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A robust adaptive fuzzy nonlinear controller based on dynamic surface and integral sliding mode control strategy (ADSISMC) is
proposed to realize trajectory tracking for a class of quadrotor UAVs. In this study, the composite factors including parametric
uncertainties and external disturbances are added to controller design, which make it more realistic. +e quadrotor model is
divided into two subsystems of attitude and position that make the control design become feasible. +e main contributions of the
proposed ADSISMC strategy are as follows: (1) +e combination of dynamic surface and integral sliding mode makes the system
always in sliding stage by finding the appropriate initial position compared with the common sliding mode, and the complexity of
explosion in backstepping method is eliminated. (2) By introducing the fuzzy system, the unknown functions and uncertainties
can be approximated which significantly improves the robustness and the tracking performance. (3) +e switching control
strategy is utilized to compensate for the errors between estimated and ideal inputs; the tracking performance of the whole system
has been significantly improved. +e simulation results show the effectiveness of the proposed control method.

1. Introduction

As a newborn member of the small unmanned aerial vehicle
(UVA) family, quadrotor has attracted much research in-
terest due to its extensive utility in several important ap-
plicants, such as commercial photography, military
surveillance, rescue mission, and agricultural investigation
[1–4]. Compared with traditional unmanned fixed-wing
flight vehicles and manned airplanes, the main advantages of
the quadrotor lie in small size, low cost, stable hovering,
vertical take-off and landing (VTOL), convenient porta-
bility, and versatile features [5]. However, trajectory tracking
control of the quadrotor is a thorny problem because of its
nonlinear, underactuated dynamics, and strong coupling
[6, 7]. Moreover, the quadrotor system is susceptible to
external disturbances such as wind and nonlinear frictions.
What is more, taking robustness of the trajectory tracking
controller into consideration poses a bigger challenge [8].

In early quadrotor research stage, many studies used
conventional linear control methods such as proportional-
integral-derivative (PID) [9, 10] and linear quadratic reg-
ulator (LQR) [11] to design the quadrotor controller in order
to improve the simpleness and practicability. +e linear
control technology was developed to stabilize the quadrotor
by neglecting the unimportant factors and linearizing the
dynamic model.+erefore, it is poor and even not acceptable
for the tracking accuracy and the robustness of the quad-
rotor. To overcome the drawbacks of the aforementioned
linear control approaches, a large number of nonlinear
control strategies, including backstepping control [12–15],
sliding mode control (SMC) [16–20], and feedback linear-
ization control, are utilized to improve the tracking per-
formance of the flight control system.

Backstepping control method has received extensive at-
tention, not only in the quadrotor control, but also in some
mechanical systems.+emain idea of backstepping technology
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is to select the appropriate state variable function as the re-
cursive virtual control input. Once the final control input is
received, the stability of the whole system is guaranteed. In
[21–24], a backstepping controller has been designed to sta-
bilize the attitude system of quadrotor. In [24], attitude control
using hybrid backstepping methodology based on Fre-
net–Serret theory is studied in detail. +e results show that the
controller has good robustness under wind disturbance. To
solve the problem of trajectory tracking, in [25], an adaptive
controller combining parameter adaptive and backstepping
control is designed. However, the obvious limitation of con-
ventional backstepping design is the problem of “complexity of
explosion” caused by the repeated differentiation of some
nonlinear functions and the lack of robustness against un-
certainties. To overcome this limitation of traditional back-
stepping control, dynamic surface control (DSC) is proposed
as an effective alternative method [26–30]. In [27], a dynamic
surface control method based on RBF neural network ap-
proximation is proposed for a class of nonlinear time-delay
systems with state variables all measurable, which greatly
simplifies the design process of the controller.

Moreover, to enhance the attitude performance ro-
bustness, disturbance observer (DOB), parameter estimation
[31], and the approximation-based adaptive control are
generally combined with DSC to handle external distur-
bances and parameterized uncertainties. For instance, a class
of adaptive control methods using fuzzy logic systems or
neural networks to approximate unknown functions in
nonlinear systems have been proposed in [32–38]. In [33], a
dynamic surface control-based adaptive fuzzy control
method is proposed to overcome the “explosion of com-
plexity” problem of classical backstepping. In [35], a robust
dynamic surface controller based on extended state observer
is presented for a quadrotor UAV subject to external dis-
turbances and parametric uncertainties. In [36], both in-
direct and direct global neural controllers with the dynamic
surface design are developed for the strict-feedback systems.
+e simulation results are presented to demonstrate the
feasibility of the proposed global neural DSC design. A robot
control scheme based on dynamic surface considering
output error constraints, unknown dynamics, and bounded
disturbance has been proposed in [39]; by introducing an
improved virtual variable, the robustness of the control
system was improved. However, the performance properties
and robustness are not taken into account in these papers. As
a commonly used nonlinear control method, the SMC is
utilized as an effective method to design robust controllers
for a specific class of nonlinear tracking problems in the
presence of uncertain conditions [40–45]. Traditional SMC
features the low sensitivity to the disturbances and pa-
rameter variations of the system [46–51]. In [50], a method
based on second-order sliding mode control is used to avoid
the chattering phenomenon for quadrotor UAVs. In [51], a
robust backstepping sliding mode nonlinear controller for
quadrotor UAVs is proposed to improve the robustness of
the controller against model uncertainty and external dis-
turbances. Compared with traditional sliding mode control
method, the integral sliding mode (ISM) can guarantee that
the system always meets the desired dynamic performance

index during the whole arrival period which significantly
improves the robustness of the control system.

Motivated by the aforementioned observations, a new
control methodology combined with dynamic surface and
ISMC is proposed for the quadrotor trajectory tracking
problem under parametric uncertainties and external dis-
turbances. +e main contributions of this paper are sum-
marized as follows: (1) By fusing the technique of DSC and
the integral SMC, a new integral sliding mode robust dy-
namic surface trajectory tracking controller is designed,
which eliminates the “explosion of complexity” in the
backstepping and improves the robustness of the whole
system. (2) +e FLSs are introduced to approach the ideal
control law. And the estimations of the weight vector norm
are utilized in the FLSs to significantly reduce the number of
online estimation parameters. +erefore, the amount of
calculation is obviously reduced, and the structure of the
proposed controller is simplified. (3) +e adaptive switching
control is introduced to compensate the error between the
real control law and the ideal control law, and the tracking
performance of the whole system has been significantly
improved.

+e rest of this paper is organized as follows. +e
modeling of a quadrotor and some preliminaries are in-
troduced in Section 2.+e control algorithms are introduced
in Section 3. Section 4 gives the stability analysis of the
control system. Extensive simulations under different op-
erating scenarios are given in Section 5.+is paper ends with
the conclusions in Section 6.

