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V. SUPPLEMENTARY MATERIALS

A. Table of key terms

A table of key terms can be found in Table I.

B. E↵ective information calculation

Mathematically, EI has been expressed in a number of
previous ways. The first was as the mutual information
between two subsets of a system (while injecting noise
into one), originally proposed as a step in the calculation
of integrated information between neuron-like elements
[47, 48]. More recently, it was pointed out that in gen-
eral an intervention distribution, ID, defined as a prob-
ability distribution over the do(x) operator (as in [14]),
creates some resultant e↵ect distribution, ED. Then the
EI is the mutual information, I(ID;ED), between the
two, when the interventions are done like a randomized
trial to reveal the dependencies (i.e., at maximum en-
tropy [16, 49]).

In order to calculate the total information contained
in the causal relationships of a system, EI is applied to
the system as a whole [11]. There, EI was defined over
the set of all states of a system and its state transitions.
Because the adjacency matrix of a network can be cast as
a transition matrix (as in Fig. 7a), the EI of a network
can be expressed as:

EI =
1

N

NX

i=1

DKL [W
out
i ||hW out

i i] (7)

where EI is the average of the e↵ect information, EIi, of
each node (see Table I and Fig. 7b). This is equivalent
to our derivation of EI from first principles in Equation
1, since:
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Note that for a given node, vi, the term in the first

summation in Equation 8 above,
NX

j=1

wij log2
�
wij

�
, is

equivalent to the negative entropy of the out-weights

from vi, �H(W out
i ). Also note that Wj , the j th ele-

ment in the hW out
i i vector, is the normalized sum of the

incoming weights to vj from its neighbors, vi, such that

Wj =
1

N

NX

i=1

wij . We substitute these two terms into

Equation 8 above such that:

EI =
1

N

NX

i=1

�H(W out
i ) �

NX

j=1

Wj log2
�
Wj

�
(9)

This is equivalent to the formulation of EI from Equa-

tion 1, since H(hW out
i i) = �

NX

j=1

Wj log2(Wj):

EI = H(hW out
i i) � hH(W out

i )i (1)

In the derivations of SM VC we adopt the relative
entropy formulation of EI from Equation 7 for ease of
derivation. For a visual intuition behind the calculations
involved in this formulation of EI, see how the network
in Fig. 7a is used to calculate its EI (Fig. 7b), by calcu-
lating the mean e↵ect information, EIi, of nodes in the
network.

C. Deriving the e↵ective information of common
network structures

Here we inspect the EI for iconic graphical structures,
and in doing so, we see several interesting relationships
between a network structure and its EI. First, however,
we will introduce key terminology and assumptions.
Let hki be the average degree of a network, G, and each

node, vi, has degree, ki. In directed graphs each vi has an
in-degree, kini , and an out-degree, kouti . These correspond
to the number of edges leading in to vi and edges going
out from vi. The total number of edges in G is repre-
sented by E. In undirected Erdős-Rényi (ER) networks,

the total number of edges is given by E = p
N(N�1)

2 ,
where p represents the probability that any two nodes,
vi and vj , will be connected. In the following subsec-
tions, we derive the EI of several prototypical network
structures, from random graphs to ring lattices to star
networks. Note that for the following derivations we pro-
ceed from the relative entropy formalism from SM VB,
and note that therefore N is the number of nodes with
the output, N = Nout.

1. Derivation: e↵ective information of ER networks

In Erdős-Rényi networks, EI does not depend on the
number of nodes in the network, N . Instead, the net-
work’s EI reaches its maximum at � log2(p). This is be-
cause in ER networks, each node is expected to connect
to hki = pN neighboring nodes, such that every value
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Term Description Notation

Network size the number of nodes in the network N

Out-weight vector
(vi)

a vector of probabilities wij that a random
walker on node vi will transition to vj

W
out
i = {wi1, wi2, , ...wij , ...wiN}

E↵ective information
(network)

the total information in a causal structure,
in bits

EI = H(hW out
i i)� hH(W out

i )i

Determinism
(vi)

how certain about next steps is a random
walker on vi

deti = log2(N)�H(W out
i )

Degeneracy
(network)

how distributed the certainty is over the
nodes of the network

degeneracy = log2(N)�H(hW out
i i)

E↵ect information
(vi)

the contribution of each node vi to the net-
work’s EI

EIi = DKL [W
out
i ||hW out

i i]

