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In this work, we combine the special structure of the separable nonlinear least squares problem with a variable projection
algorithm based on singular value decomposition to separate linear and nonlinear parameters. -en, we propose finding the
nonlinear parameters using the Levenberg–Marquart (LM) algorithm and either solve the linear parameters using the least
squares method directly or by using an iteration method that corrects the characteristic values based on the L-curve, according to
whether or not the nonlinear function coefficient matrix is ill posed. To prove the feasibility of the proposedmethod, we compared
its performance on three examples with that of the LM method without parameter separation. -e results show that (1) the
parameter separation method reduces the number of iterations and improves computational efficiency by reducing the parameter
dimensions and (2) when the coefficient matrix of the linear parameters is well-posed, using the least squares method to solve the
fitting problem provides the highest fitting accuracy. When the coefficient matrix is ill posed, the method of correcting
characteristic values based on the L-curve provides the most accurate solution to the fitting problem.

1. Introduction

-e separable nonlinear least squares problem is a special
case of nonlinear least squares, and its model can be
expressed as a linear combination of nonlinear functions.
More generally, one can also consider that there are two sets
of unknown parameters, where one set is dependent on the
other and can be explicitly eliminated.-is problemwas first
proposed in parameter estimation of the atomic physics
particle half-life formula developed by Golub and Pereyra in
1973 [1]. In real life, models of this type are very common.
For example, in the machine learning community, neural
networks, their numerous variants [2, 3], and some neuro
fuzzy systems [4, 5] take the form of a linear ensemble of
some nonlinear basis functions. In the field of signal pro-
cessing, Prony’s method [6, 7], which takes the sum of
complex exponentials, is frequently used to analyze the
frequency components of a signal. In the field of algorithm
application, waveform data decomposition is one of the key
steps in processing based on airborne full-waveform light

detection and ranging (LiDAR) data. -e full waveform can
be decomposed into a linear combination of multiple
Gaussian functions.-rough waveform data decomposition,
discrete point cloud and waveform parameter information
can be obtained [8]. Furthermore, this approach has many
applications in areas such as mechanical systems [9], tele-
communications [10], robotics [11], and environmental
sciences [12]. -ese applications can be viewed as nonlinear
data-fitting problems in terms of numerical expression.
However, data-fitting problems are often quite challenging
numerically. Fortunately, by exploiting the special structure
of separable nonlinear models, efficient algorithms can be
obtained.

Based on the special structure of the separable nonlinear
least squares problem, Golub and Pereyra [1] proposed the
variable projection (VP) algorithm to eliminate linear pa-
rameters and obtain simplified functions involving only
nonlinear parameters and also used the Levenberg–
Marquart (LM) algorithm for its solution. Dimensionality
reduction of parameter space improves the possibility of
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obtaining a global optimal solution [13]. -erefore, im-
provement and application [14] of VP have been conducted
on that basis. Kaufman [15] proposed a modified VP al-
gorithm based on trapezoidal decomposition to simplify the
calculation, which reduced its computational complexity
and improved computational efficiency. Subsequently,
Ruano et al. [16] proposed an improved VP algorithm based
on QR decomposition for the sparse case of nonlinear
function matrix, which also effectively improved operation
efficiency. Further, Gan and Li [17] proposed a VP algorithm
based on Gram–Schmidt matrix decomposition for the case
in which the number of observations is much larger than the
number of linear parameters, which reduces the amount of
calculation required.

In this study, in view of the ill-posed condition of a
nonlinear function matrix, singular value decomposition
(SVD) [18] is adopted to simplify the VP algorithm and
improve the stability of the calculation. -en, after linear
parameters are eliminated by the improved VP algorithm,
the separable least squares problem is transformed into an
optimization problem containing only nonlinear parameters
[19]. As regards an estimation method for nonlinear pa-
rameters, Liu et al. [20] combined this with sequential
quadratic programming (SQP), developing a gradient-based
optimization algorithm to determine the optimal time-de-
lays and system parameters in a novel dynamic optimization
problem for nonlinear multistage systems with time delays.
However, this approach was restricted to parameter iden-
tification problems.

-e common nonlinear least squares iterative solutions
[21] are the gradient descent method [22], Gauss–Newton
method [23], and Levenberg–Marquart (LM) method
[24, 25]. For example, in [26], the nonlinear least squares
problem of the distributional robust parameter identifica-
tion model for time-delay systems is transformed into a
single-level optimization problem and a gradient-based
optimization method is developed to solve the transformed
problem. -e method only involves the first-order moment
information and is simple to calculate. To obtain robust
estimates against the noise in measurements, Liu et al. [27]
proposed a robust estimation formulation, in which the cost
function was the variance of the error function and an
additional constraint indicates an allowable sacrifice from
the optimal expectation value of the classical estimation
problem. On this basis, a gradient-based optimization al-
gorithm to numerically solve the classical and robust pa-
rameter estimation problems was developed. -is is more
efficient than the existing methods used for problems, where
optimization parameters outnumber constraints. -is
method involves simple calculations, but its convergence
speed is generally slower than that of the Gauss–Newton
method.

Torres et al. [28] used the sequentially semiseparable
matrix to calculate the Jacobian matrix [29] and Hessian
matrix [30], employing the Gauss–Newton method to
optimize the output error of the global system. -e ef-
fectiveness of the algorithm was verified by numerical
examples. Bellavia et al. [31] improved the approximation
function by controlling the accuracy level when the

accuracy was too low to be optimized, and then proposed
the LM method based on the dynamic precision rela-
tionship between the evaluation function and gradient for
solving large-scale nonlinear least squares problems. -ey
proved the global and local convergence and complexity of
this method. -e Gauss–Newton method has the advan-
tages of fast convergence and high precision. However, the
Jacobian matrix is required to be of full rank in the iterative
process. If the problem has high nonlinearity or the re-
sidual is large, the method may not produce convergence.
-erefore, the LM algorithm overcomes this shortcoming
and adjusts the damping parameters according to the idea
of a trust region, to effectively control the direction of
iterative descent. Once the nonlinear parameters were
determined, the least squares (LS) method [32] is used to
estimate the linear parameters.