2. Problem Formulation and Preliminaries

2.1.#eMathematicalModel ofUAV. +e quadrotor UAV is
an underactuated system because it has six degrees of
freedom, but only four actual inputs [1, 2]. In this paper, the
quadrotor UAV with four rotors is shown in Figure 1. +e
equations of the dynamic quadrotor UAV are basically a
rotating rigid body with six degrees of freedom [4, 5] which
are usually derived by Newton–Euler formulas [8–10].

Define ξ � [ϕ, θ, φ]T and ωb � [p, q, r]T, with φ, θ, and ϕ
being the angle of roll, pitch, and yaw with respect to the
inertia frame. p, q, and r are the angular velocity of roll,
pitch, and yaw with respect to the body-fixed frame. +e
rotation matrix from the rigid frame to the inertia frame can
be expressed as

Rt �

CφCθ CφSθSϕ − SφCϕ CφSθCϕ + SφSϕ

SφCθ SφSθSϕ + CφCϕ SφSθCϕ − CφSϕ

− Sθ CθSϕ CθCϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (1)

where S(·) and C(·) denote sin(·) and cos(·), respectively.
According to the rotation matrix Rt, the relationship be-
tween _ξ and ωb can be described as

ωb � Rr
_ξ �

1 0 − Sθ

0 Cϕ CθSϕ

0 − Sϕ CθCϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

_ϕ
_θ

_φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (2)
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Define Mb as the torque provided by the rotors with
respect to the body-fixed frame, and it is presented as
follows:

Mb �

Mbx

Mby

Mbz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

lk Ω
2
4 − Ω22􏼐 􏼑

lk Ω
2
3 − Ω21􏼐 􏼑

l Ω24 +Ω22 − Ω21 − Ω23􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

where Ωi denotes the rotary speed of the front, right, rear,
and left rotors, respectively; lk is the distance between a rotor
and the center of mass of the quadrotor; k is the drag force
coefficient; and l is the reverse moment coefficient. Using the
Newton–Euler equation, the rotational dynamic equation of
the quadrotor is obtained as follows:

Mb � Jb _ωb + ωb × Jbωb + Mg + Md, (4)

where Jb � diag(Jx, Jy, Jz) is a symmetric positive definite
constant matrix with Jx, Jy, and Jz being the rotary inertia
with respect to the ObXb, ObYb, and ObZb axes, respectively;
the notation × denotes cross multiplication; Mg and Md are
the resultant torques due to the resultant of aerodynamic
frictions torque and the gyroscopic effects. +ey are given as

Mg � 􏽘
4

i�1
ωb × Jr 0, 0, (− 1)

i+1Ωi􏽨 􏽩
T

, Md � diag dϕ, dθ, dφ􏼐 􏼑 _ξ,

(5)
where Jr denotes the moment of inertia of each rotor; dϕ, dθ,
and dφ are the corresponding aerodynamic drag coefficients.
According to (4), the following equation can be obtained:

_ωb � J
− 1
b Mb − Mg − Md − ωb × Jbωb( 􏼁􏽨 􏽩. (6)

Furthermore, with the help of approximation of Euler
angles at equilibrium point, the following dynamic equa-
tions can be obtained:

€ϕ �
_θ _φ Jy − Jz􏼐 􏼑 − Jr

_θϖ − dϕ
_ϕ + Mbx􏽨 􏽩

Jx

,

€θ �
_ϕ _φ Jz − Jx( 􏼁 − Jr

_ϕϖ − dθ
_θ + Mby􏽨 􏽩

Jy

€φ �
_ϕ _θ Jx − Jy􏼐 􏼑 − dφ _φ + Mbz􏽨 􏽩

Jz

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (7)

where ϖ � Ω4 +Ω3 − Ω2 − Ω1 can be got easily online. It
should be noted that to make the roll and pitch angles
physically meaningful, they are both limited to (− π/2, π/2).
In particular, the yaw angle is also limited to (− π/2, π/2) in
this study, while P � [x, y, z]T ∈ R3 is the position with
respect to the inertial frame. +e translational dynamic
equations of the quadrotor are given as

m €P � Rt · F +

0
0

− mg

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ −

dx _x

dy _y

dz _z

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where dx, dy, and dz are the air drag coefficients which are
added in (8) to model the drag force caused by translational
motions; F is the lift force generated by rotors with respect to
the body-fixed frame.

F �

0

0

k Ω21 +Ω22 +Ω23 +Ω24􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

By combining (7) and (8), a compact affine nonlinear
equation of the quadrotor UAV is given as

_X � f(X) + g(X)U, (10)

whereX � [x, _x, y, _y, z, _z, ϕ, _ϕ, θ, _θ,φ, _φ]T ∈ R12 is the state
variable; f(X) and g(X) are smooth functions on X.
Equation (10) is expended as follows:

_x1 � x2,

_x2 � Cx7Sx9Cx11 + Sx7Sx11( 􏼁U1 − a1x2 + d1,

_x3 � x4,

_x4 � Cx7Sx9Sx11 − Sx7Sx11( 􏼁U1 − a2x4 + d2,

_x5 � x6,

_x6 � Cx7Cx9( 􏼁U1 − g − a3x6 + d3,

_x7 � x8,

_x8 � a4x10x12 + a5ϖx10 − a6x8 + U2 + d4,

_x9 � x10,

_x10 � a7x8x12 + a8ϖx8 − a9x10 + U3 + d5,

_x11 � x12,

_x12 � a10x8x10 − a11x12 + U4 + d6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where Ui, i � 1, 2, 3, 4 represents the control inputs defined
as follows:

U1 �
lk Ω

2
1 +Ω22 +Ω23 +Ω24􏼐 􏼑

m
,

U2 �
lk Ω

2
4 − Ω22􏼐 􏼑

Jx
,

U3 �
lk Ω

2
3 − Ω21􏼐 􏼑

Jy
,

U4 �
lk Ω

2
4 +Ω22 − Ω23 − Ω21􏼐 􏼑

Jz
,

(12)

Ye

Ze
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Figure 1: Schematic of the quadrotor UAV.
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and ai, i � 1, 2, . . . , 11, are the normalized parameters de-
fined as follows:

a1 �
dx

m
,

a2 �
dy

m
,

a3 �
dz

m
,

a4 �
Jy − Jz

Jx

,

a5 �
Jr

Jx

,

a6 �
dϕ

Jx

,

a7 �
Jz − Jx

Jy

,

a8 �
Jr

Jy

,

a9 �
dθ

Jy

,

a10 �
Jx − Jy

Jz

,

a11 �
dφ

Jz

.

(13)

2.2. Fuzzy Logic Systems (FLSs). In this study, the Fuzzy
Logic Systems (FLSs) are introduced to approximate the
continuous unknown functions on a given compact set. +e
FLSs consist of three main parts: fuzzy rule base, fuzzifi-
cation, and defuzzification operators. +e form of the fuzzy
rules of the fuzzy controller is

Rule l: If x1 is Fl
1 and x2 is Fl

2 and . . .and xn is Fl
n.