Micro-nodes in a
macro-node

the set of micro-nodes grouped into a macro-
node in the new network, GM

S = {vi, vj , ...}, of length NS

Macro-node out-weights the out-weights from macro-node, µ, to its
neighbors

W
out
µ =

X

i2S

W
out
i ·

⇣ 1
NS

⌘

Macro-node out-weights
given input weights

the out-weights from macro-node, µ, to its
neighbors, conditioned on in-weights to the
micro-nodes, vi 2 S

W
out
µ|j =

X

i2S

W
out
i ·

⇣ P
j�>i wjiP

j�>k2S wjk

⌘

Macro-node out-weights
given the stationary
distribution

the out-weights from macro-node, µ, to its
neighbors, conditioned on the stationary
probabilities, ⇡i, of micro-nodes, vi 2 S

W
out
µ|⇡ =

X

i2S

W
out
i ·

⇣
⇡iP

k2S ⇡k

⌘

TABLE I. Table of key terms. Quantities needed in order to calculate EI and create consistent macro-nodes.
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Each node in an ER network is expected to be identi-
cal to all other nodes in the network, and calculating the
expected e↵ect information, EIi, is equivalent to calcu-
lating the network’s EI. As such, we observe:

EIi =
kiX

j=1

1

hki · log2

 1
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1
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!
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⌘
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2. Derivation: e↵ective information of ring-lattice and star

networks

Here, we compare two classes of networks with the
same average degree—ring lattice networks and star, or
hub-and-spoke, graphs (see Fig. 8). In each network, we

assume an average degree hki = 2d, with d being the di-
mension. The EI of star network, EIstar, approaches 0.0
as N gets larger, while the EI of ring lattices approaches
log2(N) � log2(2d). These derivations are shown below,
first for the d -dimensional ring lattice, EId.
As every node in a ring lattice is connected to its 2d

neighbors, each element of hW out
i i is 1

2d and each element
of W in is 2d

2d⇥N = 1
N .
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,
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�i

(11)

Each node in a d -dimensional ring lattice is expected
to be identical, so calculating the expected e↵ect infor-

mation, EIi, is equivalent to calculating the network’s
EI. As such, we observe:

EIi =
2dX

j=1

1

2d
· log2

 1

2d
1

N

!
= log2

 
N

2d

!

EId = log2(N) � log2(2d) (12)

Note: the EI of ring lattice networks reduces to simply
the determinism of the network. The EI of ring lattice
networks scale logarithmically with the size of the net-
work, which is contrasted by the behavior of EI in star
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FIG. 7. Illustration of the calculation of e↵ective information. (A) The adjacency matrix of a network with 1.158 bits
of EI (calculation shown in (B)). The rows correspond to W

out
i , a vector of probabilities that a random walker on node vi at

time t transitions to vj in the following time step, t + 1. hW out
i i represents the (normalized) input weight distribution of the

network, that is, the probabilities that a random walker will arrive at a given node vj at t+ 1, after a uniform introduction of
random walkers into the network at t. (B) Each node’s contribution to the EI (EIi) is the KL divergence of its W

out
i vector

from the network’s hW out
i i, known as the e↵ect information.

networks. Star networks have a hub-and-spoke structure, where N � 1 nodes of degree kspoke = 1 are connected
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FIG. 8. E↵ective information of stars and rings. As the number of nodes in star networks increases, the EI approaches
zero, while the EI of ring lattice networks grows logarithmically as the number of nodes increases.

a hub node, which itself has degree khub = N � 1. For
star networks, EI approaches 0.0 as the number of nodes
increases. This derivation is shown below.

EIstar =
1

N
·
"

N�1X

i=1

DKL
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out
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i i
i
+
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h
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out
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Every spoke has an out-weight vector W out
i with N �1

elements of wij = 0.0 and one with wij = 1.0. The single
hub, however, has N � 1 elements of wij = 1

N�1 with
a single wij = 0.0. Similarly, hW out

i i consists of N � 1
elements with values 1

N(N�1) .
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(13)

Using the same techniques as above, this equation re-

duces to:

EIstar =
1

N
·
"
(N � 1) · log2

 1

1
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log2

 1
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1
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⌘
+
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�
N
�

EIstar = 0.0 as lim
N!1

(14)

D. Network motifs as causal relationships

It is important to understand why certain motifs have
more EI while others have less. In Fig. 9, we show
the EI in 13 directed three-node network motifs. The
connectivity of each motif drastically influences the EI.
Motif 09—the directed cycle—is the motif with the high-
est EI. Intuitively, this fits with our definition of EI:
the amount of certainty in the network (notably, each
link in Motif 09, if taken to represent a causal relation-
ship, is both necessary and su�cient). A random walker
in this system has zero entropy (even if the direction of
its path were reversed), whereas every other three-node
motif does not contain that degree of certainty. Second,
we see that Motif 04—a system with a “sink” node—has
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FIG. 9. E↵ective Information of network motifs. All directed 3-node subgraphs and their EI.

no EI, suggesting that a causal structure with that ar-
chitecture is not informative, since all causes lead to the
same e↵ect. Similarly, because there are no outputs from
two nodes in Motif 01, we see an EI value of zero.

