinum (Pt). �ese nanofluids
with silicon composition are used for observing the effect of
various parameters on the velocity profile. �ese parameters
include the nanoparticle volume fraction ϕ, suction pa-
rameter w0, characteristic parameter of the flow β, rotation
parameter Ω, and magnetic parameter M. �e formulated
boundary value system described in Section 2 for these
parameters is solved using HPM, which is then compared
with numerical solutions obtained using the Run-
ge–Kutta–Fehlberg method for validation purposes. A
graphical representation for this validation is given in
Figure 2, showing good agreement.

A detailed analysis of this validation is performed
through residual errors, for ϕ � 0.9, w0 � 0.5, Ω � 1, β � 1,
and M � 1 in Tables 2 and 3 for both the HPM and RK45
methods individually. Validation with a variation of β � 2 is
given in Tables 4 and 5. In both cases, the results fromHPM-
based solution are consistent and in good agreement with
the numerical results. A comparative analysis on the basis of
β � (1, 2) using both HPM and RK45 is given in Table 6.�e
effect of the skin friction coefficient at both lower and upper
walls is also given in Table 7.

After validation of the solutions, the behaviour response
of nanofluids against various parameters is investigated. In
all these investigations, 0< η< 0.5 corresponds to the lower
half, while 0.5< η< 1 represents the upper half of the
channel.

�e effect of nanoparticle volume fraction ϕ on normal,
axial, and transverse velocity components is given in
Figure 3. Here, the static parameters are w0 � 0.5, β � 1,
Ω � 1, and M � 0.5, while the variational parameter
ϕε[0, 1]. �e general observation is that ϕ increases with
respect to normal velocity. �e axial velocity profile in-
creases with an increase in the nanoparticle volume fraction
in the lower half of the channel, while it decreases in the
upper half. �e transverse velocity decreases in the vicinity
of lower surface, (0< η< 0.25), when the nanoparticle
volume fraction increases. But other than that, an opposite
trend has been observed in the rest of the channel
(0.25< η< 1). �ese behaviours are justified because vis-
cosity increases by increasing the nanomaterial volume
fraction; as a result, the enhanced frictional force leads to the
flow resistance.

�e response of suction parameter (w0) on the velocity
profile is given in Figure 4, where it can be observed that the
observable range of w0 is at a maximum in the lower
channel. �e overall trend is similar to an exponential in-
crease in this region. However, w0 gets confined rapidly
around the midpoint as η and w0 approach 1. In the case of
the axial velocity, it stands at maximum close to the lower
wall at η � 0 and at the midpoint close to the upper wall at
η � 1. In other cases, it decreases significantly as w0
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increases. �is results in a reverse flow due to discharge of a
large amount of fluid particles in the vicinity of the lower
wall, while on the upper wall, it becomes much more no-
ticeable. In the case of the traverse component of velocity
profile, there is almost no change as the maximum range of
the velocity profile stands at 0.002. In this case, the velocity is
nonexistent at both walls. In all these cases, the static pa-
rameters are ϕ � 0.9, β � 1, Ω � 1, and M � 0.5, while the
variable parameter w0ε[0, 1].

�e effect of magnetic parameter M on the velocity
profile is shown in Figure 5. Here, the static parameters are
ϕ � 0.2, w0 � 0.5, β � 1, and Ω � 1, while the variable pa-
rameters are Mε[0, 0.6]. In these cases, the normal velocity
presents a tailed parabolic behaviour, as M is increased,
where in the region in vicinity of lower plate shows an
increased flow, but a decreased flow a little before the
channel midpoint. �e axial velocity component also has

dual behaviour, where it decreases with an increase in M in
the lower channel, while showing an increasing behaviour in
the upper channel. In the transverse component, the velocity
component is zero at both the upper and lower walls,
whereas at the center of the channel, the maximum range for
different M stands at 0.04. But in general, a positive
transverse velocity component is only observable if M> 0.5.
�e reason behind these behaviours is that application of
magnetic field to an electrically conducting fluid gives rise to
a resistive type force called the Lorentz force. �is force has
the tendency to slow down the motion of the fluid.

�e effect of characteristic parameter β on the velocity
profile, while the static parameters are ϕ � 0.9, w0 � 0.5,
Ω � 1, and M � 0.5 and while β varies in the interval
[− 2.5, 2.5], is presented in Figures 6 and 7. Positive values of
β representing movement of the upper plate towards the
lower plate, all three velocity components, demonstrate an

Table 2: Homotopy-based solution along with residual errors when ϕ � 0.9, w0 � 0.5, Ω � 1, β � 1, andM � 1.

