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-e poor denoising effect for noisy grayscale images with traditional processing methods would be obtained under strong noise
condition, and some image details would be lost. In this paper, a parallel array model of Fitzhugh–Nagumo (FHN) neurons was
proposed, which can restore noisy grayscale images well with low peak signal-to-noise ratio (PSNR) conditions and the image
details are better preserved. Firstly, the row-column scanning method was used to convert the 2D grayscale image into a 1D signal,
and then the 1D signal was converted into a binary pulse amplitude modulation (BPAM) signal by signal modulation. -e
modulated signal was input to an FHN parallel array for stochastic resonance (SR). Finally, the array output signal was restored to
a 2D gray image, and the image restoration effect was analyzed based on the PSNR and Structural SIMilarity (SSIM) index. It is
shown that the SR effect can be exhibited in an array of FHN neuron nonlinearities by increasing the array size, and the image
restoration effect is significantly better than the traditional image restoration method, and larger PSNR and SSIM can be obtained.
It provides a new idea for grayscale image restoration in a low PSNR environment.

1. Introduction

-e image can be affected by noise in the process of ac-
quisition and transmission, resulting in a decline in image
quality. At present, traditional image restoration methods
[1–3] such as filtering mainly focus on suppressing and
reducing noise, but some image information will be lost
while denoising. With the development of nonlinear dy-
namics, SR phenomena are well demonstrated wherein the
response of nonlinear systems can be enhanced with the
presence of internal or external noise.

-e concept of SR was first proposed by Benzi to explain
the periodic changes in the glacial period and warm climate
period in ancient meteorology [4, 5]. -us, the research of
nonlinear systems has been rapidly developed [6, 7]. On the
one hand, SR has been widely applied in the field of imaging
processing [8, 9]. -e adaptive adjustment of bistable system
parameters is used for image restoration [10, 11] and the MR
image can be enhanced by the method of SR neuron model
[12]. -en, aperiodic stochastic resonance is used to restore

the grayscale image in [13], and underwater scattering
images can be reconstructed by the SR method in [14].
However, the desired effect cannot be achieved with these
methods under low PSNR environment. On the other hand,
nonlinear systems are widely used in control engineering
[15, 16], laying the foundation for the development of SR in
nonlinear systems. -e remarkable results have been
achieved by the parallel array of nonlinearities in the field of
SR. In 1995, the theory of array SR was proposed by Lindner
et al. [17] and the results showed that the output signal-to-
noise ratio can be improved with array SR. -e parallel
bistable system was found by Wang et al. [18] to detect
interference characteristic signals at a lower input signal-to-
noise ratio. In the cascaded bistable system, perturbation
characteristic signals with lower input signal-to-noise ratio
can be detected and a parallel array model based on
threshold and a saturated parallel array model are proposed
[19]. Wang et al. [20] used array stochastic resonance to
improve the reliability and robustness of logical stochastic
resonance under colored noise.
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SR is also widely used in the fields of chemistry [21],
biology [22], and physics [23, 24]. In the field of neuro-
science [25], a single neuron model is the basis for studying
the biological and electrical properties of neurons. -e
simplified 2D Fitzhugh–Nagumo model was proposed by
Fitzhugh and Nagumo based on the 4D Hodgkin–Huxley
(HH) model [26, 27]. -en, the 1D FHN model was pro-
posed by Alarcon et al. [28] by simplifying the 2D FHN
model. SR in the nervous system is being studied by more
and more researchers and SR has become a hot research
topic in biological neural signal processing. In 1991, Longtin
used theoretical models to simulate and study the phe-
nomenon of integer multiple discharge rhythms and con-
cluded that the rhythm is related to SR effects.-e concept of
nonperiodic SR was proposed by Collins to describe the
phenomenon of SR in FHN when studying the neural model
of biostimulation [29]. -e generation and regulation
mechanism of SR in the nervous system, which depends on
the frequency difference, is revealed by Guo et al. [30]. -e
SR effect in FHN neurons was detected by Yao et al. [31] and
stochastic multiple resonance was found in [32] in the study
of coupled excitation of FHN neurons, which can effectively
detect subthreshold signals. A command filter adaptive
neural network control method for multi-input multioutput
nonlinear systems was proposed by Yu et al. [33].