+en y is Gl, l � 1, 2, . . . , N. where
x(t) � [x1, x2, . . . , xn]T and y are the input and output of
the whole fuzzy system, respectively. And N is the number of
the rules. +e fuzzy basis functions forms are defined as

y(x) �
􏽐

N
l�1 y

l
􏽑

n
i�1 μFl

i
xi( 􏼁􏼒 􏼓

􏽐
N
l�1 􏽑

n
i�1 μFl

i
xi( 􏼁􏼒 􏼓

, (14)

where yl � maxy∈RμGl (y).

ξl(x) �
􏽑

n
i�1 μFl

i
xi( 􏼁

􏽐
N
l�1 􏽑

n
i�1 μFl

i
xi( 􏼁􏼒 􏼓

. (15)

Denoting αT � [y1, y2, . . . , yN] � [α1, α2, . . . , αN] and
ξ(x) � [ξ1(x), ξ2(x), . . . , ξN(x)]T, then equation of the
fuzzy system can be rewritten as

y(x) � αTξ(x). (16)

Lemma 1. For a continuous nonlinear function f(x) in a
compact set Ωx, it can be effectively approximated by FLSs
with any small approximated error ε> 0. f(x) can be
expressed as follows:

sup
x∈Ωx

f(x) − αTξ(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε, (17)
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Figure 2: Schematic diagram of the proposed control scheme.

4 Complexity



if x ∈ Ωx, then the smooth nonlinear function f(x) can be
expressed as

f(x) � α∗Tξ(x) + ε(x), (18)

where α∗ is the optimal fuzzy parameter vector, ε(x) is the
approximation error satisfies ‖ε(x)‖≤ ε ε> 0.

3. DSISMC Controller Design Procedure

In this section, the design process of dynamic surface in-
tegral sliding mode controller is proposed and the control
system block diagram is shown in Figure 2. +e controller
design process is divided into two parts: the position
tracking controller design and attitude tracking controller
design, as shown in Tables 1 and 2, respectively. To make the
presentation clear, the specific controller design process is
given in Appendix A.

In Table 1, ei, (i � 1, 2, 3) are the tracking error, and
xi, (i � 2, 4, 6) are the virtual laws. +e low-pass first-order
filters (T1.3), (T1.9), and (T1.15) are presented in each step to
get a new variable xid, (i � 2, 4, 6) with the time constants
τi, (i � 1, 2, 3). +e integral sliding mode surfaces Si, (i �

1, 2, 3) are selected in each step which improves the ro-
bustness of the system against disturbances and parameters
uncertainties. Due to the existence of unknown functions
and parameters, the fuzzy system vifs, (i � 1, 2, 3) are uti-
lized to approximate vi, (i � 1, 2, 3) with αi, (i � 1, 2, 3) and
ξi, (i � 1, 2, 3) being the adjustable parameters and fuzzy
basis vectors, respectively. +en, the switching control law
vivs, (i � 1, 2, 3) are introduced to compensate the error of
vi, (i � 1, 2, 3) and the ideal input. Ei, (i � 1, 2, 3) are the
switching gain, ci, ηi, ρi, (i � 1, 2, 3), and ki, (i � 1, 2, . . . , 6)

Table 1: Position control algorithm of UAVs.

Step 1
e1 � x1 − x1 d, (T1.1)
x2 � _x1 d − c1e1, (T1.2)
τ1 _x2d + x2d � x2, x2 d(0) � x2(0), (T1.3)
S1 � x2 − 􏽒

t

0( _x2 d − k1 _e1 − k2e1)dt, (T1.4)
v1fs � αT

1 ξ1, _􏽢α1 � − η1S1ξ1, (T1.5)
v1vs � − 􏽢E1sgn(S1),

_􏽢E1 � ρ1|S1|,
v1 � v1fs + v1vs. (T1.6)
Step 2
e3 � x3 − x3 d, (T1.7)
x4 � _x3 d − c2e3, (T1.8)
τ2 _x4d + x4d � x4, x4 d(0) � x4(0), (T1.9)
S2 � x4 − 􏽒

t

o
( _x4d − k3 _e3 − k4e3)dt, (T1.10)

v2fs � αT
2 ξ2, _􏽢α2 � − η2S2ξ2,

(T1.11)v2vs � − 􏽢E2sgn(S2),

v2vs � − 􏽢E2sgn(S2),

v2 � v2fs + v2vs. (T1.12)
Step 3
e5 � x5 − x5 d, (T1.13)
x6 � _x5 d − c3e5, (T1.14)
τ3 _x6d + x6d � x6, x6 d(0) � x6(0), (T1.15)
S3 � x6 − 􏽒

t

0( _x6 d − k5 _e5 − k6e5)dt, (T1.16)
v3fs � αT

3 ξ3, _􏽢α3 � − η3S3ξ3,
(T1.17)v3vs � − 􏽢E3sgn(S3),

v3vs � − 􏽢E3sgn(S3),

v3 � v3fs + v3vs. (T1.18)

Table 2: Attitude control algorithm of UAVs.

Step 4
e7 � x7 − x7d, (T2.1)
x8 � _x7 d − c4e7, (T2.2)
τ4 _x8 d + x8 d � x8, x8 d(0) � x8(0), (T2.3)
S4 � x8 − 􏽒

t

0( _x8 d − k7 _e7 − k8e8)dt, (T2.4)
U2fs � αT

4 ξ4, _􏽢α4 � − η4S4ξ4, (T2.5)
U2vs � − 􏽢E4sgn(S4),

_􏽢E4 � ρ4|S4|,
U2 � U2fs + U2vs. (T2.6)
Step 5
e9 � x9 − x9d, (T2.7)
x10 � _x9 d − c5e9, (T2.8)
τ5 _x10 d + x10 d � x10, x10 d(0) � x10(0), (T2.9)
S5 � x10 − 􏽒

t

0( _x10d − k9 _e9 − k10e11)dt, (T2.10)
U3fs � αT

5 ξ5, _􏽢α5 � − η5S5ξ5, (T2.11)
U3vs � − 􏽢E5sgn(S5),

_􏽢E5 � ρ5|S5|,
U3 � U3fs + U3vs. (T2.12)
Step 6
e11 � x11 − x11 d, (T2.13)
x12 � _x11 d − c6e11, (T2.14)
τ6 _x12 d + x12 d � x12, x12 d(0) � x12(0), (T2.15)
S6 � x12 − 􏽒

t

0( _x12d − k11 _e11 − k12e12)dt, (T2.16)
U4fs � αT

6 ξ6, _􏽢α6 � − η6S6ξ6, (T2.17)
U4vs � − 􏽢E6sgn(S6),

_􏽢E6 � ρ6|S6|,
U4 � U4fs + U4vs. (T2.18)

Table 3: Quadrotor parameters.