η fHPM gHPM Abs error equation (1) Abs error equation (2) Average Abs error

0. 0.5 0 8.306 × 10− 8 2.504 × 10− 9 4.278 × 10− 8

0.05 0.545121 0.0000417402 4.570 × 10− 8 2.524 × 10− 9 2.411 × 10− 8

0.10 0.580987 0.0000553098 1.937 × 10− 8 1.525 × 10− 9 1.045 × 10− 8

0.15 0.60835 0.0000468996 1.493 × 10− 9 4.431 × 10− 11 7.686 × 10− 10

0.20 0.627961 0.0000221747 9.986 × 10− 9 1.509 × 10− 9 5.748 × 10− 9

0.25 0.640574 − 0.0000137254 1.662 × 10− 8 2.844 × 10− 9 9.735 × 10− 9

0.30 0.646938 − 0.0000561855 1.962 × 10− 8 3.778 × 10− 9 1.170 × 10− 8

0.35 0.647805 − 0.000101115 1.990 × 10− 8 4.223 × 10− 9 1.206 × 10− 8

0.40 0.643925 − 0.000144946 1.817 × 10− 8 4.170 × 10− 9 1.117 × 10− 8

0.45 0.636048 − 0.000184635 1.500 × 10− 8 3.672 × 10− 9 9.341 × 10− 9

0.50 0.624925 − 0.000217661 1.088 × 10− 8 2.828 × 10− 9 6.859 × 10− 9

0.55 0.611304 − 0.000242025 6.239 × 10− 9 1.763 × 10− 9 4.001 × 10− 9

0.60 0.595936 − 0.00025625 1.448 × 10− 9 6.138 × 10− 10 1.031 × 10− 9

0.65 0.57957 − 0.000259381 3.111 × 10− 9 4.837 × 10− 10 1.797 × 10− 9

0.70 0.562955 − 0.000250985 7.086 × 10− 9 1.408 × 10− 9 4.247 × 10− 9

0.75 0.546841 − 0.000231151 1.014 × 10− 8 2.061 × 10− 9 6.105 × 10− 9

0.80 0.531976 − 0.000200489 1.199 × 10− 8 2.375 × 10− 9 7.187 × 10− 9

0.85 0.519111 − 0.000160129 1.239 × 10− 8 2.313 × 10− 9 7.352 × 10− 9

0.90 0.508993 − 0.000111724 1.114 × 10− 8 1.873 × 10− 9 6.508 × 10− 9

0.95 0.502373 − 0.0000574492 8.143 × 10− 9 1.083 × 10− 9 4.613 × 10− 9

1. 0.5 2.7 × 10− 21 3.371 × 10− 9 1.180 × 10− 19 1.685 × 10− 9
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Figure 2: Comparison of analytical and numerical solutions. (a) Comparison of f(η). (b) Comparison of g(η).
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increase (see Figure 6). On the contrary, the inverse
movement is represented by the negative β values; all ve-
locity components record a decrease as β is decreased (see
Figure 7).

Effect of rotational parameterΩ on the velocity profile is
depicted in Figure 8. For Ω, the normal velocity decreases as
Ω is increased. �e axial velocity shows a dual behaviour. In
the lower part of the channel, there is a small decrease in the
velocity as Ω is increased, whereas in the upper part of the
channel, there is a small increase as Ω is increased. An
inverse dual behaviour to the axial component is reflected in

the transverse component. Here, there is small increase in
velocity asΩ is increased in the lower quarter of the channel,
whereas in the remaining three quarters, there is a major
reversal of velocity as Ω is increased. Here, the static pa-
rameters are ϕ � 0.2, w0 � 0.5, β � 1, and M � 0.5, while the
variational parameter is Ω � [3, 12]. �e transverse velocity
component shows a similar behaviour in the case of in-
creased nanoparticle volume fraction ϕ and the rotation
parameter Ω. Magnitudes of these velocities are found to
decease within the rotating channel with augmentation. One
of the forces encountered in fluid flow with a rotating

Table 4: Homotopy-based solution along with residual errors when ϕ � 0.9, w0 � 0.5, Ω � 1, β � 2, andM � 1.