E. Table of network data

In Table II, we report the name, domain, source, cate-
gory, and description of each of the 84 networks used in
our comparison of EI in real networks. These networks
were selected primarily from the Konect database [23],
with supplemental datasets added from NetworkRepos-
itory [24] when the Konect database lacked a su�cient
number of datasets in a given category, since the two
databases already significantly overlapped. In many
cases, the interactions among nodes in these networks
(i.e., their edges) can reasonably be interpreted as causal,
directed influence, or dependencies such that the behav-
ior of a node, vi, at a given time can be thought to impact
the behavior of its neighbors, vj . By instituting relatively
minimal requirements for selecting the above networks,
we are able to assess the EI in a variety of complex sys-
tems across di↵erent domains. However, while we can
measure the EI of any given network, the further in-
terpretation of this EI depends also on what the nodes
and edges of a network represent. In a case where the
nodes represent states of a system, such as a Markov
process, then the EI directly captures the information
in the causal structure. In the case where the nodes rep-
resent merely dependencies or influence, EI can still be
informative as a metric to compare di↵erent networks.
In a network specifically composed of non-causal corre-
lations, then EI is merely a structural property of the
network’s connectivity.

F. Examples of consistent macro-nodes

In Fig. 11 we display 15 di↵erent parameterizations
of small networks grown under degree-based preferential
attachment. Each plot shows to the inconsistency of the
mapping from the microscale to the macroscale, in bits,
which corresponds to the KL divergence of the distribu-
tion of random walkers on microscale nodes and the same
distribution at the macroscale. Each of these networks
are consistent after 1000 timesteps, with eight showing
full consistency from the start. These 15 example net-
works also show the range of causal emergence values
that is found in networks.

G. Emergent subgraphs

What sort of subgraph connectivity leads to causal
emergence? To explore this we take two independent
subgraphs, and couple them together while varying their
size, moving from clique-like to bipartite connectivity.
We then check to see if grouping those clusters into
macro-nodes leads to causal emergence (Fig. 12). Specif-
ically, we simulate many small unweighted, undirected
networks (N = 100) from a stochastic block model with
two clusters, and we vary the probability of within-cluster
edges (from 0.0 to 1.0) as well as the size-asymmetry of
the two clusters (illustrated around the border of Fig.
12). In each simulation, we group the microscale network
into two macro-nodes, each corresponding to one clus-
ter. What we observe is a causal emergence landscape
with several important characteristics (Fig. 12). First,
in these networks we observe causal emergence when the
fraction of within-cluster connections is either very high
or very low (right and left sides of the heatmap in Fig.
12). These are the conditions in which there is a large
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FIG. 10. E↵ectiveness of real networks. Full data behind the results summarized in Fig. 3, color-coded in two ways. First
by 16 “Domains” (as in Table II), which corresponds to the classification of each network from its source repository (in this case,
the Konect database [23] or the Network Repository [24]). The second categorization we report—those used in Fig. 3—involves
grouping the Domains into four “Categories” (“Cat.” in Table II): Biological, Information, Social, and Technological. These
correspond to the colored squares to the right of each network’s name.

amount of uncertainty, or noise, in that subgraph. Not
only that, however, causal emergence is most likely when
there is a size asymmetry between the two clusters, sug-

gesting that macroscales that maximize a network’s EI

often do so by creating a more evenly distributed hW out
i i.

In general, however, the space of subgraphs leans toward
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FIG. 11. Typically minimal inconsistency of higher-order macro-nodes. Each inset is of the microscale network, where
each node’s color corresponds to the µ|⇡ macro-node it has been mapped to following one instance of the greedy algorithm
detailed in the Materials & Methods section. White nodes indicate a micro-node that was not grouped into a new macro-node.
Inconsistency is plotted over time.

causal reduction (a loss of EI after grouping), which fits
with the success of reduction historically and explains
why researchers and modelers should generally be biased
toward reduction.