Symbol Case1 Case 2 Case 3 Case 4 Units
m 2 2 2 2 kg
l 0.2 0.2 0.2 0.2 m
κ 2.98 2.98 2.98 2.98 10− 6 N · s2 · rad− 2

τ 1.14 1.14 1.14 1.14 10− 7 N · s2 · rad− 2

dϕ 1.2 1.2 1.2 1.2 10− 2 N · s · rad− 1

dθdϕ 1.2 1.2 1.2 1.2 10− 2 N · s · rad− 1

Jx 1.25 1.25 1.25 1.25 N · s2 · rad− 1

Jy 1.25 1.25 1.25 1.25 N · s2 · rad− 1

Jz 2.50 2.88 3.25 3.75 N · s2 · rad− 1
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Figure 3: Space diagram of position in normal case.
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are positive constant. It is worth noting that v � [v1, v2, v3]
T

is a group of virtual control laws and they can be given by
v1 � (Cx7Sx9Cx11 + Sx7Sx11)U1, v2 � (Cx7Sx9Sx11 − Sx7Sx11)

U1, v3 � (Cx7Cx9)U1.
In Table 2, ei, (i � 4, 5, 6) are the tracking error,

andxi, (i � 8, 10, 12) are the virtual laws. +e low-pass first-
order filters (T2.3), (T2.9), and (T2.15) are presented in each
step to get a new variable xid, (i � 8, 10, 12) with the time
constants τi, (i � 4, 5, 6). +e integral sliding mode surfaces

Si, (i � 4, 5, 6) are selected in each step to improve the
robustness of the system. +e fuzzy system Uifs, (i � 2, 3, 4)

are utilized to approximate Ui, (i � 2, 3, 4) with
αi, (i � 4, 5, 6) and ξi, (i � 4, 5, 6) being adjustable param-
eters and fuzzy basis vectors, respectively. +en, the
switching control law Uivs, (i � 2, 3, 4) are introduced to
compensate for Ui, (i � 2, 3, 4) and the ideal input. Ei, (i �

4, 5, 6) are the switching gain. ci, ηi, ρi, (i � 4, 5, 6), and
ki, (i � 7, 8, . . . , 12) are positive constant.
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Remark 1. v1, v2, and v3 are combinations of available terms
that can be given directly or measured in Tables 1 and 2.
+erefore, the control input U1 can be solved by
U1 � v3/CX7

CX9
.

4. Stability Analysis of the Closed-Loop System

In this section, stability analysis of the proposed control
system is established to confirm that all signals in the closed
loop are ultimately bounded. +e errors of the first-order
filter are presented as follows:

yi � xid − xi, (i � 2, 4, . . . , 12). (19)

From (T1.3), (T1.9), (T1.15), (T2.3), (T2.9), and (T2.15),
one can obtain

_xid � −
yi

τi/2
, (i � 2, 4, . . . , 12). (20)

+e derivative of yi(i � 2) in time can be obtained as

_y2 � _x2d − x2 � −
y2

τ1
− €x2d + c1 _e1, (21)

then, one can obtain

_y2 � −
y2

τ1
+ B2 e1, e2, y2, €x2d( 􏼁, (22)

where B2(e1, e2, y2, €x2 d) � − €x2 d + c1 _e1 is a continuous
function. +e following formula can also be obtained:

_yi � −
yi

τi/2
+ Bi(·), (i � 2, 4, 6, 8, 10, 12). (23)

+en, the following inequalities hold:

yi _yi ≤ −
y
2
i

τi/2
+ Bi yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (i � 2, 4, 6, 8, 10, 12). (24)

Consider the Lyapunov function candidate

V � V1 + V2, (25)
with V1 � (1/2) 􏽐

6
i�1(e22i− 1 + y2

2i) and
V2 � (1/2) 􏽐

6
i�1(S2i + (1/ηi)􏽥αT

i 􏽥αi + (1/ρi)
􏽥E
2
i ). +en, the fol-

lowing theorem can be obtained.
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Figure 5: +e actual tracking error.
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Theorem 1. Consider the closed-loop system which consists
of the position and attitude system, with the virtual control
signals (T1.2), (T1.8), (T1.14), (T2.2), (T2.8), and (T2.14), the
adaptive laws (T1.5), (T1.11), (T1.17), (T2.5), (T2.11), and
(T2.17), and the switching control laws (T1.6), (T1.12),
(T1.18), (T2.6), (T2.12), and (T2.18). If all the parametersci,
ηi, ρi, (i � 1, 2, . . . , 6), ki, (i � 1, 2, . . . , 12) and the time
constant of first-order filter τi, (i � 1, 2, . . . , 6) are designed
properly to satisfy V(0)≤p, (p> 0), all the closed-loop signals
are uniformly bounded and the tracking error can be kept
arbitrarily small.

Proof. +e specific proof process is presented in Appendix
B. □

5. Simulations

In this section, the following simulations are given to val-
idate the effectiveness and the performance of the proposed

adaptive dynamic surface integral sliding mode control. +e
parameters for the quadrotor UAV adopted in this paper are
presented in Table 3. In the following simulation, the desired
trajectory of the position and yaw angle
x(t), y(t), z(t), φ(t)􏼈 􏼉are chosen as
sin(t), cos(t), 0.5t, sin(0.5t){ }. +e controller parameters
chosen for simulation are ci � 0.01, τi � 0.001, ηi � 200,
ρi � 0.1, (i � 1, 2, . . . , 6), ki � 9, (i � 1, 3, 5, 7, 9, 11), and
ki � 20, (i � 2, 4, 6, 8, 10, 12). +e fuzzy membership func-
tions are chosen as follows:
ul(si) � exp(− [(si + (π/6) − (l − 1) × (π/12))/
(π/24)]2), (i � 1, 2, 3; l � 1, 2, 3, 4, 5, 6). +e disturbances
are chosen as follows: d1 � cos(t), d2 � sin(t),
d3 � sin(t)cos(t), d4 � 0.5 sin(0.5t), d5 � 0.5 cos(0.5t),
d6 � 0.25 sin(0.5t)cos(0.5t).

Case 1. In this case, the parameters of the quadrotor are
assumed normal. +e simulations for this case are
presented.
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Figure 13: +e actual tracking error by using DSISMC, SMC, DSC.

Table 4: +e MVTE and RMSVTE of different schemes.

Kind of errors Proposed scheme ADSC scheme ASMC scheme
MVTE of x (m) 7.66e− 4 4.90e− 2 9.76e− 3

MVTE of y (m) 6.58e− 4 5.03e− 2 7.15e− 3

MVTE of z (m) 5.70e− 4 1.50e− 2 3.15e− 3

MVTE of φ (rad) 4.83e− 4 1.53e− 2 7.84e− 4

RMSVTE of x (m) 3.33e− 4 3.81e− 2 7.02e− 3

RMSVTE of y (m) 2.92e− 4 4.03e− 2 5.16e− 3

RMSVTE of z (m) 2.16e− 4 9.82e− 3 2.73e− 3

RMSVTE of φ(rad) 1.34e− 4 1.16e− 2 5.04e− 4
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Cases 2–4. Uncertainty (15%, 30%, and 50% added) in
the rotary inertia as well as the presence of external
disturbance. In these cases, we give a consideration to
both external disturbance and uncertainty in rotary
inertia. +e uncertainty in yaw axis is 15%, 30%, and
50%, respectively.