η fHPM gHPM Error equation (1) Error equation (2) Average Abs error

0. 0.5 0 4.793 × 10− 8 1.700 × 10− 8 3.247 × 10− 8

0.05 0.548747 0.00021484 4.773 × 10− 8 1.224 × 10− 8 2.998 × 10− 8

0.10 0.594991 0.000396569 4.876 × 10− 8 5.672 × 10− 9 2.721 × 10− 8

0.15 0.638731 0.000546947 4.997 × 10− 8 1.859 × 10− 9 2.591 × 10− 8

0.20 0.67997 0.000667732 5.049 × 10− 8 9.659 × 10− 9 3.007 × 10− 8

0.25 0.718709 0.000760677 4.966 × 10− 8 1.716 × 10− 8 3.341 × 10− 8

0.30 0.754949 0.000827534 4.701 × 10− 8 2.394 × 10− 8 3.548 × 10− 8

0.35 0.78869 0.00087005 4.224 × 10− 8 2.967 × 10− 8 3.595 × 10− 8

0.40 0.819934 0.000889971 3.521 × 10− 8 3.413 × 10− 8 3.467 × 10− 8

0.45 0.84868 0.000889042 2.596 × 10− 8 3.719 × 10− 8 3.157 × 10− 8

0.50 0.874928 0.000869003 1.467 × 10− 8 3.882 × 10− 8 2.674 × 10− 8

0.55 0.89868 0.000831597 1.677 × 10− 9 3.905 × 10− 8 2.036 × 10− 8

0.60 0.919934 0.00077856 1.255 × 10− 8 3.795 × 10− 8 2.525 × 10− 8

0.65 0.938691 0.000711631 2.741 × 10− 8 3.565 × 10− 8 3.153 × 10− 8

0.70 0.95495 0.000632547 4.219 × 10− 8 3.233 × 10− 8 3.726 × 10− 8

0.75 0.96871 0.000543044 5.605 × 10− 8 2.815 × 10− 8 4.210 × 10− 8

0.80 0.979971 0.000444857 6.805 × 10− 8 2.329 × 10− 8 4.567 × 10− 8

0.85 0.988732 0.000339724 7.716 × 10− 8 1.793 × 10− 8 4.755 × 10− 8

0.90 0.994991 0.000229378 8.228 × 10− 8 1.221 × 10− 8 4.724 × 10− 8

0.95 0.998747 0.000115558 8.220 × 10− 8 6.221 × 10− 9 4.421 × 10− 8

1. 1. 1.1 × 10− 18 7.567 × 10− 8 3.715 × 10− 20 3.783 × 10− 8

Table 3: RK45 solution along with residual errors when ϕ � 0.9, w0 � 0.5, Ω � 1, β � 1, andM � 1.