In cases of complete noise, with no asymmetries or
di↵erences between intra- or inter-connectivity between
subgraphs, we should expect causal emergence to be im-
possible. Indeed, this is what we see for many parame-
terizations of Erdős-Rényi networks of various sizes (Fig.
13). This result follows from insights in Fig. 1a, where

the EI of ER networks converges to a fixed value of
� log2(p) as the size of the network increases. Here,
we observe some causal emergence in ER networks but
only when the networks are very small. Importantly, the
amount of causal emergence is also very small, especially
relative to the causal emergence in networks with pref-
erential attachment. This further suggests that causal
emergence moves the existent structure of the network
into focus by examining the network at a certain scale,
rather than creating that structure from nothing.
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Network name Domain Source Cat. Description

HEP-th citations Citation Konect Inf. high-energy physics (HEP) citations - theory

HEP-ph citations Citation Konect Inf. HEP citations - phenomenology

Cora citations Citation Konect Inf. citations from the Cora database

DBLP citations Citation Konect Inf. database of scientific publications

Astro-ph coauthorships Coauthorship Konect Inf. coauthors on astronomy arXiv papers

HEP-th coauthorships Coauthorship Konect Inf. coauthors on HEP-theory arXiv papers

HEP-ph coauthorships Coauthorship Konect Inf. coauthors on HEP-phenomenology arXiv papers

Tarragona univ. emails Communication Konect Soc. emails from the University Rovira i Virgili

Dem. Nat. Comm. emails Communication Konect Soc. 2016 Democratic National Committee email leak

Digg user-user replies Communication Konect Soc. reply network from the social news website Digg

UC Irvine messages Communication Konect Soc. messages between students at UC Irvine

Manufacturing emails Communication Konect Soc. internal emails between employees at a company

CAIDA autonomous systems Computer Konect Tec. autonomous systems network from CAIDA, 2007

Route views autonomous systems Computer Konect Tec. autonomous systems network

Internet autonomous systems Computer Konect Tec. connected IP routing

Haggle RFID contact Human Contact Konect Soc. human proximity, via carried wireless devices

Reality mining RFID Human Contact Konect Soc. RFID data from 100 MIT students’ interactions

California windsurfers Human Contact Konect Soc. contacts between windsurfers California, 1986

Train terrorists Human Contact Konect Soc. contacts between Madrid train bombing suspects

Hypertext conference Human Contact Konect Soc. face-to-face contacts at the ACM Hypertext 2009

Infectious conference Human Contact Konect Soc. face-to-face contacts at INFECTIOUS, 2009

Jazz musicians Human Social Konect Soc. collaboration network between Jazz musicians

Adolescent health Human Social Konect Soc. surveyed students list their best friends

Physicians Human Social Konect Soc. innovation spread network among 246 physicians

Resident hall Human Social Konect Soc. friendship ratings between students in a dorm

Sampson cloister Human Social Konect Soc. relations between monks in a monastery

Seventh graders Human Social Konect Soc. proximity ratings between seventh grade students

Taro gift-giving Human Social Konect Soc. gift-givings (taro) between households

Dutch college Human Social Konect Soc. friendship ratings between university freshmen

Highland tribes Human Social Konect Soc. tribes in the Gahuku-Gama alliance structure

Illinois school Human Social Konect Soc. friendships between boys at an Illinois highschool

Free online dict. Hyperlink Konect Inf. cross references in Free Online Dict. of Computing

Political blogs Hyperlink Konect Inf. hyperlinks between blogs, 2004 US election

Google internal Hyperlink Konect Inf. hyperlink network from pages within Google.com

Air tra�c control Infrastructure Konect Tec. USA’s FAA, Preferred Routes Database

OpenFlights v1 Infrastructure Konect Tec. flight network between airports, OpenFlights.org

OpenFlights v2 Infrastructure Konect Tec. flight network between airports, OpenFlights.org

Contiguous U.S. Infrastructure Konect Tec. 48 contiguous states and D.C. of the U.S.

European roads Infrastructure Konect Tec. international E-road network, mainly in Europe

Chicago roads Infrastructure Konect Tec. road transportation network of the Chicago region

West U.S. powergrid Infrastructure Konect Tec. power grid of the Western U.S.