In this paper, a parallel array model of FHN neuron
based on SR is proposed for image restoration. A 2D image
signal is converted into a 1D signal through row and column
scanning, and then the 1D signal is transformed into a 1D
binary pulse amplitude modulation aperiodic signal through
pulse amplitude modulation. -en the 1D BPAM aperiodic
signal is input to the FHN array nonlinearities, and finally,
the output signal is decoded, demodulated, and restored to
obtain the restored image. -e main works of this paper are
as follows: (1) -e FHN neuron and the array SR are
combined to establish an array SR image restoration model
based on the FHN neuron and make full use of the changes
in the dynamic characteristics of the neuron caused by noise,
enhance the sensitivity of the neuron, and improve the
stochastic resonance of the model performance. (2) -e
FHN neuron parallel array method is compared with the
traditional filtering and 2D SR methods in multi-image
images. -e results show that the method effectively restores
the visual effect and PSNR performance of noisy images in a
low PSNR environment.

2. System Model and Performance Evaluation

2.1. System Model Design. -e model in this section is a
grayscale image restoration model based on array FHN
neurons, and the experimental flowchart is shown in Fig-
ure 1. In image processing, the general image degradation
model caused by noise is described as follows:

f(i, j) � s(i, j) + ξ(i, j) for 1≤ i≤M, 1≤ j≤N, (1)

where s(i, j) is the original M × N grayscale image and
ξ(i, j) is Gaussian white noise with zero mean and variance
of σ2ξ . f(i, j) is a degraded image polluted by noise. In order

to improve the performance of degraded images, it can be
applied to FHN nonlinear parallel array, the process steps
are as follows.

2.1.1. Original Image Processing. Firstly, the image is sub-
jected to dimensionality reduction by row or column di-
rectional scanning, so that the original grayscale image is
converted into a 1D signal of length H1×MN (M and N are
the rows and columns of the original grayscale image). -en
the 1D image sequence H1×MN is encoded as an eight-bit
binary sequence Q1×8MN consisting of 0 and 1 with a length
of 8 × M × N.

2.1.2. Modulation. Next, the binary sequence Q1×8MN is
subjected to signal modulation processing into a 1D bipolar
aperiodic signal s(i, j) by the following equation:

s(t) � A 􏽘
8MN

l�1
WlG t − kTb( 􏼁, (2)

where A denotes the amplitude of the signal s(i, j) and G is a
rectangular pulse with a period of Tb. When t ∈ (0, Tb),
G(t) � 1, and otherwise, G(t) � 0. Wl(l � 1, 2, · · ·∞, 8MN)

is a 1D sequence of values −1 and 1 obtained by performing
polarity conversion on binary symbols
Q1×8MN(0→ − 1, 1→ 1). k represents the size of the image,
that is, the size of the image is 2k × 2k.

2.1.3. Array SR Processing. -e 2D FHN neuron model is as
follows:

dv

dt
� v(a − v)(v − 1) − w + Ia,

dw

dt
� bv − cw,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where v represents the fast-changing membrane voltage
variable, 0< a< 1 is the threshold, b and c are normal
numbers. Here is the slow-changing return variable w, Ia is
the excitation current, and when Ia � 0, a simplified 1D
FHN neuron model can be obtained [34] as follows:

dv

dt
� v(a − v)(v − 1) −

b

c
v + ξ(t), (4)

where ξ(t) is Gaussian white noise. -e 1D FHN neuron
model is used as the array unit of the parallel array and has
the following equation:

dvi(t)

dt
� vi(t) a − vi(t)( 􏼁 vi(t) − 1( 􏼁 −

b

c
vi(t) + h(t). (5)

where i � 1, 2, · · · , L, and parameter L is the size of parallel
FHN neurons. Each SR array unit is an FHN neuron and
input h(t) � s(t) + ξn(t)(n � 1, 2, 3, · · · L) to the FHN array
unit. -en xn(t) can be obtained after processing by the
FHN nonlinearity unit, and xn(t) is arithmetically averaged
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and processed. Finally, the output of the FHN parallel array
is X(t):