In view of a general nonlinear multistage system with
time-delay and system parameters, Liu et al. [33] proposed a
new parameter estimation formulation, in which the cost
function is the variance of the error function and the
constraint indicates an allowable sacrifice from the optimal
expectation value of the classical parameter estimation
problem. -is parameter estimation approach is capable of
solving parameter estimation problems with multiple stages
and multiple time delays and, compared with classical pa-
rameter estimation, it is able to withstand the uncertainty in
the distribution of measurement data. Nevertheless, this
method has the limitation of relying on the statistical dis-
tribution of the noisy measurement output.

To enhance the estimation accuracy, Ding et al. [34, 35]
presented a filtering-based gradient iterative algorithm and a
filtering-based least squares iterative algorithm, which
resulted in improved convergence speed. However, when
nonlinear parameter estimation led to the ill condition of the
linear least squares coefficient matrix, the estimation results
of the linear parameters obtained by the LS method were
unstable and even sometimes significantly different from the
true values. For this problem, the regularization method is
often used to solve for ill-posed problems in linear parameter
estimation [36], such as the Tikhonov regularization method
[37], truncated singular value method [38], and iteration by
correcting characteristic values [39, 40].

In addition, Chen et al. [41] proposed a weighted gen-
eralized crossvalidation method to determine Tikhonov
regularization parameters for the regularization of separable
nonlinear least squares ill-posed problems based on the VP
algorithm and verified its effectiveness experimentally.
Aiming at the randomness of parameter selection in the
iteration by correcting characteristic values in the process of
linear least squares solution, Zhai et al. [42] constructed the
L-curve [43, 44] of the relationship between the norm of the
parameter solution and the residual. -ey selected the
maximum curvature point as the regularization parameter
and verified the correctness of the method through nu-
merical experiments.

-e existing literature presents several effective solu-
tions for the parameter estimation problem, but only a few
studies have been conducted on the structural transfor-
mation of separable nonlinear models. In this study, we
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consider the special structure of the separable nonlinear
least squares problem, separating two types of parameters
using a VP algorithm based on SVD. We then use the LM
algorithm to estimate the nonlinear parameters while using
the LS method or iteration by correcting characteristic
values based on the L-curve method. By comparing the
experimental results of parameter estimation of the Gauss
function fitting model and fractional fitting model with
those of the LM method without parameter separation, the
validity of the VP algorithm based on SVD is evaluated and
the accuracy of different linear parameter estimation
methods is analyzed.

-e remainder of this paper is outlined as follows. In
Section 2, based on an improved VP algorithm derived
from SVD, the methods of nonlinear parameter esti-
mation and linear parameter estimation are explained
and the algorithm for solving separable nonlinear least
squares problems is provided. In Section 3, the Gaussian
function fitting model and the fractional fitting model
experiments are used to compare and analyze the pro-
posed method with the traditional LM algorithm without
unseparated parameters. Finally, we present our con-
clusions in Section 4.

2. Solution of Parameters for Separable
Nonlinear Least Squares

2.1. Variable Projection Algorithm Based on SVD. Consider a
set of observations (ti, yi)(i � 1, 2, . . . , m). -e problem of
parameter estimation is to find the optimal parameters 􏽢a �

(a1, a2, . . . , ap)Τ and 􏽢b � (b1, b2, . . . , bq)Τ when the fol-
lowing formula reaches the minimum value:

(􏽢a, 􏽢b) � argmin
a,b

􏽘

m

i�1
y ti( 􏼁 − 􏽘

p

j�1
ajϕj b; ti( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦

2

, (1)

where φj(b; ti)(i � 1, 2, . . . , m; j � 1, 2, . . . , p) is a nonlinear
function and p and q are the number of linear and nonlinear
parameters to be estimated, respectively. -e above formula
can be written in a matrix form as

(􏽢a, 􏽢b) � argmin
a,b

􏽘

m

i�1
[y − Φ(b)a]

2
� argmin

a,b
‖y − Φ(b)a‖

2
2,

(2)

where the column of Φ(b) corresponds to the nonlinear
function φj(b; t) associated with the parameter b and ‖·‖2
denotes the Euclidean norm.

Let

f(a, b) � ‖y − Φ(b)a‖
2
2. (3)

For the given nonlinear parameters b, the linear pa-
rameters 􏽢a can be estimated by solving the following linear
least squares problem:

􏽢a � ΦΤ(b)Φ(b)􏼐 􏼑
− 1
Φ(b)y � Φ+

(b)y, (4)

whereΦ+(b) is the pseudoinverse ofΦ(b). Inserting (4) into
(3),
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2
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(5)

where PΦ(b) is the orthogonal projector on the linear space
spanned by the columns of Φ(b) and P⊥Φ(b) is the projector
on the orthogonal complement of the column space.

To simplify the calculation, the matrix Φ(b), which is
composed of nonlinear functions, is decomposed by SVD:

Φ(b) � USVΤ, (6)

where U is an m × m orthogonal matrix, S is an m × p

diagonal matrix, and V is a p × p orthogonal matrix. We
obtain Φ+(b) as

Φ+
(b) � VS− 1UΤ. (7)

-en,

PΦ(b) � Φ(b)Φ+
(b) � USVΤVS− 1UΤ � U

Ip 0

0 0
􏼢 􏼣UΤ.

(8)

Suppose the rank of the matrix Φ(b) is r, the first r

elements on the diagonal of S are not zero, i.e., r≤p. U can
be divided into m × r matrix U1 and m × (m − r) matrix U2.
V can be divided into p × r matrixV1 and p × (p − r)matrix
V2. -en,

Φ(b) �
U1􏽼􏽻􏽺􏽽
m×r
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(9)

-e matrix composed of m residual functions is sim-
plified to the following equation by VP based on SVD:

F(b) � P⊥Φ(b)y � U2U
Τ
2 y. (10)

-en, the objective function of the separable nonlinear
least squares problem is simplified to
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f(b) � ‖F(b)‖
2
2 � P⊥Φ(b)y

����
����
2
2 � U2U

Τ
2 y

����
����
2
2.

(11)

Theorem 1. We assume that in the open set Ω ∈ Rk, Φ(b)

has constant rank r � min(p, q).