U.S. Airports Infrastructure Konect Tec. flights between US airports in 2010

David Copperfield Lexical Konect Inf. network of common noun and adjective adjacencies

Edinburgh thesaurus Lexical Konect Inf. word association network, collected experimentally

King James Bible Lexical Konect Inf. co-occurrence between nouns in the Bible

TABLE II. Network datasets. Continued on the following page.
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Network name Domain Source Cat. Description

C. elegans metabolic Metabolic Konect Bio. metabolic network of the C. elegans roundworm

Human protein (Figeys) Metabolic Konect Bio. interactions network of proteins in Humans

PDZbase protein Metabolic Konect Bio. protein-protein interactions from PDZBase

Human protein (Stelzl) Metabolic Konect Bio. interactions network of proteins in Humans

Human protein (Vidal) Metabolic Konect Bio. proteome-scale map of Human protein interactions

Yeast protein Metabolic Konect Bio. protein interactions contained in yeast

Reactome humans Metabolic Konect Bio. protein interactions, from the Reactome project

Avogato Social Konect Soc. trust network for users of Advogato

Google+ Social Konect Soc. Google+ user-user connections

Hamsterster Social Konect Soc. friendships between users of hamsterster.com

Twitter lists Social Konect Soc. Twitter user-user following network

Facebook NIPS Social Konect Soc. Facebook user-user friendship network

Linux dependency Software Konect Inf. Linux source code dependency network

J.D.K. dependency Software Konect Inf. software class dependencies, JDK 1.6.0.7

JUNG/javax dependency Software Konect Inf. software class dependencies, JUNG 2.0.1 & javax

Florida ecosystem - dry Trophic Konect Bio. food web in the Florida wetlands (dry season)

Florida ecosystem - wet Trophic Konect Bio. food web in the Florida wetlands (wet season)

Little Rock Lake ecosystem Trophic Konect Bio. food web of Little Rock Lake, Wisconsin

WHOIS protocol Technological NetworkRepository Tec. dataset of internet routing registries

PGP protocol Technological NetworkRepository Tec. trust protocol of private keys of internet users

Routers RF Technological NetworkRepository Tec. traceroute network between routers via Rocketfuel

Cat brain 1 Brain NetworkRepository Bio. fiber tracts between brain regions of a cat

Drosophila medulla Brain NetworkRepository Bio. neuronal network from the medulla of a fly

Rhesus brain 1 Brain NetworkRepository Bio. collation of tract tracing studies in primates

Rhesus brain 2 Brain NetworkRepository Bio. inter-areal cortical networks from a primate

Macaque cerebral Brain NetworkRepository Bio. connections between cerebral cortex of a primate

Macaque interareal Brain NetworkRepository Bio. inter-areal cortical networks from a primate

Mouse Kasthuri Brain NetworkRepository Bio. neuronal network of a mouse

Mouse brain 1 Brain NetworkRepository Bio. calcium imaging of neuronal networks in a mouse

Mouse retina 1 Brain NetworkRepository Bio. electron microscopy of neurons in mouse retina

Mouse visual 1 Brain NetworkRepository Bio. electron microscopy of visual cortex of a mouse

Mouse visual 2 Brain NetworkRepository Bio. electron microscopy of visual cortex of a mouse

Power 1138BUS Powergrid NetworkRepository Tec. power system admittance, via Harwell-Boeing

Power 494BUS Powergrid NetworkRepository Tec. power system admittance, via Harwell-Boeing

Power 662BUS Powergrid NetworkRepository Tec. power system admittance, via Harwell-Boeing

Power 685BUS Powergrid NetworkRepository Tec. power system admittance, via Harwell-Boeing

U.S. power grid Powergrid NetworkRepository Tec. electricity / power transmission network in the U.S.

Power pcspwr 09 Powergrid NetworkRepository Tec. BCSPWR09 powergrid data via Harwell-Boeing

Power pcspwr 10 Powergrid NetworkRepository Tec. BCSPWR10 powergrid data via Harwell-Boeing

Power ERIS1176 Powergrid NetworkRepository Tec. powergrid data via Erisman, 1973

TABLE II. Network datasets (continued).
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FIG. 12. Causal emergence in a simplified stochastic block model. Schematic showing the role of the two relevant
parameters—the fraction of nodes in each community (ranging from r = 0.50 to r < 1.0) and the fraction of within-cluster
connections (ranging from p = 0.0, a fully bipartite network, to p = 1.0—two disconnected cliques). By repeatedly simulating
networks under various combinations of parameters (N = 100 with 100 simulations per combination of parameters), we see
combinations that are more apt to produce networks with causal emergence.

(a) (b)

FIG. 13. Causal emergence in Erdős-Rényi networks. (A) As the edge density, p, of ER networks increases and N is
held constant, the amount of causal emergence quickly drops to zero. (B) This drop occurs well before pN = hki = 1, meaning
the algorithm for uncovering causal emergence is only grouping small, disconnected, tree-like subgraphs that have yet to form
into a giant component. Of note here is the low magnitude of causal emergence even in cases where the random network is not
a single large component, and the vanishing of causal emergence after it is.