η fRK45 gRK45 Error equation (1) Error equation (2) Average Abs error

0. 0.5 0 4.353 × 10− 4 1.868 × 10− 8 2.176 × 10− 4

0.05 0.545121 0.0000417403 2.140 × 10− 4 5.805 × 10− 9 1.070 × 10− 4

0.10 0.580987 0.0000553099 9.222 × 10− 5 8.619 × 10− 10 4.611 × 10− 5

0.15 0.60835 0.0000468997 3.185 × 10− 5 5.766 × 10− 10 1.592 × 10− 5

0.20 0.627961 0.0000221748 6.477 × 10− 6 7.509 × 10− 10 3.239 × 10− 6

0.25 0.640574 − 0.0000137252 1.205 × 10− 6 6.336 × 10− 10 6.032 × 10− 7

0.30 0.646938 − 0.0000561853 1.634 × 10− 6 5.402 × 10− 10 8.173 × 10− 7

0.35 0.647805 − 0.000101115 3.276 × 10− 7 5.064 × 10− 10 1.640 × 10− 7

0.40 0.643925 − 0.000144946 4.547 × 10− 7 4.915 × 10− 10 2.276 × 10− 7

0.45 0.636048 − 0.000184635 3.610 × 10− 7 4.672 × 10− 10 1.807 × 10− 7

0.50 0.624925 − 0.000217661 1.067 × 10− 7 4.345 × 10− 10 5.361 × 10− 8

0.55 0.611304 − 0.000242025 3.463 × 10− 7 4.088 × 10− 10 1.733 × 10− 7

0.60 0.595936 − 0.000256249 1.062 × 10− 7 3.986 × 10− 10 5.332 × 10− 8

0.65 0.57957 − 0.000259381 3.624 × 10− 7 3.962 × 10− 10 1.814 × 10− 7

0.70 0.562955 − 0.000250985 4.570 × 10− 7 3.857 × 10− 10 2.287 × 10− 7

0.75 0.546841 − 0.000231151 3.247 × 10− 7 3.646 × 10− 10 1.625 × 10− 7

0.80 0.531976 − 0.000200489 1.631 × 10− 6 3.611 × 10− 10 8.160 × 10− 7

0.85 0.519111 − 0.000160129 1.203 × 10− 6 4.189 × 10− 10 6.019 × 10− 7

0.90 0.508993 − 0.000111724 6.485 × 10− 6 5.075 × 10− 10 3.243 × 10− 6

0.95 0.502373 − 0.0000574492 3.188 × 10− 5 3.023 × 10− 10 1.594 × 10− 5

1. 0.5 2.9 × 10− 12 9.233 × 10− 5 1.233 × 10− 9 4.616 × 10− 5

Complexity 7



channel is the Coriolis force which acts in a direction
perpendicular to the rotational axis and the velocity of the
body in the rotating frame. �is is due to the fact that the
rotation of the channel leads to resist the flow.

�e behaviour of velocity profiles against different
nanofluid composition is given in Figure 9. In general, the
nanofluids having greater density of nanoparticles per unit
area are affecting the velocity profiles significantly, where
larger densities showed a decrease in normal velocity as

compared to smaller densities. For a similar volume fraction
of ϕ � 0.2, Si-based nanoparticles with ρ � 2330 kg/m3, i.e.
the minimummost in the chosen group, reflected maximum
normal velocity. In contrast, Pt having ρ � 21450 kg/m3 as
the highest density in the chosen group showed the mini-
mum normal velocity. In the case of axial component, there
is a dual behaviour, with high densities having a lower
velocity in lower channel, and an increased velocity in the
upper channel. However, the variation in velocity with

Table 6: Similarity between HPM and RK45 solutions when ϕ � 0.9, w0 � 0.5, Ω � 1, andM � 1.

β � 1 β � 2
η |fHPM − fRK45| |gHPM − gRK45| System similarity |fHPM − fRK45| |gHPM − gRK45| System similarity

0. 0 0 0 0 0 0
0.05 2.412 × 10− 10 1.637 × 10− 11 1.288 × 10− 10 3.539 × 10− 11 4.298 × 10− 10 7.606 × 10− 21

0.10 4.490 × 10− 10 5.474 × 10− 11 2.519 × 10− 10 5.962 × 10− 11 8.905 × 10− 10 2.654 × 10− 20

0.15 1.175 × 10− 9 9.915 × 10− 11 6.374 × 10− 10 7.397 × 10− 11 1.365 × 10− 9 5.050 × 10− 20

0.20 1.683 × 10− 9 1.420 × 10− 10 9.128 × 10− 10 7.972 × 10− 11 1.835 × 10− 9 7.316 × 10− 20

0.25 1.953 × 10− 9 1.790 × 10− 10 1.066 × 10− 9 7.861 × 10− 11 2.281 × 10− 9 8.968 × 10− 20

0.30 2.024 × 10− 9 2.074 × 10− 10 1.116 × 10− 9 7.257 × 10− 11 2.684 × 10− 9 9.741 × 10− 20

0.35 1.936 × 10− 9 2.250 × 10− 10 1.080 × 10− 9 6.328 × 10− 11 3.028 × 10− 9 9.583 × 10− 20

0.40 1.720 × 10− 9 2.310 × 10− 10 9.757 × 10− 10 5.206 × 10− 11 3.298 × 10− 9 8.587 × 10− 20

0.45 1.404 × 10− 9 2.257 × 10− 10 8.151 × 10− 10 3.989 × 10− 11 3.483 × 10− 9 6.948 × 10− 20

0.50 1.019 × 10− 9 2.103 × 10− 10 6.151 × 10− 10 2.755 × 10− 11 3.575 × 10− 9 4.926 × 10− 20

0.55 5.990 × 10− 10 1.871 × 10− 10 3.930 × 10− 10 1.572 × 10− 11 3.571 × 10− 9 2.807 × 10− 20