(a) If 􏽢b is a critical point (or a global minimizer in Ω) of
f(b), and combined with (4), then (􏽢a, 􏽢b) is a critical
point of f(a, b) (or a global minimizer for b ∈ Ω)
and f(a, b) � f(b)

(b) If (􏽢a, 􏽢b) is a global minimizer of f(a, b) for b ∈ Ω,
then 􏽢b is a global minimizer of f(b) in Ω and
f(b) � f(a, b). Furthermore, if there is a unique 􏽢b

among the minimizing pairs of f(a, b), then 􏽢a must
satisfy (4).

Proof of 2eorem 1. From (3) we see that f(a, b) �

‖y − Φ(b)a‖22. -erefore,

1
2
∇f(􏽢a, 􏽢b) � − P⊥Φ(b)y􏼐 􏼑

Τ
Φ(b)Φ+

(b)y⊕Φ(b)( 􏼁, (12)

where ⊕ signifies a direct sum. Assume that 􏽢b is a global minimizer of f(b) inΩ and a is
defined by (4); then,

1
2
∇f(􏽢a, 􏽢b) � − P⊥Φ(b)y􏼐 􏼑

Τ
Φ(b)Φ+

(b)y⊕Φ(b)( 􏼁 �
1
2
∇f(􏽢b)⊕0. (13)

Because yΤP⊥Φ(b)Φ(b) � 0, then (􏽢a, 􏽢b) is a critical point
of f(a, b).

Assume that 􏽢b is a global minimizer of f(b) in Ω and 􏽢a

satisfies (4). -en, clearly, f(􏽢a, 􏽢b) � f(􏽢b). If we assume that
there exists (a∗, b∗), a∗ ∈ Ω, such that f(a∗, b∗)<f(􏽢a, 􏽢b).
Because for any bwe have f(b)≤f(a, b), then it follows that
f(b∗)≤f(a∗, b∗)<f(􏽢a, 􏽢b) � f(􏽢b), which is a contradiction
to the fact that 􏽢b is a global minimizer of f(b) in Ω.
-erefore, (􏽢a, 􏽢b) is a global minimizer of f(a, b) in Ω, and
part (a) of the theorem is proved.

Conversely, suppose that (􏽢a, 􏽢b) is a global minimizer of
f(a, b) inΩ.-en, as mentioned abovef(􏽢b)≤f(􏽢a, 􏽢b). Now,
let a∗ � Φ+(􏽢b)y. -en, we have f(􏽢b) � f(a∗, 􏽢b)≤f(􏽢a, 􏽢b);
however, because (􏽢a, 􏽢b) is a global minimizer, we must have
equality. If there is a unique a among the minimizers of
f(a, b), then a∗ ≡ 􏽢a. We still have that 􏽢b is a global mini-
mizer of f(􏽢b). Assume that it is not. -us, there will be
b ∈ Ω, such that f(b)<f(􏽢b). Let a be equal to Φ+(b)y.
-en, f(b) � f(a, b)<f(􏽢b) � f(􏽢a, 􏽢b), which is a contra-
diction to the fact that (􏽢a, 􏽢b) is a global minimizer of f(a, b).
-is completes the proof. □

2.2.NonlinearParameterEstimationUsing theLMAlgorithm.
For a separable least squares problem with only nonlinear
parameters, the LM algorithm is adopted for the solution
and the nonlinear parameters b is updated as

bk+1 � bk + αkdk, (14)

where bk is current nonlinear parameter vector. αk is a
small step length that ensures the decrease of the objection
function (11), which is calculated by an imprecise search
method, such as line search, in which we let mk be the
smallest nonnegative integer m satisfying f(xk + ρm

dk)≤f(xk) + σρmgΤkdk in the kth iteration process. -en,

αk � ρmk , (15)

where dk is search direction, which can be determined by the
following equation:

dk � JΤk Jk + μkI􏼐 􏼑
− 1
JkFk, (16)

where Jk ∈ R
m×p is the Jacobian matrix of F(b). Kaufman

[15] formulated an explicit analytic expression for the Ja-
cobian. -is ensures the efficiency and reliability of the VP
algorithms. In addition, combined with the simplified ob-
jective function by SVD, the Jacobian matrix Jk of the re-
sidual vector F is expressed as

Jk � F(b) � P⊥Φ(b)y􏼐 􏼑

� − P⊥Φ(b)(Φ(b))Φ+
(b)y

� − U2U
Τ
2(Φ(b))V1S

− 1
r UΤ1 y,

(17)
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where μk is damping parameter. It is adjusted with a strategy
similar to the trust region radius [45], and a quadratic
function is defined at the current iteration point as follows:

v(d) � f xk( 􏼁 + JΤkFk􏼐 􏼑
Τ
d +

1
2
dΤ JΤk Jk􏼐 􏼑

Τ
d. (18)

-en, the incremental ratio of v(xk + dk) to the objective
function is calculated:

ηk �
Δf dk( 􏼁

Δv dk( 􏼁
�

f xk+1( 􏼁 − f xk( 􏼁

JΤkFk( 􏼁
Τdk +(1/2)dΤk JΤk Jk( 􏼁

Τdk

. (19)

When ηk is close to one, the fitting between the quadratic
function v(d) and objective function is good at point xk. LM
is used to solve the nonlinear least squares problem. -e
parameter μ should be smaller; that is, in this case, the
Gauss–Newton method is more effective. When it is close to
zero, the fitting between the quadratic function v(d) and
objective function is poor at point xk. LM is used to solve the
nonlinear least squares problem, and the parameter μ should
be larger. When ηk is neither close to zero nor one, then μk is
suitable and does not need to be adjusted. -e critical values
of η are usually 0.25 and 0.75, and the adjustment rules of μ
are as follows.

When ηk is close to one, the fitting between quadratic
function v(d) and the objective function is good at point xk.
-e parameter μ should be smaller when the LM algorithm is
used to solve the nonlinear least squares problem. When ηk

is close to zero, the fitting between the quadratic function
v(d) and the objective function is poor at point xk. -e
parameter μ should be larger when LM is used to solve the
nonlinear least squares problem. When ηk is neither close to
zero nor one, μ is suitable and does not need to be adjusted.
-e critical values are usually 0.25 and 0.75, and the ad-
justment rules of μ are as follows:

μk+1 �

0.1μk, ηk > 0.75,

μk, 0.25≤ ηk ≤ 0.75,

10μk, ηk < 0.25.