+e simulation results of Case 1 are presented from
Figures 3 to 7. Figure 3 shows the 3D tracking trajectory by
using the proposed controller. +e position and yaw angle
trajectories are shown in Figure 4, and the tracking errors are
given in Figure 5. Figure 6 shows the control signals. Figure 7
shows the change of roll and pitch angles. From the tracking
performance, it can be concluded that the proposed control
scheme can guarantee that all the variables are bounded and
that the control system has strong robustness. Figures 8 to 10
illustrate the tracking performance under the different
uncertainty cases. +e proposed scheme has the better ro-
bustness against external disturbances and uncertainty pa-
rameters. Figures 11 to 13 show the tracking error
comparisons between the ADSISMC, the ADSC, and the
ASMC methods. Meanwhile, the maximum values (MVTE)
and the root mean square values (RMSVTE) of tracking
error in steady of the proposed scheme and the other two
schemes are given in Table 4. +e simulation results show
that the proposed scheme has better tracking performance
and robustness compared with the ADSC and the ASMC
methods.

6. Conclusion

+is paper proposed a dynamic surface integral sliding mode
control scheme for a quadrotor UAV under the conditions
of parameter uncertainty and external disturbances. Virtual
control inputs are introduced in the robust controller design
to guarantee the trajectory tracking performance, and the
problem of “explosion of complexity” in the backstepping
design has been greatly simplified. +e fuzzy systems are
utilized to approximate the ideal control inputs and the
switch control is introduced to compensate for errors be-
tween estimated and ideal inputs which improves the control
performance and robustness of the whole system. In addi-
tion, the stability analysis of the overall system through
Lyapunov stability theory is presented, and all signals of the
closed loop are ultimately bounded. Finally, the simulation
results show that robustness and improved tracking per-
formance can be achieved with the proposed control scheme.

Appendix

A. The Controller Design Procedures

Step 1. Define the position error:

e1 � x1 − x1d, (A.1)

where x1 d is the desired x position command, and the
derivative of e1 with respect to time is

_e1 � x2 − _x1d. (A.2)

Define the virtual control x2,

x2 � − c1e1 + _x1d, (A.3)

where c1 is a positive constant. To solve the problem of
“complexity of explosion” caused by the repeated differ-
entiation, a new state variable x2 d is introduced and let x2
pass through the following first-order filter with constant τ1
(T1.3) to obtain x2 d

τ1 _x2d + x2d � x2, x2d(0) � x2(0), (A.4)

where x2 d is the output of the first-order filter; the filter error
is y1 � x2 d − x2. A proper integral sliding mode manifold is
chosen (T1.4):

S1 � x2 − 􏽚
t

0
_x2 d − k1 _e1 − k2e1( 􏼁dt, (A.5)

where k1 and k2 are both the positive constant. If the sliding
mode control is in an ideal state, the derivative of S1 with
respect to time is

S1 � _S1 � _x2 − _x2d + k1 _e1 + k2e1 � _e2 + k1 _e1 + k2e1 � 0.

(A.6)

+en, a variable v1 � (Cx7Sx9Cx11 + Sx7Sx11)U1 is in-
troduced to be a new control input; then

v1 − a1x2 + d1 − _x2d + k1 _e1 + k2e1 � _e2 + k1 _e1 + k2e1 � 0.

(A.7)

Assuming that the perturbations and parameters in the
equation are known, the control law for xmotion in an ideal
state is designed as follows:

v
∗
1 � a1x2 − d1 + _x2d − k1 _e1 − k2e1. (A.8)

In most cases, the system parameters are uncertain and
there are also unknown external disturbances, which makes
it difficult to obtain the ideal control signalv∗1 . +erefore, the
fuzzy system is used to approximate the ideal control sig-
nalv∗1 and obtain

v
∗
1 � v1fz s1, α1( 􏼁 + ε1 � αT

1 ξ1 + ε1, (A.9)

where ε1 is the approximation error, and |ε1|<E1. Intro-
ducing switching control law v1vs (T1.5) to compensate for v∗1
and v1fz,

v1vs � − 􏽢E1sgn S1( 􏼁, (A.10)

where 􏽢E1 is the estimation of E1.
+en, the actual control law (T1.6) is obtained as

v1 � v1fz + v1vs. (A.11)

Consider the Lyapunov function

Γ1 �
1
2
S
2
1 +

1
2η1

􏽥αT
1 􏽥α1 +

1
2ρ1

􏽥E
2
1, (A.12)

where η1 and ρ1are positive constant. +e derivative of Γ1
with respect to time can be presented below:
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_Γ1 � S1
_S1 +

1
η1

􏽥αT
1

_􏽥α1 +
1
ρ1

􏽥E1
_􏽥E1, (A.13)

while

v
∗
1 � a1x2 − d1 + _x2 d − k1 _e1 − k2e1

� a1x2 − d1 + _x2 − _S1

� v1 − _S1.

(A.14)

So
_S1 � v1 − v

∗
1 � v1fz + v1vs − v

∗
1 . (A.15)

Substituting (A.15) into (A.13), then

_Γ1 � S1
_S1 +

1
η1

􏽥αT
1

_􏽥α1 +
1
ρ1

􏽥E1
_􏽥E1

� S1 v1fz + v1vs − v
∗
1􏼐 􏼑 +

1
η1

􏽥αT
1

_􏽥α1 +
1
ρ1

􏽥E1
_􏽥E1

� 􏽥αT
1 S1ξ1 +

1
η1

_􏽥α1􏼠 􏼡 + S1 v1vs − ε1( 􏼁 +
1
ρ1

􏽥E1
_􏽥E1.

(A.16)

+e adaptive law and the switching control (T1.5) are
chosen below:

_􏽢α1 � − η1S1ξ1. (A.17)

And formula (A.16) becomes

_Γ1 � S1
_S1 +

1
η1

􏽥αT
1

_􏽥α1 +
1
ρ1

􏽥E1
_􏽥E1

� 􏽥αT
1 S1ξ1 +

1
η1

_􏽥α1􏼠 􏼡 + S1 v1vs − ε1( 􏼁 +
1
ρ1

􏽥E1
_􏽥E1

� − 􏽢E1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε1S1 +
1
ρ1

􏽢E1 − E1􏼐 􏼑
_􏽢E1.