0.60 1.741 × 10− 10 1.588 × 10− 10 1.664 × 10− 10 4.997 × 10− 12 3.469 × 10− 9 8.670 × 10− 21

0.65 2.241 × 10− 10 1.282 × 10− 10 1.761 × 10− 10 4.088 × 10− 12 3.274 × 10− 9 6.693 × 10− 21

0.70 5.655 × 10− 10 9.813 × 10− 11 3.318 × 10− 10 1.099 × 10− 11 2.989 × 10− 9 1.643 × 10− 20

0.75 8.180 × 10− 10 7.073 × 10− 11 4.443 × 10− 10 1.492 × 10− 11 2.624 × 10− 9 1.958 × 10− 20

0.80 9.476 × 10− 10 4.764 × 10− 11 4.976 × 10− 10 1.452 × 10− 11 2.188 × 10− 9 1.589 × 10− 20

0.85 9.231 × 10− 10 2.953 × 10− 11 4.763 × 10− 10 8.116 × 10− 12 1.695 × 10− 9 6.881 × 10− 21

0.90 7.216 × 10− 10 1.600 × 10− 11 3.688 × 10− 10 4.466 × 10− 12 1.157 × 10− 9 2.585 × 10− 21

0.95 3.203 × 10− 10 5.652 × 10− 12 1.630 × 10− 10 1.623 × 10− 11 5.881 × 10− 10 4.773 × 10− 21

1. 3.622 × 10− 10 2.910 × 10− 12 1.825 × 10− 10 1.214 × 10− 13 1.263 × 10− 14 7.673 × 10− 28

Table 5: RK45 solution along with residual errors when ϕ � 0.9, w0 � 0.5, Ω � 1, β � 2, andM � 1.

η fRK45 gRK45 Error equation (1) Error equation (2) Average Abs error

0. 0.5 0 1.501 × 10− 6 5.984 × 10− 10 7.510 × 10− 7

0.05 0.548747 0.00021484 3.007 × 10− 7 2.663 × 10− 10 1.504 × 10− 7

0.10 0.594991 0.00039657 1.054 × 10− 7 7.585 × 10− 11 5.276 × 10− 8

0.15 0.638731 0.000546948 1.480 × 10− 7 4.817 × 10− 12 7.401 × 10− 8

0.20 0.67997 0.000667734 7.506 × 10− 8 2.357 × 10− 11 3.754 × 10− 8

0.25 0.718709 0.000760679 6.392 × 10− 9 1.921 × 10− 11 3.205 × 10− 9

0.30 0.754949 0.000827536 2.043 × 10− 8 1.337 × 10− 11 1.022 × 10− 8

0.35 0.78869 0.000870053 1.291 × 10− 8 1.253 × 10− 11 6.464 × 10− 9

0.40 0.819934 0.000889974 4.944 × 10− 9 1.454 × 10− 11 2.479 × 10− 9

0.45 0.84868 0.000889045 1.240 × 10− 8 1.537 × 10− 11 6.208 × 10− 9

0.50 0.874928 0.000869007 3.028 × 10− 9 1.366 × 10− 11 1.521 × 10− 9

0.55 0.89868 0.0008316 1.297 × 10− 8 1.152 × 10− 11 6.493 × 10− 9

0.60 0.919934 0.000778563 1.521 × 10− 8 1.208 × 10− 11 7.613 × 10− 9

0.65 0.938691 0.000711634 1.173 × 10− 8 1.533 × 10− 11 5.876 × 10− 9

0.70 0.95495 0.00063255 5.443 × 10− 8 1.557 × 10− 11 2.722 × 10− 8

0.75 0.96871 0.000543046 3.789 × 10− 8 5.230 × 10− 12 1.895 × 10− 8

0.80 0.979971 0.00044486 2.157 × 10− 7 8.678 × 10− 12 1.078 × 10− 7

0.85 0.988732 0.000339725 1.037 × 10− 6 3.236 × 10− 11 5.186 × 10− 7

0.90 0.994991 0.00022938 2.969 × 10− 6 3.052 × 10− 10 1.484 × 10− 6

0.95 0.998747 0.000115559 6.834 × 10− 6 1.212 × 10− 9 3.417 × 10− 6

1. 1. 1.2 × 10− 14 1.380 × 10− 5 3.545 × 10− 9 6.906 × 10− 6
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Figure 3: Continued.