⎧⎪⎪⎨

⎪⎪⎩
(20)

2.3. Linear Parameter Estimation by Correcting Characteristic
Value Based on L-Curve. -e nonlinear parameter estima-
tions 􏽢b are solved in Section (2); the linear parameters 􏽢a can
then be calculated by (4). WhenΦΤ(b)Φ(b) is a nonsingular
matrix, the least squares method is used to calculate it di-
rectly. However, when ΦΤ(b)Φ(b) is singular or the con-
dition number of Φ(b) exceeds 100, solution of the linear
least squares method is unstable or cannot be solved.
-erefore, it needs to be solved by the regularization
method. In this study, an iteration method that corrects
characteristic values based on the L-curve is used to solve the
problem.

-e least squares normal equation for the linear pa-
rameter estimation is

ΦΤ(b)Φ(b)􏽢a � ΦΤ(b)y. (21)

Adding λa to both sides of (21), we obtain

ΦΤ(b)Φ(b) + λI􏼐 􏼑􏽢a � ΦΤ(b)y + λ􏽢a. (22)

Let N � ΦΤ(b)Φ(b) and W � Φ(b)y, the step of the
iteration method that corrects the characteristic value is

􏽢ak+1 � (N + λI)− 1 W + λ􏽢ak( 􏼁

� (N + λI)− 1
+ (N + λI)− 1

􏼐 􏼑
2

+ · · · + (N + λI)− 1
􏼐 􏼑

k+1
􏼒 􏼓

W + (N + λI)− 1
􏼐 􏼑

k+1
􏽢ak,

(23)

where 􏽢ak is the current nonlinear parameter vector and λ is a
regularization parameter selected according to the L-curve
method. -e L-curve describes the relationship between the
norm of the regularized solution ‖a(λ)‖22 and the residual
norm ‖y − Φ(b)􏽢a(λ)‖22, which corresponds to each set of
regularized parameter values.

-e convergence of the spectral correction iterative
method based on the L-curve is proved as follows.

Let the initial estimated value of a be 􏽢a0,
NLP � (N + λI)− 1. -e iterative calculation process of
spectral correction can then be written as

􏽢a1 � (N + λI)− 1W +(N + λI)− 1
􏽢a0 � NLPW + NLP􏽢a0,

􏽢a2 � NLPW + NLP􏽢a1 � NLPW + NLP · NLPW + NLP · NLP􏽢a0,

⋮

􏽢ai � NLPW + NLP􏽢ai− 1 � NLPW + NLP · NLPW

+ · · · + NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

W + NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

􏽢a0.

(24)

When i � m, m is the number of inadequate iterations of
the spectral modified iteration method; therefore, the re-
lationship between estimated value 􏽢am and iteration initial
value 􏽢a0 is

􏽢am � NLP + NLP · NLP + · · · + NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
m

⎛⎝ ⎞⎠W

+ NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
m

􏽢a0.

(25)

When i � j, j is the number of sufficient iterations of the
spectral modified iterative method, and m< j; therefore, the
relationship between estimated value 􏽢am and full iteration
result 􏽢a0 is

􏽢am � NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
m− j

􏽢aj − NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
m− j

NLP + NLP · · ·NLP + · · · + NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
j− m

⎛⎜⎜⎝ ⎞⎟⎟⎠W.

(26)

According to (23), the relation between the estimated
result 􏽢aj of spectral correction and the initial iteration value
􏽢a0 is as follows:
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􏽢ai � NLP + NLP · NLP + · · · + NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

⎛⎝ ⎞⎠W

+ NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

􏽢a0

� I + NLP + NLP · NLP + · · · + NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

⎛⎝ ⎞⎠W

− W + NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

􏽢a0.

(27)

In the case of Rank(N) � t, N is the tth order positive
definite matrix. An orthogonal matrix of order t is Q that
follows the expression

N + λI � QDQΤ + λI � Q(D + λI)QΤ, (28)

where D � diag(σ1, σ2, . . . , σt), σ1 ≥ σ2 ≥ · · · ≥ σt > 0, is the
eigenvalue of N.

Let D � diag(σ1 + λ, σ2 + λ, . . . , σt + λ), then

NLP � (N + λI)− 1
� Q(D + λI)− 1QΤ � QD1Q

Τ
,

NLP
����

����
2
2 � max σ1/2NΤLPNLP

� max
1≤l≤t

σl + 1( 􏼁
− 1

􏽮 􏽯 � σt + 1( 􏼁
− 1 < 1.

(29)

According to the convergence of the matrix sequence, it
can be known that, in the case of ‖NLP‖< 1, matrix
NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽

i

is convergent and limi⟶∞NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

� 0.

Matrix power series 􏽐
∞
i�0 NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽

i

is absolutely conver-

gent, and the sum is (I − NLP)− 1.
-erefore,

lim
i⟶∞

􏽢ai � lim
i⟶∞

I + NLP + NLP · NLP + · · · + NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

⎛⎝ ⎞⎠W − W⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + lim
i⟶∞

NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

􏽢a0

� I + NLP + NLP · NLP + · · · + NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
i

+ · · ·⎛⎝ ⎞⎠W − W

� I − NLP( 􏼁
− 1

− I􏽨 􏽩W � I − NLP( 􏼁
− 1 I − I − NLP( 􏼁( 􏼁􏽨 􏽩W

� N− 1
LP I − NLP( 􏼁􏽨 􏽩

− 1
W � N− 1

LP − I􏼐 􏼑
− 1
W

� N− 1W.

(30)

-at is, in the case of Rank(N) � t, the spectral cor-
rection iterative method based on L-curve converges to the
least squares solution for any initial value. -erefore, the
relationship between the estimated result 􏽢am and the iter-
ation termination value 􏽢aj can be further rewritten as

􏽢am � NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
m− j

N− 1W

− NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
m− j+1

+NLP · · ·NLP􏽼√√√√􏽻􏽺√√√√􏽽
m− j+2

+ · · · + N− 1
LP + I⎛⎜⎜⎝ ⎞⎟⎟⎠W.