X(t) �
1
L

􏽘

L

n�1
xn(t). (6)

2.1.4. Demodulation. Each new signal Wl starts at time tk �

kTb with a duration of Tb. So, the time interval of the 1D
aperiodic signal s(t) is Tb. -e optimal demodulation
scheme is as follows:

Yk �
sign X tk + Tb( 􏼁( 􏼁 � 1, X tk + Tb( 􏼁≥ 0,

sign X tk + Tb( 􏼁( 􏼁 � 0, X tk + Tb( 􏼁< 0.
􏼨 (7)

2.1.5. Decoding and Restoring Images. -e demodulated
binary 1D signal Y1×8MN is decoded and then Y1×8MN is
inversely scanned by column or row to obtain a restored
image OM×N.

-e above is the FHN array model and the processing of
image restoring.-e next part is the performance evaluation.

2.2. Image Performance Evaluation. In most image pro-
cessing, PSNR is described as an objective criterion for
evaluating image quality. It is defined as follows:

PSNR � 10 × log10
2552

MSE2,
(8)

where MSE is the mean square error between the original
image and the processed image, which is defined as follows:

MSE �
1

MN
􏽘

M

i�1
􏽘

N

j�1
[o(i, j) − s(i, j)]

2
, (9)

where M and N represent the rows and columns of the 2D
matrix of the gray image, s(i, j) is the gray value of the
original image pixel, and o(i, j) is the gray value of the
restored image pixel. Generally, a large PSNR value presents
a better recovery effect.

3. Experimental Results and Analysis

In order to demonstrate the restoration effect of the parallel
array of FHN neurons on the image, Wiener filtering, mean
filtering, and 2D stochastic resonance [35] method are se-
lected for experimental comparison and the noise used in
this paper is Gaussian white noise. -e 2D stochastic res-
onance method is that the original noisy image is scanned by
the row or column to obtain a 1D signal and then input into
a single FHN neuron, and the output 1D signal is restored to
a 2D image. -en, the restored image is processed by the
above treatment again, and the final recovered image can be
obtained. -e Wiener2 function in MATLAB is used for
Wiener filtering and the 3 × 3 size filter template is used for
average filtering. -en the three noisy grayscale images of
different sizes (128 × 128, 256 × 256, and 512 × 512 ) are
processed by these comparisonmethods and parallel array of
FHN neurons.

In actual simulation, we consulted references and per-
form a large number of experiments to determine c � 10−4,
a � 0.5, and b � 1 as experimental parameters of FHN
neurons. In the same picture, the size of the array is L. In the
image processing process in this paper, the FHN parallel
array fixes other parameters to adjust the size of the array L.
It can be seen that the image restoration effect varies with the
size of the array L.

3.1. Experimental Data

3.1.1. House Image. -enoise with zero mean and a variance
of 0.6 is added to the house image (128 × 128). -e PSNR of
a noisy house image is 7.6193 dB.

Original grayscale image

Scanning, coding, amplitude
modulation

S (i, j)

s (t)

FHN
neuron 1

∑/L

Demodulation, decoding,
reverse scanning

Restoration image

OM×N

FHN
neuron 2

FHN
neuron L

ξ1 (t)

x1 (t)
x2 (t)

X (t)

xn (t)

ξ2 (t) ξn (t)

Figure 1: -e flowchart of the FHN neuron array model.
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Figure 2 shows the comparison of restored images
among the two classical filtering methods, 2D SR method,
and FHN neuron parallel array method. Figures 2(c)–2(e)
show the restoration effect by two classical filtering methods
and 2D SRmethod. Obviously, the image restoration effect is
not very effective and the noisy house image with low PSNR
cannot be restored well. Figures 2(f)–2(i) show the resto-
ration effect of the parallel array of FHN neurons on the
noisy house image. It shows that as the array size increases,

the SR effect and image restoration effect are better. -e
results show that the larger the array size, the SR effect and
the image restoration effect can be gradually improved. As
shown in Figure 2(i), when L � 10, the restored house image
is almost the same as the original house image.