(A.18)

To make the Lyapunov function _Γ1 ≤ 0, the adaptive law
of switching control is updated below:

_􏽢E1 � ρ1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (A.19)

+en,

_Γ1 � − 􏽢E1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε1S1 +
1
ρ1

􏽢E1 − E1􏼐 􏼑
_􏽢E1

≤ − E1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε1S1

≤ − E1 − ε1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.20)

+e similar design processes are presented to design the
trajectory tracking of y-axis position x3 and z-axis position
x5 using the dynamic surface integral sliding mode control.
Introduce the variables v2 � (Cx7Sx9Sx11 − Sx7Sx11)U1 and
v3 � (Cx7Cx9)U1, the specific procedures are presented in
Step 2 and Step 3.

Step 2. Define the position error:

e3 � x3 − x3d, (A.21)

where x3 d is the desired y-position command, and the
derivative of e3 with respect to time is

_e3 � x4 − _x3d. (A.22)

Define the virtual control x4,

x4 � − c2e3 + _x3d, (A.23)

where c2 is a positive constant. A new state variable x4d is
introduced and let x4 pass through the following first-order
filter with constant τ2 (T1.9) to obtain x4 d

τ2 _x4d + x4 d � x4, x4 d(0) � x4(0), (A.24)

where x4 d is the output of the first-order filter; the filter error
is y4 � x4 d − x4. A proper integral sliding mode manifold is
chosen (T1.10):

S2 � x4 − 􏽚
t

0
_x4d − k3 _e3 − k4e3( 􏼁dt, (A.25)

where k3 and k4 are the positive constant. If the sliding mode
control is in an ideal state, and the derivative of S2 with
respect to time is

S2 � _S2 � _x4 − _x4d + k3 _e3 + k4e3 � _e4 + k3 _e3 + k4e3 � 0.

(A.26)

+en, a variable v2 � (Cx7Sx9Sx11 − Sx7Sx11)U1 is in-
troduced to be a new control input. Assuming that the
perturbations and parameters in the equation are known, the
control law for y-motion in an ideal state is designed as
follows:

v
∗
2 � a2x4 − d2 + _x4 d − k3 _e3 − k4e3. (A.27)

In most cases, the system parameters are uncertain and
there are also unknown external disturbances, which makes
it difficult to obtain the ideal control signal v∗2 . +erefore, the
fuzzy system is used to approximate the ideal control signal
v∗2 and obtain

v
∗
2 � v2fz s2, α2( 􏼁 + ε2 � αT

2 ξ2 + ε2, (A.28)

where ε2 is the approximation error, and |ε2|<E2. Intro-
ducing switching control law v2vs to compensate for v∗2 and
v2fz
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v2vs � − 􏽢E2sgn S2( 􏼁, (A.29)

where 􏽢E2 is the estimation of E2. +en, the actual control law
(T1.12) is obtained

v2 � v2fz + v2vs. (A.30)

Consider the Lyapunov function

Γ2 �
1
2
S
2
2 +

1
2η2

􏽥αT
2 􏽥α2 +

1
2ρ2

􏽥E
2
2, (A.31)

where η2 and ρ2 are positive constant. +e derivative of Γ2
with respect to time can be presented as below:

_Γ2 � S2
_S2 +

1
η2

􏽥αT
2

_􏽥α2 +
1
ρ2

􏽥E2
_􏽥E2, (A.32)

while

v
∗
2 � a2x4 − d2 + _x4 d − k3 _e3 − k4e3

� a2x4 − d2 + _x4 − _S2

� v2 − _S2.

(A.33)

So,
_S2 � v2 − v

∗
2 � v2fz + v2vs − v

∗
2 . (A.34)

Substituting (A.34) into (A.32), then

_Γ2 � S2
_S2 +

1
η2

􏽥αT
2

_􏽥α2 +
1
ρ2

􏽥E2
_􏽥E2

� S2 v2fz + v2vs − v
∗
2􏼐 􏼑 +

1
η2

􏽥αT
2

_􏽥α2 +
1
ρ2

􏽥E2
_􏽥E2

� 􏽥αT
2 S2ξ2 +

1
η2

_􏽥α2􏼠 􏼡 + S2 v2vs − ε2( 􏼁 +
1
ρ2

􏽥E2
_􏽥E2.

(A.35)

+e adaptive law (T1.11) is chosen below:

_􏽢α2 � − η2S2ξ2. (A.36)

And formula (A.35) becomes

_Γ2 � S2
_S2 +

1
η2

􏽥αT
2

_􏽥α2 +
1
ρ2

􏽥E2
_􏽥E2

� 􏽥αT
2 S2ξ2 +

1
η2

_􏽥α2􏼠 􏼡 + S2 v2vs − ε2( 􏼁 +
1
ρ2

􏽥E2
_􏽥E2

� − 􏽢E2 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε2S2 +
1
ρ2

􏽢E2 − E2􏼐 􏼑
_􏽢E2.

(A.37)

To make the Lyapunov function _Γ2 ≤ 0, the adaptive law
of switching control is updated below:

_􏽢E2 � ρ2 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (A.38)

+en,

_Γ2 � − 􏽢E2 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε2S2 +
1
ρ2

􏽢E2 − E2􏼐 􏼑
_􏽢E2

≤ − E2 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε2S2

≤ − E2 − ε2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.39)

Step 3. Define the position error:

e5 � x5 − x5d, (A.40)

where x5 d is the desired z-position command, and the
derivative of e5 with respect to time is

_e5 � x6 − _x5d. (A.41)

Define the virtual control x6,

x6 � − c3e5 + _x5d, (A.42)

where c3 is a positive constant. A new state variable x6d is
introduced and let x6 pass through the following first-order
filter with constant τ3 (T1.15) to obtain x6d

τ3 _x6d + x6 d � x6,

x6 d(0) � x6(0),
(A.43)

where x6 d is the output of the first-order filter; the filter error
is y6 � x6 d − x6. A proper integral sliding mode manifold is
chosen (T1.16):

S3 � x6 − 􏽚
t

0
_x6d − k5 _e5 − k6e5( 􏼁dt, (A.44)

where k5 and k6 are the positive constant. If the sliding mode
control is in an ideal state, and the derivative of S3 with
respect to time is

S3 � _S3 � _x6 − _x6d + k5 _e5 + k6e5 � _e6 + k5 _e5 + k6e5 � 0.