(31)

In the case of Rank(N)< t, the initial value of 􏽢a0 is equal
to 0 in the spectral correction iterative method. Further,
limi⟶∞􏽢ai � N− 1W.

-erefore, this method is convergent with the least
squares method and is also feasible.

2.4. Summarization of the Algorithm. According to the
estimation methods of linear parameters and nonlinear
parameters proposed in Sections 2.1–2.3, the separable
nonlinear least squares solution method—in which
nonlinear parameters in the nonlinear least squares
problem with SVD variable projection separation are
solved with the LM algorithm and linear parameters are

solved directly with the least squares method—is referred
to as LMVP + LS. When the linear parameters are solved
using the iteration method that corrects characteristic
values based on the L-curve, the method is referred to as
LMVP +CCVL. -e traditional LM method without
separation of parameters is referred to as LMunSep. -e
steps for solving the separable nonlinear least squares
problem are summarized as follows.

A flowchart of Algorithm 1 is presented in Figure 1.

3. Numerical Examples

In this study, we used three examples, the Gaussian
function fitting model, the fractional fitting model, and
decomposition of full-waveform LiDAR data, to verify the
method proposed in Section 2 for solving separable
nonlinear least squares problems. -e results were then
compared with the LM algorithm with unseparated pa-
rameters with respect to iteration times, function calcu-
lation times, and fitting accuracy. -e experiments were
performed using MATLAB 2016b on a 2.3-GHz desktop
PC running Windows 10.

3.1. Example 1: Gaussian Function Fitting Model. -e
Gaussian function fitting model often exists in the parameter
estimation of signal processing. For the generalized Gaussian
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model, there is a linear combination of nonlinear functions
that can be solved by separable nonlinear least squares based
on the VP algorithm. -e form of the model is as follows:

y a, b; ti( 􏼁 � 􏽘

p

j�1
aj exp

− ti − uj􏼐 􏼑
2

2θ2j
⎛⎝ ⎞⎠ + ξti

, i � 1, 2, . . . , m,

(32)

where m is the number of observations, p is the number of
linear parameters, and ξti

is the Gaussian noise.
a � (a1, a2, a3, a4, a5, a6)

Τ is the linear parameter vector to
be estimated. b � (u1, θ1, u2, θ2, u3, θ3, u4, θ4, u5, θ5, u6, θ6)

Τ

is the nonlinear parameter vector to be estimated. Equation
(32) is written in the form of a matrix as

y(a, b; t) � Φm×p(u, θ; t)ap×1 + ξm×1, (33)

where Φ(u, θ; t) � [ϕ1,ϕ2, . . . ,ϕp] and φi � exp(− (t−
ui)

2/2θ2i ). -e true parameter values of the model in (32) are
a∗ � (50, 40, 60, 60, 40, 50)Τ, u∗ � (50, 100, 150, 200, 250,

300)Τ, and θ∗ � (10, 5, 15, 12, 20, 15)Τ. -e observation er-
ror ξ is a normal distribution with a standard deviation of
0.5. According to the above parameters, ten groups of ob-
servations are randomly generated, where each group has
400 data points. -e initial values of the nonlinear and linear

NoYes

No

Yes

Select initial value of the parameters (a0, b0)
Set u0 = 0.1, (ρ, σ) ∈ (0, 1), ε = 10–6

Original observation (t, y)

The objective function is simplified by VP
algorithm based on SVD

Using LM algorithm to optimize
nonlinear parameters b

||gk|| < ε k = k + 1

ФTФ is singular
or ill posed

Using CCVL algorithm to
estimate linear parameters

Using LS algorithm to
estimate linear parameters

End

Nonlinear parameter estimates
are obtained b̂

Figure 1: Flowchart for the parameter estimation process.

Step 1: given initial values a0 ∈ R
p, b0 ∈ R

q, set μ0 � 0.1, (ρ, σ) ∈ (0, 1), k � 0. ε is a very small positive number.
Step 2: calculate the matrix Φ(bk) of the nonlinear function and Jacobian matrix Jk of the objective function after VP, using (17).
Step 3: calculate the iteration step length and iteration direction using (15) and (16), and then update the nonlinear parameters using
(14).
Step 4: if ‖gk‖2 � ‖JkFk‖2≤ ε, terminate the algorithm; otherwise, k � k + 1, go to Step 3.
Step 5: calculate linear parameters when ΦΤ(b)Φ(b) is a nonsingular matrix. -e least squares method is used to calculate this
directly; when ΦΤ(b)Φ(b) is singular or the condition number of Φ(b) exceeds 100, the solution is obtained using (23).

ALGORITHM 1: Parameter estimation algorithm for the separable nonlinear least squares problem.
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parameters are randomly selected according to the following
uniform distribution:

a
0
1 ∼ U(45, 55),

u
0
1 ∼ U(40, 60),

θ01 ∼ U(8, 12),

a
0
2 ∼ U(35, 45),

u
0
2 ∼ U(90, 110),

θ02 ∼ U(3, 8),

a
0
3 ∼ U(55, 65),

u
0
3 ∼ U(140, 160),

θ03 ∼ U(10, 20),

a
0
4 ∼ U(55, 65),

u
0
4 ∼ U(180, 220),

θ04 ∼ U(10, 15),

a
0
5 ∼ U(35, 45),

u
0
5 ∼ U(220, 280),

θ05 ∼ U(15, 25),

a
0
6 ∼ U(55, 65),

u
0
6 ∼ U(280, 330),

θ06 ∼ U(15, 20).

(34)

-e error equations were listed based on the model in
(32) and 400 pairs of observed values (ti, yi), and the pa-
rameters are solved using the LMunSep, LMVP +LS, and
LMVP +CCVL methods, respectively. -e parameter esti-
mates are shown in Table 1, which are obtained by taking the
average of 10 times.