Table 1 shows the PSNR performance comparison of
restored house images under different restoration methods.
Obviously, the PSNR of the classic filtering methods and 2D
SR methods are similar and the recovery effect is not very

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 2: House images with different image restoration methods: (a) original house image, (b) noisy house image, (c) Wiener filtering, (d)
mean filtering, (e) 2D stochastic resonance, (f ) array size: L� 1, (g) array size: L� 2, (h) array size: L� 5, and (i) array size: L� 10.
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effective. When the parallel array of FHN neuron size is
L � 1, the PSNR value of the parallel array of the FHN
neuron SR method is similar to the classic filtering and 2D
stochastic resonance methods. As the size of the FHN array
increases, the visual effect and performance index of the
restored image also increase. When the array size L � 10, the
visual effect of the restored house image is excellent, and
PSNR� 35.7975 dB.

3.1.2. Rice Image. -e noise with zero mean and a variance
of 0.4 is added to the rice image (256 × 256). -e PSNR of a
noisy rice image is 8.2193 dB.

Figure 3 shows the comparison of restored images be-
tween two classical filtering methods, 2D SR method, and
FHN neuron parallel array method. -e results show that as
the size of the array increases, the SR effect and image
restoration effect are better. Compared with the two classical
filtering and 2D SRmethods, the image restoration effect has
been significantly improved.

Table 2 shows the PSNR performance comparison of
restored rice images under different restoration methods.
When the parallel array of FHN neuron size is L � 1, the
PSNR value of the parallel array of the FHN neuron SR
method is similar to the classic filtering and 2D SR methods,
and as the array size becomes larger, the gap between them
becomes more and more obvious. It shows that this is
consistent with the nonlinear nature of SR, which converts
noise signals into energy signals.

3.1.3. Einstein Image. -e noise with zero mean and a
variance of 0.8 is added to the Einstein image (512 × 512).
-e PSNR of a noisy Einstein image is 7.4014 dB.

Figure 4 shows the comparison of restored images be-
tween two classical filtering methods, 2D SR method, and
FHN neuron parallel array method. Compared with the two
classic filtering and 2D stochastic resonance methods, the
image restoration effect has been significantly improved.
However, in the case of parallel arrays of FHN neurons of the
same size, the restoration effect of the Einstein image is not
as good as that of the house image and the rice image. It
shows that as the pixel size of the image and the noise in-
tensity increase, the restoration effect of the noise image will
also be affected. As the array becomes larger, the visual effect
of the restored image is comparable to the original image.
But the computational complexity and the time required to
process the image will also increase. -erefore, we need to
weigh the computational complexity and the demand for
image restoration effects to select the most suitable size of
the FHN parallel array.

Table 3 shows the PSNR performance comparison of
restored Einstein images under different restoration
methods. It can be seen that the PSNR values of the classic
filtering and 2D SR methods are similar, and the restoration
effect is not effective. -e parallel array of FHN neuron
parallel array methods has a lower PSNR value than the
classic filtering and 2D SR methods when the array size
L � 1. When the array size L � 10, PSNR� 34.9538 dB, and
the PSNR value of the restored Einstein image is significantly
higher than that of the other three methods.

3.2. Bit Error Rate Analysis. In order to further analyze the
recovery effect of the parallel array of FHN neurons, we
analyzed the bit error rate (BER) of the model output. BER is
often used as an indicator of data communication quality.
-e calculation formula is as follows:

BER �
RN
TN

, (10)

where RN is the number of error bits and TN is the total
number of bits.