(A.45)

+en, a variable v3 � (Cx7Cx9)U1 is introduced to be a
new control input. Assuming that the perturbations and
parameters in the equation are known, the control law for z

motion in an ideal state is designed as follows:

v
∗
3 � a3x6 − d3 + g + _x6 d − k5 _e5 − k6e5. (A.46)

In most cases, the system parameters are uncertain and
there are also unknown external disturbances, which makes
it difficult to obtain the ideal control signalv∗3 . +erefore, the
fuzzy system is used to approximate the ideal control signal
v∗3 and obtain

v
∗
3 � v3fz s3, α3( 􏼁 + ε3 � αT

3 ξ3 + ε3, (A.47)

where ε3 is the approximation error, and |ε3|<E3. Intro-
ducing switching control law v3vs (T1.17) to compensate for
v∗3 and v3fz
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v3vs � − 􏽢E3sgn S3( 􏼁, (A.48)

where 􏽢E3 is the estimation of E3. +en, the actual control law
(T1.18) is obtained as

v3 � v3fz + v3vs. (A.49)

Consider the Lyapunov function

Γ3 �
1
2
S
2
3 +

1
2η3

􏽥αT
3 􏽥α3 +

1
2ρ3

􏽥E
2
3, (A.50)

where η3 and ρ3 are the positive constant. +e derivative of
Γ3 with respect to time can be presented as below:

_Γ3 � S3
_S3 +

1
η3

􏽥αT
3

_􏽥α3 +
1
ρ3

􏽥E3
_􏽥E3, (A.51)

while

v
∗
3 � a3x6 − d3 + g + _x6 d − k5 _e5 − k6e5

� a3x6 − d3 + g + _x6 − _S3

� v3 − _S3.

(A.52)

So,
_S3 � v3 − v

∗
3 � v3fz + v3vs − v

∗
3 . (A.53)

Substituting (A.53) into (A.51), then

_Γ3 � S3
_S3 +

1
η3

􏽥αT
3

_􏽥α3 +
1
ρ3

􏽥E3
_􏽥E3

� S3 v3fz + v3vs − v
∗
3􏼐 􏼑 +

1
η3

􏽥αT
3

_􏽥α3 +
1
ρ3

􏽥E3
_􏽥E3

� 􏽥αT
3 S3ξ3 +

1
η3

_􏽥α3􏼠 􏼡 + S3 v3vs − ε3( 􏼁 +
1
ρ3

􏽥E3
_􏽥E3.

(A.54)

+e adaptive law (T1.17) is chosen below:

_􏽢α3 � − η3S3ξ3. (A.55)

And formula (A.54) becomes

_Γ3 � S3
_S3 +

1
η3

􏽥αT
3

_􏽥α3 +
1
ρ3

􏽥E3
_􏽥E3

� 􏽥αT
3 S3ξ3 +

1
η3

_􏽥α3􏼠 􏼡 + S3 v3vs − ε3( 􏼁 +
1
ρ3

􏽥E3
_􏽥E3

� − 􏽢E3 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε3S3 +
1
ρ3

􏽢E3 − E3􏼐 􏼑
_􏽢E3.

(A.56)

To make the Lyapunov function _Γ3 ≤ 0, the adaptive law
of switching control is updated below:

_􏽢E3 � ρ3 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (A.57)

+en,

_Γ3 � − 􏽢E3 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε3S3 +
1
ρ3

􏽢E3 − E3􏼐 􏼑
_􏽢E3

≤ − E3 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε3S3

≤ − E3 − ε3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.58)

By associating v1,v2, andv3, a group of virtual controls is
obtained as follows:

v1 � Cx7Sx9Cx11 + Sx7Sx11( 􏼁U1,

v2 � Cx7Sx9Sx11 − Sx7Sx11( 􏼁U1,

v3 � Cx7Cx9( 􏼁U1.

⎧⎪⎪⎨

⎪⎪⎩
(A.59)

Remark 2. v1,v2, andv3 are combinations of available terms
that can be given directly or measured above. +erefore, the
control input U1 can be solved by regarding them as known
in the controlled system (A.59). Apparently, (A.59) has four
unknown variables, namely, x7, x9, x11, and U1. However,
x11 d is usually given as an extra reference signal in advance
and the integral SMC controller is designed above to ensure
the rapid convergence of x11 to x11 d. +us, x11 is regarded as
known and can be replaced by x11 d in this situation, and the
unknown variables are reduced. So, we can obtain the un-
known variables as follows:

x7 d � arctan Cx9

bv1 − av2

v3
􏼠 􏼡,

x9 d � arctan
av1 + bv2

v3
􏼠 􏼡,

U1 �
v3

CX7
CX9

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.60)

where x7 d and x9 d are desired the roll and pitch angle
trajectory, and U1 is part of the ultimate control laws, a �

cos(x11d) and b � sin(x11d).
In the attitude tracking system, x7d, x9d, and x11 d are

taken as the desired attitude trajectory, and the design
procedure of attitude tracking contains three steps.

Step 4. Define the roll error:

e7 � x7 − x7d, (A.61)

where x7 dis the desired roll command, and the derivative of
e7 with respect to time is:

_e7 � x8 − _x7d. (A.62)

Define the virtual controlx8,

x8 � − c4e7 + _x7d, (A.63)

16 Complexity



where c4 is a positive constant. A new state variable x8 d is
introduced and let x8 pass through the following first-order
filter with constant τ4 (T2.3) to obtain x8d

τ4 _x8 d + x8d � x8,

x8d(0) � x8(0),
(A.64)

where x8d is the output of the first-order filter; the filter error
is y8 � x8d − x8. A proper integral sliding mode manifold is
chosen (T2.4):

S4 � x8 − 􏽚
t

0
_x8 d − k7 _e7 − k8e7( 􏼁dt, (A.65)

where k7 and k8 are the positive constant. If the sliding mode
control is in an ideal state, the derivative of S4 with respect to
time is

S4 � _S4 � _x8 − _x8 d + k7 _e7 + k8e7 � _e8 + k7 _e7 + k8e7 � 0.

(A.66)

Assuming that the perturbations and parameters in the
equation are known, the control law for roll motion in an
ideal state is designed as follows:

U
∗
2 � − a4x10x12 − a5ϖx10 + a6x8 − d4 + _x8 d − k7 _e7 − k8e7.

(A.67)

In most cases, the system parameters are uncertain and
there are also unknown external disturbances, which makes
it difficult to obtain the ideal control signalU∗2 .+erefore, the
fuzzy system is used to approximate the ideal control sig-
nalU∗2 and obtain

U
∗
2 � U2fz s2, α4( 􏼁 + ε4 � αT

4 ξ4 + ε4, (A.68)

where ε4 is the approximation error, and |ε4|<E4. Intro-
ducing switching control law U2vs (T2.5) to compensate for
U∗2 and U2fz

U2vs � − 􏽢E4sgn S4( 􏼁, (A.69)

where 􏽢E4 is the estimation of E4. +en, the actual control law
(T2.6) is obtained as

U2 � U2fz + U2vs. (A.70)

Consider the Lyapunov function

Γ4 �
1
2
S
2
4 +

1
2η4

􏽥αT
4 􏽥α4 +

1
2ρ4

􏽥E
2
4, (A.71)

where η4 and ρ4 are the positive constant. +e derivative of
Γ4 with respect to time can be presented as below:

_Γ4 � S4
_S4 +

1
η4

􏽥αT
4

_􏽥α4 +
1
ρ4

􏽥E4
_􏽥E4, (A.72)

while

U
∗
2 � − a4x10x12 − a5ϖx10 + a6x8 − d4 + _x8d − k7 _e7 − k8e7

� − a4x10x12 − a5ϖx10 + a6x8 − d4 + _x8 − _S4

� U3 − _S4.