-e fitting curve is shown in Figure 2, and the difference
between the parameter estimation and true value is shown in
Figure 3. Because the estimated parameters obtained by the
three methods do not differ significantly, and the fitting
curves are basically coincident, only one fitting curve is
drawn.

We can see from Table 1 that the results of the three
methods are completely consistent in their estimation of the
nonlinear parameters (􏽢μ and 􏽢θ). For the estimation of linear
parameters, the results obtained by the LMunSep and
LMVP +LSmethods are identical and the results obtained by
the LMVP +CCVL method deviate slightly from the true
values compared to those obtained by the other methods.
From Figure 2, we can see that the parameters estimated by
the three methods can fit the observations very well and that
their fitting curves are basically the same. Figure 3 shows that
the difference value is closer to zero, and the parameter
valuation is closer to the truth value. -erefore, the pa-
rameter estimation results of the LMunSep and LMVP +LS
methods may be taken to be identical and the difference
value is small.

Table 1: Parameter estimation and true values of Example 1.

Parameter True value LMunSep LMVP + LS LMVP +CCVL
a1 50 49.9938 49.9938 49.9435
a2 40 40.1286 40.1286 40.1981
a3 60 59.9751 59.9751 59.9469
a4 60 60.0776 60.0776 60.0413
a5 40 40.0097 40.0097 39.9811
a6 50 50.0243 50.0243 50.3550
u1 50 49.9994 49.9994 49.9994
θ1 10 9.9845 9.9845 9.9845
u2 100 99.9979 99.9979 99.9979
θ2 5 4.9961 4.9961 4.9961
u3 150 150.0055 150.0055 150.0055
θ3 15 15.0132 15.0132 15.0132
u4 200 200.0086 200.0086 200.0086
θ4 12 11.9807 11.9807 11.9807
u5 250 249.9897 249.9897 249.9897
u6 300 300.0146 300.0146 300.0146
θ6 15 14.9772 14.9772 14.9772
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Figure 2: Observation points and fitting curves obtained for Ex-
ample 1 for the three methods.
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Figure 3: Differences between true value and estimation of pa-
rameters obtained by the three methods for Example 1.
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To better understand the comparison of the parameter
estimation results obtained using the three methods, Table 2
lists the maximum, minimum, and average values of the sum
of squares of residuals between all the parameter estimation
values and the true values (all_SSR), which were calculated
ten times. Because the latter two methods eliminate linear
parameters using the VP algorithm, the sum of squares of
residuals between the nonlinear estimated parameters and
the true value (nonpar_SSR) are also listed in Table 2.

We compare the fitting residual sum of squares and
calculation process of the three methods in Table 3.

Table 2 indicates that, in terms of numerical value, the
all_SSR values obtained by LMVP +LS and LMunSep methods
are equal. -e results of nonpar_SSR using LMVP +CCVL
are equal to those of the other two methods; however, the
results of all_SSR are higher, indicating that the estimation
of linear parameters is worse than that of the other two
methods.

Table 3 indicates that the sum of squares of residual
errors between the predicted and true values obtained using
LMVP +CCVL is the largest, and those of the other two
methods are equal. -e mean square errors of the LMunSep,
LMVP +LS, and LMVP +CCVL methods are 0.0107, 0.0107,
and 0.0248, respectively, which are relatively small, indi-
cating that the results obtained by all three methods are
reliable. Compared with the number of iterations and av-
erage number of calculations of the function, the method
based on VP exhibits a considerable reduction compared
with the method in which the parameters are not separated.

-e residual change of the objective function in the
iterative process is shown in Figure 4.

According to Figure 4, in the case of Gaussian function
fitting, on the whole, the residual changes of the three
methods are all reduced and the estimated results of the final
parameters are very close to the truth value, suggesting that
the three methods are convergent.

In addition, according to the structural characteristics of
the model, when the nonlinear parameters are fixed in the
LMVP +LS and LMVP +CCVL methods, the nonlinear
function matrix is full rank and the number of conditions is
less than five for all ten calculations; thus, there is no ill-
condition problem.

Based on the experimental results, we draw two con-
clusions: (1) Because there is no rank deficiency or ill posing
in the matrix of the nonlinear function, the LS method helps
to attain more accurate linear parameters directly than the
regularization method. (2) -e LMVP +LS method elimi-
nates the linear parameters using the VP algorithm based on
SVD, reduces the dimension of the parameters to be esti-
mated, and improves the efficiency of the iteration process.
-e number of iterations required in the LMVP +LSmethod
is less than that for the LMunSep method and produces the
best effect under the same precision.

3.2. Example 2: Fractional Fitting Model. -e fractional
fitting model is also a commonly used curve-fitting method.
-e model is described by the following expression:

y(a, b; t) � a1 + a2t + a3t
2

− a4
1

1 + b1 + 0.5b2 − t( 􏼁/b3( 􏼁
2 +

1
1 + b1 − 0.5b2 − t( 􏼁/b3( 􏼁

2
⎡⎣ ⎤⎦

− a5
1

1 + b4 + 0.5b5 − t( 􏼁/b6( 􏼁
2 +

1
1 + b4 − 0.5b5 − t( 􏼁/b6( 􏼁

2
⎡⎣ ⎤⎦

− a6
1

1 + b7 − t( 􏼁/b8( 􏼁
2

⎡⎣ ⎤⎦ + ξt,

(35)

where a � (a1, a2, a3, a4, a5, a6)
Τ is a linear parameter vector

to be estimated and b � (b1, b2, b3, b4, b5, b6, b7, b8)
Τ is the

nonlinear parameter vector. -e model in (35) is written in
the form of a matrix as follows:

y(a, b; t) � Φ200×6(b; t)a6×1 + ξ200×1, (36)

where Φ(u, θ; t) � [φ1,φ2, . . . ,φ6] and φi(i � 1, 2, . . . , 6) is
the coefficient term corresponding to the linear parameter
ai. -e true values of the parameters in the model in (35) are
a∗ � (5.0, 0.5, 0.3, 0.4, 0.5, 0.7)Τ and b∗ � (0.5, 1, 2, 0.8, 0.8,

2.5, 0.8, 3)Τ. Observation error ξ is a normal distribution
with a standard deviation of 0.001. According to the above

parameters, ten groups of observations are randomly gen-
erated, where each group has 200 data points. -e initial
values of the nonlinear and linear parameters are randomly
selected according to the following uniform distribution:

a0 � a∗ + ξ(a),

ξ(a) ∼ N(0, 0.01),

b0 � b∗ + ξ(b),

ξ(b) ∼ N(0, 0.01).