Table 7: Skin friction coefficient for various values of parameters at lower and upper walls.

ϕ w0 M β Ω Cf,lower Cf,upper

0.9 0.5 0.5 1.0 1.0 − 0.00574602 0.00286874
0.6 − 22.3924 10.7677
0.3 − 7.4334 3.28618
0.0 − 4.48572 1.80803
0.9 0.0 − 143.722 − 143.706

0.1 − 229.876 − 57.5714
0.2 − 316.041 28.5537
0.3 − 402.217 114.67
0.6 − 660.81 372.963
0.9 − 919.501 631.173

0.2 0.5 0.0 − 5.96224 2.56784
1.0 − 6.06434 2.54659
2.0 − 6.36118 2.48844
4.0 − 7.40657 2.33973
6.0 − 8.64416 2.39013

0.9 0.5 − 574.602 286.874
1.5 − 359.247 71.5441
2.0 − 143.847 − 143.831
2.5 71.5972 − 359.25

− 1.0 − 1435.58 1147.75
− 1.5 − 1650.71 1362.85
− 2.0 − 1865.79 1577.92
− 2.5 − 2080.84 1792.93

0.2 1.0 0.5 − 5.9823 2.56287
1.0 − 5.98791 2.56244
3.0 − 6.04779 2.55783
5.0 − 6.16755 2.54862
7.0 − 6.3472 2.5348
9.0 − 6.58672 2.51637
12.0 − 7.05828 2.4801
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Figure 3: Effect of nanoparticle volume fraction ϕ on the velocity profile when w0 � 0.5, β � 1, Ω � 1, andM � 0.5. (a) Normal component
of velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 4: Effect of suction parameter w0 on the velocity profile when ϕ � 0.9, β � 1, Ω � 1, andM � 0.5. (a) Normal component of
velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 5: Effect of magnetic parameter M on the velocity profile when ϕ � 0.2, w0 � 0.5, β � 1, andΩ � 1. (a) Normal component of
velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 6: Continued.
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Figure 6: Effect of positive values of characteristic parameter β on the velocity profile when ϕ � 0.9, w0 � 0.5, Ω � 1, and M � 0.5.
(a) Normal component of velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 7: Effect of negative values of characteristic parameter β on the velocity profile when ϕ � 0.9, w0 � 0.5, Ω � 1, and M � 0.5.
(a) Normal component of velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 8: Effect of rotational parameter Ω on the velocity profile when ϕ � 0.2, w0 � 0.5, β � 1, and M � 0.5. (a) Normal component of
velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 9: Continued.
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respect to different densities is quite small. In the transverse
case, nanofluids with high densities show larger velocity
profile in the lower quarter of the channel, whereas a weak
reverse and decreasing flow in the remaining of the channel.

5. Conclusion

In this article, an unsteady electrically conducting 3D
squeezing flow of nanofluid in a rotating channel on a lower
permeable stretching wall is considered. In this study, water
is taken as base fluid along with five different types of
nanoparticles, including silicon (Si), copper (Cu), silver
(Ag), gold (Au), and platinum (Pt), being analyzed in the
simulations. Important physical parameters are considered
here; the nanoparticle volume fraction (ϕ), the suction
parameter (w0), the characteristic parameter of the flow (β),
the rotation parameter (Ω), and the magnetic parameter
(M). Resulting boundary value system is solved through the
HPM and Runge–Kutta–Fehlberg method (RK45). Analysis
reveals that the motion of the upper plate significantly effects
the velocity profile in the channel. Also, large values of
nanoparticle volume fraction reduce the effects of rotation
parameter Ω and magnetic parameter M.

Nomenclature

β: Characteristic parameter of the flow
Ω: Rotation parameter
M2: Magnetic parameter
w0: Suction parameter
Rex: Local Reynolds number
σ: Electrical conductivity
ρ: Density
μ: Dynamic viscosity
η: A scaled boundary-layer coordinate
]: Kinematic viscosity
c: Characteristic constant parameter
ω: Constant angular velocity
ϕ: Nanoparticle volume fraction

a: Lower plate stretching rate
B: External uniform magnetic field
B0: Constant magnetic flux density
Cf: Skin friction coefficient
f, g: Self-similar velocities
h(t): Upper plane distance
J: Magnetic flux
f: Fluid phase
s: Solid phase
nf: Nanofluid.
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