(A.73)

So,
_S4 � U2 − U

∗
2 � U2fz + U2vs − U

∗
2 . (A.74)

Substituting (A.74) into (A.72), then

_Γ4 � S4
_S4 +

1
η4

􏽥αT
4

_􏽥α4 +
1
ρ4

􏽥E4
_􏽥E4

� S4 U2fz + U2vs − U
∗
2􏼐 􏼑 +

1
η4

􏽥αT
4

_􏽥α4 +
1
ρ4

􏽥E4
_􏽥E4

� 􏽥αT
4 S4ξ4 +

1
η4

_􏽥α4􏼠 􏼡 + S4 U2vs − ε4( 􏼁 +
1
ρ4

􏽥E4
_􏽥E4.

(A.75)

+e adaptive law (T2.5) is chosen below:
_􏽢α4 � − η4S4ξ4. (A.76)

And formula (A.75) becomes

_Γ4 � S4
_S4 +

1
η4

􏽥αT
4

_􏽥α4 +
1
ρ4

􏽥E4
_􏽥E4

� 􏽥αT
4 S4ξ4 +

1
η4

_􏽥α4􏼠 􏼡 + S4 U2vs − ε4( 􏼁 +
1
ρ4

􏽥E4
_􏽥E4

� − 􏽢E4 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε4S4 +
1
ρ4

􏽢E4 − E4􏼐 􏼑
_􏽢E4.

(A.77)

To make the Lyapunov function _Γ4 ≤ 0, the adaptive law
of switching control is updated below:

_􏽢E4 � ρ4 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (A.78)

+en,
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_Γ4 � − 􏽢E4 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε4S4 +
1
ρ4

􏽢E4 − E4􏼐 􏼑
_􏽢E4

≤ − E4 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε4S4

≤ − E4 − ε4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.79)

+e similar design processes are presented to design the
trajectory tracking of pitch x9 and yaw x11 using the dy-
namic surface integral sliding mode control. +e integral
sliding mode manifolds (T2.10), (T2.16) and the first-order
filter (T2.9), (T2.15) are chosen properly. +e adaptive law
and the switching control (T2.11), (T2.18) of the pitch and
yaw are presented in Table 2. And (T2.12), (T2.18) are the
actual control inputs of the pitch and yaw equation. c5, c6, τ5,
τ6, k9, k10, k11, k12, η5, η6, ρ5, and ρ6 are positive constants
which need to be assigned to meet the performance re-
quirements of the pitch and yaw angle system. +e deriv-
atives of Lyapunov function of pitch and yaw angle are
presented as follows:

_Γ5 � − 􏽢E5 S5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε5S5 +
1
ρ5

􏽢E5 − E5􏼐 􏼑
_􏽢E5

≤ − E5 S5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε5S5

≤ − E5 − ε5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0,

_Γ6 � − 􏽢E6 S6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε6S6 +
1
ρ6

􏽢E6 − E6􏼐 􏼑
_􏽢E6

≤ − E6 S6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε6S6

≤ − E6 − ε6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.80)

B. The Proof of Theorem

Proof. Consider the Lyapunov function candidate

V � V1 + V2,

V1 �
1
2

􏽘

6

i�1
e
2
2i− 1 + y

2
2i􏼐 􏼑,

V2 �
1
2

􏽘

6

i�1
S
2
i +

1
ηi

􏽥αT
i 􏽥αi +

1
ρi

􏽥E
2
i􏼠 􏼡.

(B.1)

+e derivative of V1 with respect to time can be obtained
as follows:

_V1 � 􏽘
6

i�1
e2i− 1 _e2i− 1 + y2i _y2i( 􏼁. (B.2)

Substitute the adaptive law and the switching control law
into (B.2):

_V1 � 􏽘
6

i�1
− cie

2
2i− 1 −

y
2
2i

τi

+ y2iB2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡

≤ 􏽘
6

i�1
− cie

2
2i− 1 −

y
2
2i

τi

+ y2iB2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡.

(B.3)

Noting that, for any positive number
λ,|y2iB2i|≤ (y2

2iB
2
2i/2λ) + (λ/2). Assume that |B2i|<M2i,

where M2i is a positive constant.

_V1 ≤ 􏽘
6

i�1
− cie

2
2i− 1 −

y
2
2i

τi

+
y
2
2iB

2
2i

2λ
+
λ
2

􏼠 􏼡

≤ 􏽘
6

i�1
− cie

2
2i− 1 −

2
τi

−
M

2
2i

λ
􏼠 􏼡

y
2
2i

2
+
λ
2

􏼠 􏼡.

(B.4)

Let

ci � α0,

2
τi

−
M

2
2i

λ
� α0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(B.5)

where α0 is a positive constant.
_V1 ≤ − α0V1 + 3λ. (B.6)

Let α0 > (3λ/2p); then _V1 ≤ 0 on V1 � p. And V1 ≤p is
an invariant set. +us, if V1(0)≤p, then V1(t)≤p for all
t≥ 0. +us, (B.6) holds for all V1(t)≤p and all t≥ 0.

0≤V1(t)≤
3λ
4α0

+ V1(0) −
3λ
4α0

􏼠 􏼡e
− 2α0t

, ∀t≥ 0. (B.7)

From (B.7), we can get that V1(t) is eventually is
bounded by (3λ/4α0).

V2 �
1
2

􏽘

6

i�1
S
2
i +

1
ηi

􏽥αT
i 􏽥αi +

1
ρi

􏽥E
2
i􏼠 􏼡. (B.8)

+e derivative of V2 with respect to time can be obtained
as follows:

_V2 � 􏽘

6

i�1
Si

_Si +
1
ηi

􏽥αT
i

_􏽥αi +
1
ρi

􏽥Ei
_􏽥Ei􏼠 􏼡

� 􏽘
6

i�1
Si Uifz + Uivs − U

∗
i􏼐 􏼑 +

1
ηi

􏽥αT
i

_􏽥αi +
1
ρi

􏽥Ei
_􏽥Ei􏼢 􏼣

� 􏽘
6

i�1
􏽥αT

i Siξi +
1
ηi

_􏽥αi􏼠 􏼡 + Si Uivs − εi( 􏼁 +
1
ρi

􏽥Ei
_􏽥Ei􏼢 􏼣.

(B.9)

Substitute the adaptive laws and the switching control
laws (T1.5), (T1.11), (T1.17), (T2.5), (T2.11), and (T2.17) into
(B.9)
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3

i�1
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􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩

≤ 0,

(B.10)

where Ei ≥ |εi|, so we can know that V2(t) is eventually is
bounded. Hence, all signals in the closed loop are ultimately
bounded. Particularly, the tracking errors and the estimation
errors can be arbitrarily small. □
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