(37)

-e error equations listed are based on the model in (32)
and 200 pairs of observed values (ti, yi), and the parameters
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are solved using the LMunSep, LMVP + LS, and LMVP +CCVL
methods. -e parameter estimates obtained by taking the
average of the ten calculations are listed in Table 4.

Because the estimated parameters obtained by the three
methods do not differ significantly, and the fitting curves are
basically coincident, only one fitting curve is drawn. -e
fitting curve is shown in Figure 5.

Table 4 and Figure 5 indicate that the three methods
produce similar true values for the nonlinear parameters.
-e calculation results in the LMVP +CCVL and LMVP +LS
methods are the same because the separation of the objective
function is equal, and the nonlinear parameters are all es-
timated by the LM algorithm. When the LMVP +LSmethod
is used, significant deviation is observed between the true
values of the linear parameters. Combined with Figure 5, the
fitting curves of the three methods are similar, which shows
that the LMVP +LS method cannot obtain the optimal

parameters even though it satisfies the least squares principle
in solving the linear parameters. -is is because the con-
dition number of the nonlinear function matrix is consid-
erably greater than 100 in the process of solving the
separation problem after VP. -e number of conditions is
above 107 for all ten calculations, and these were seriously ill-
posed problems.

Because the differences in the linear parameters solved
by the LMVP +LSmethod are much higher than those of the
nonlinear parameters, the original difference was reduced by
104 and then plotted. -e differences between the parameter
estimation solutions of the three methods and the true value
are shown in Figure 6.

Figure 6 indicates that the difference between the pa-
rameter estimation and the true value obtained by the
LMVP +CCVL method is the smallest among the three
methods, that is, the result is closest to the true values. -e

Table 2: Sum of the squared residuals between the estimated parameters obtained using the three methods and the true values in Example 1.

Method all_SSR (max) all_SSR (min) all_SSR (mean) nonpar_SSR (max) nonpar_SSR (min) nonpar_SSR (mean)
LMunSep 0.2930 0.0371 0.1715 0.1699 0.0113 0.0424
LMVP + LS 0.2930 0.0371 0.1715 0.1699 0.0113 0.0424
LMVP +CCVL 0.9767 0.1864 0.5134 0.1699 0.0113 0.0424

Table 3: Sum of the squared residuals between predicted values obtained using the three methods and the true observations in Example 1.

Method y_SSR (max) y_SSR (min) y_SSR (mean) MSE Iteration times (mean) Function count (mean)
LMunSep 5.0763 3.0089 4.2680 0.0107 11.9 251.5
LMVP + LS 5.0763 3.0089 4.2680 0.0107 9.8 144.9
LMVP +CVCL 14.3523 7.3535 9.9158 0.0248 9.8 144.9
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Figure 4: Residual changes of the three methods in the iteration process for Example 1.
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difference obtained by the LMunSep method is next. -e
difference obtained by the LMVP +LS method is the largest,
even if that is reduced by 104.

To better understand the comparison of the parameter
estimation results of the three methods, Table 5 lists the

maximum, minimum, and average values of the sum of
squares of residuals between all the parameter estimation
values and the true values (all_SSR) obtained from the ten
calculations. Because the latter two methods eliminate
linear parameters using the VP algorithm, the sums of
squares of residuals between nonlinear estimated param-
eters and the true value (nonpar_SSR) are also listed in
Table 5.

Table 5 indicates that the sum of the residuals of all
the parameters using the LMVP + LS method is much
larger than the other two methods. -e main reason is
that the matrix of the nonlinear function is seriously ill
posed, and the results of direct solution using the
least squares method are not the optimal parameters.
-erefore, the LMVP +CCVL method using the iteration
method by correcting characteristic values based on the
L-curve obtained the optimal estimates that are similar to
the true values. -e sum of the residual squares of pa-
rameter estimates and true values is the smallest. -e
overall result is also superior to the LMunSep method
when the parameters are not separated. For the sum of
residual squares of nonlinear parameters, the
LMVP +CCVL and LMVP + LS methods exhibit the same
results, which are lower than the values obtained by the
LMunSep method.

A comparison of the three methods in terms of model
fitting and calculation processes is presented in Table 6.

Table 6 indicates that in terms of the sum of squared
residues between the predicted value and the true value,
irrespective of the maximum, minimum, or average
value, the lowest values are obtained when the
LMVP +CCVL method is used, followed by the LMunSep
method; highest values are obtained using the LMVP + LS
method. In terms of the mean square error, the
LMVP +CCVL method provides the lowest values. -e
number of iterations and average number of functions
considerably decrease for the VP algorithm; the average
number of iterations was reduced from 161.4 to 20.8 and
the average calculation number of functions was reduced
from 2516.2 to 207.7.

-e residual change in the objective function of the
iterative process is shown in Figure 7.

According to Figure 7, in the case of Gaussian function
fitting, on the whole, the residual changes of the three
methods are all reduced and the estimated results of the final
parameters are very close to the truth value, so it can be seen
that the three methods are convergent.

-e experimental analysis indicates that the problem
is seriously ill posed, and when considering separable
nonlinear least squares, the results obtained by the
LMVP +CCVL method afford the highest fitting preci-
sion. -e computational efficiency is also much better
than that for the LM method without separation.

3.3. Example 3: Decomposition of Full-Waveform LiDAR
Data. -is section of the experimental data originated from
the full-waveform LiDAR data of a region collected in 2016.
-e full-waveform lidar system record the backscattered

Table 4: Parameters estimation and true values for Example 2.