Figure 5 shows the BER curve of the house image
(128 × 128) as a function of the noise intensity with different
array sizes of the FHN array. In Figure 5, it can be seen that
as the noise intensity increases, the BER also increases. But
the size of the FHN array has a significant effect on the BER.
-e smaller the parallel array of FHN neurons, the higher the
BER. As the array size of FHN neurons array increases, the
BER decreases significantly. -erefore, the bit error rate can
be reduced by increasing the array size of the FHN neurons
array and the accuracy of the output signal can be enhanced.

3.3. Structural SIMilarity Analysis. SSIM is an index to
measure the similarity of two images. -e calculation for-
mula is as follows:

SSIM(x, y) �
2μxμy + c1􏼐 􏼑 2σxy + c2􏼐 􏼑

μ2x + μ2y + c1􏼐 􏼑 σ2x + σ2y + c2􏼐 􏼑
, (11)

where x and y are the original grayscale image and the
restore image, μx is the average of x, μy is the average of y, σx

is the variance of x, and σy is the variance of y. σxy rep-
resents the covariance of x and y. Constant c1 � (k1 L)2 and
c2 � (k2L)2. L is the dynamic range of the pixel value. k1 �

0.01 and k2 � 0.03. House images, rice images, and Einstein
images were analyzed by SSIM, and the results are shown in
Table 4.

It can be seen from Table 4 that the SSIM value increases
with the increase of the array size. When the array size

Table 1: PSNR value of noisy house image under different restoration methods.

Image name Image size
PSNR (dB)

Noisy house Wiener filtering Mean filtering 2D stochastic resonance
-e proposed method

L� 1 L� 2 L� 5 L� 10
House 128×128 7.6193 15.2623 14.4978 16.2076 15.2736 19.5306 30.3087 35.7975
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 3: Rice images with different image restoration methods: (a) original rice image, (b) noisy rice image, (c) Wiener filtering, (d) mean
filtering, (e) 2D stochastic resonance, (f ) array size: L� 1, (g) array size: L� 2, (h) array size: L� 5, and (i) array size: L� 10.

Table 2: PSNR value of noisy rice image under different restoration methods.

Image name Image size
PSNR (dB)

Noisy rice Wiener filtering Mean filtering 2D stochastic resonance
-e proposed method

L� 1 L� 2 L� 5 L� 10
Rice 256× 256 8.2193 16.1337 15.5463 13.0480 17.2653 23.4991 35.1580 42.0800
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 4: Einstein images with different image restoration methods: (a) original Einstein image, (b) noisy Einstein image, (c) Wiener
filtering, (d) mean filtering, (e) 2D stochastic resonance, (f ) array size: L� 1, (g) array size: L� 2, (h) array size: L� 5, and (i) array size: L� 10.

Table 3: PSNR value of noisy Einstein image under different restoration methods.

Image name Image size
PSNR (dB)

Noisy Einstein Wiener
filtering Mean filtering 2D stochastic resonance

-e proposed method
L� 1 L� 2 L� 5 L� 10

Einstein 512× 512 7.4014 15.1588 15.6554 16.8012 13.9864 17.2597 26.3254 34.9538
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L � 10, SSIM can reach more than 0.92, and the image
restoration effect is excellent.

4. Conclusion

In this paper, the method of FHN neuron parallel array is
proposed to improve the transmission quality of low
PSNR noisy images. Experimental results show that
compared with traditional filtering and 2D SR methods,
the image quality and PSNR value can be enhanced ex-
cellently. With the increase of the parallel array size of
FHN neurons, the enhancement effect is more excellent.
In this paper, this method is adopted to process three
kinds of noisy images with different pixel sizes, and the
visual effect and PSNR value of the restored image are
improved greatly. -is method has potential applications
in remote sensing detection, transmission systems, target
detection, etc.
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