Order Parameter True
value LMunSep LMVP + LS LMVP +CCVL

1 􏽢a1 5 4.9631 − 14618.7461 4.9955
2 􏽢a2 0.5 0.7870 − 724.1217 0.5343
3 􏽢a3 0.3 0.2143 672.7237 0.2999
4 􏽢a4 0.4 0.4850 284.4777 0.3869
5 􏽢a5 0.5 0.6116 13585.6419 0.5080
6 􏽢a6 0.7 0.6835 − 41575.4314 0.7272
7 􏽢b1 0.5 0.5356 0.5784 0.5784
8 􏽢b2 1 0.9094 0.9502 0.9502
9 􏽢b3 2 1.2188 2.0133 2.0133
10 􏽢b4 0.8 0.9804 0.8459 0.8459
11 􏽢b5 0.8 0.6996 0.7919 0.7919
12 􏽢b6 2.5 2.2681 2.5049 2.5049
13 􏽢b7 0.8 0.8597 0.8080 0.8080
14 􏽢b8 3 3.0277 3.0042 3.0042
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Figure 5: Observation points and fitting curves obtained using the
three methods for Example 2.
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Figure 6: Difference between the true value and the estimation of
parameters obtained using the three methods in Example 2.
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energy at different elevation points in a certain elevation
range in the form of waveforms. -e survey area mainly
contains buildings, trees, and roads. -e point cloud and
waveform information are stored in the LAS file in the
LAS1.3 standard format. -e waveform data sampling in-
terval is 1 ns and the number of samples is 287. -e echo
waveform is regarded as the superposition of several
Gaussian functions. -e model form is as follows:

y a, b; ti( 􏼁 � 􏽘
4

j�1
aj exp

− ti − uj􏼐 􏼑
2

2θ2j
⎛⎝ ⎞⎠ + ξti

, i � 1, 2, . . . , 287,

(38)

where ξti
is the Gaussian noise, a � (a1, a2, a3, a4)

Τ is the
linear parameter vector to be estimated, and b � (μ1, θ1,

μ2, θ2, μ3, θ3, μ4, θ4)
Τ is the nonlinear parameter vector to be

estimated.
-e parameters were solved by the LMunSep, LMVP +LS,

and LMVP +CCVLmethods. -e fitting curves are shown in
Figures 8(a)–8(c).

It can be seen from Figure 8 that, in the case of the
LMunSep method, only the first decomposition waveform can
be fitted to the observation value and the latter three de-
composition waveforms are not well fitted. LMVP +LS and
LMVP +CCVL provide an accurate fitting result.

As there is no truth value in the actual measurement, the
estimated result is no longer compared with the truth value.
To better understand the comparison of the parameter es-
timation results of the three methods, the mean square error
between the fitting results and the observed values, the
maximum fit difference (Diff-max), the minimum fit

Table 5: Sums of the squared residuals between the estimated parameters obtained using the three methods and the true values in Example
2.

Method all_SSR (max) all_SSR (min) all_SSR (mean) nonpar_SSR (max) nonpar_SSR (min) nonpar_SSR (mean)
LMunSep 5.4669 0.9927 2.4807 0.0227 0.0159 0.01915
LMVP + LS 1.44E+ 11 6.59E+ 08 2.58E+ 10 0.0226 0.0155 0.01896
LMVP +CCVL 0.307 0.0168 0.1232 0.0226 0.0155 0.01896

Table 6: Sums of the squared residuals between predicted value obtained by the three methods and the true observations in Example 2.

Method y_SSR (max) y_SSR (min) y_SSR (mean) MSE Iteration times (mean) Function count (mean)
LMunSep 7.30E − 04 2.60E − 04 3.78E − 04 1.89E − 06 161.4 2516.2
LMVP + LS 8.37E − 04 3.60E − 04 5.84E − 04 2.92E − 06 20.8 207.7
LMVP +CCVL 4.12E − 04 3.17E − 05 1.90E − 04 9.52E − 07 20.8 207.7
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Figure 7: Residual changes of the three methods in the iteration process of Example 2.
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difference (Diff-min), the number of iterations, and function
count calculations of the three methods are presented in
Table 7.

It can be seen from Table 7 that, like the simulation
experiment results, owing to parameter separation, the re-
duced dimension of the parameter estimation improves the
chance of convergence. LMVP +LS is the best of the three
methods, with the least number of iterations and function
calculations. LMVP +CCVL is second. However, the
LMunSep method, in which parameters are not separated,
does not produce the correct result.

-e residual changes of the objective function in the
iterative process are shown in Figure 9.

From Figure 9, we can know that all three methods tend
to converge, but LMunSep, whose parameters are not sepa-
rated, does not converge to the optimal result, and the sum
of squared residual convolutions is still large. -e sum of the

residuals of the remaining two methods tends to zero. -e
number of iterations is reduced from 20 to 10, and function
count is also decreased from 290 to 106. -e calculation is
greatly simplified.

In short, these experiments indicate that the estimation
method of parameter separation shows a great improvement
in terms of the number of iterations, number of function
calculations, and calculation result.

4. Conclusion

In this study, linear and nonlinear parameters were sepa-
rated by the VP algorithm based on SVD. Further, the
separable least squares problem was transformed into a least
squares problem with only nonlinear parameters, which
reduced the dimension of the parameters, number of iter-
ations, and function calculations and improved operation
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Figure 8: Fitting curves of the LMunSep, LMVP + LS, and LMVP +CCVL methods.

Table 7: Comparison of the solution results of the three methods.

Method Diff-max Diff-min MSE Iteration times Function count
LMunSep 48.0734 0.0191 285.8365 20 290
LMVP + LS 1.4111 0.0076 0.2577 10 106
LMVP +CCVL 1.8342 0.0004 0.2577 10 106
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efficiency. In addition, to solve the ill-posed problem of the
coefficient matrix comprising nonlinear functions when
solving for linear parameters, an iteration method that
corrects characteristic values based on the L-curve was
adopted. -is also helped to ensure the convergence of
model parameter estimation and improved prediction ac-
curacy. -e parameter estimation method used in our study
is suitable for cases with a large number of linear parameters
in separable nonlinear least squares problems. Additionally,
an iteration method that involves correcting characteristic
values based on L-curve was used to solve the ill-conditioned
coefficient matrix while solving linear parameters. However,
one limitation is that the situation of rank deficit often
occurred in the process of separable nonlinear least squares
parameter estimation; this will be addressed in future
research.
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