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Many temporal networks exhibit multiple system states, such as weekday and weekend patterns in social contact networks. +e
detection of such distinct states in temporal network data has recently been studied as it helps reveal underlying dynamical
processes. A commonly used method is network aggregation over a time window, which aggregates a subsequence of multiple
network snapshots into one static network. +is method, however, necessarily discards temporal dynamics within the time
window. Here we propose a new method for detecting dynamic states in temporal networks using connection series (i.e., time
series of connection status) between nodes. Our method consists of the construction of connection series tensors over non-
overlapping time windows, similarity measurement between these tensors, and community detection in the similarity network of
those time windows. Experiments with empirical temporal network data demonstrated that our method outperformed the
conventional approach using simple network aggregation in revealing interpretable system states. In addition, our method allows
users to analyze hierarchical temporal structures and to uncover dynamic states at different spatial/temporal resolutions.

1. Introduction

Temporal networks are a useful framework to represent and
analyze time-dependent changes and underlying dynamics
of complex systems [1–3]. Many phenomena, ranging from
disease spread [4–6] and human communication [7–9] to
financial transactions [10, 11] and human brains [12, 13], can
generate large-scale temporal network data. In many cases,
the temporal network data can often be broken down into a
sequence of discrete system states, some of which may
reoccur many times. For example, air traffic networks can
show seasonal variations [14, 15] and peak/off-peak weekly
patterns [15], which can be modeled and studied as a
temporal sequence of distinct system states. System state
detection captures the temporal state change of the whole
system at a collective level, in contrast to more commonly

studied node-level clustering on dynamic networks [16–18].
System state detection is useful for investigating the dy-
namics of time-varying complex systems and making better
interpretation of large-scale temporal network data sets.

To detect the system states in temporal networks,
Masuda andHolme recently proposed an approach that used
network aggregation and graph similarity [19].+eir method
first partitioned a given temporal network into subsequences
and aggregated each subsequence into a static network.+en
a graph similarity was measured among the aggregated static
networks to generate a distance matrix, to which hierarchical
clustering was applied and the number of system states was
determined using Dunn’s index [20]. In their method, the
timelines of interactions between nodes within a time
window were aggregated as static edge weights. Yet, these
timelines of interactions may incorporate critical
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information in exploring the system dynamics of temporal
networks. For example, the patterns regarding fluctuation of
connections in brain networks abstracting interactions be-
tween distinct brain regions can indicate various brain ac-
tivities or states [21–23]. Additionally, the method in [19]
focused on the optimal division of system states based on
mathematical optimization, which may also hinder the
discovery of suboptimal yet informative system states in
temporal networks.

In this study, we propose a method to detect dynamic
states of temporal networks using connection series between
nodes, i.e., the sequence of connection status between two
nodes represented as a binary-valued vector (0: discon-
nected, 1: connected). Figure 1(a) gives an example of the
connection series between two nodes. Figure 1(b) provides a
comparison of connection series and network aggregation
between two illustrative cases. In Figure 1(b), though the
timeline of interactions is different between windows 1 and
2, the aggregated networks (i.e., aggregation 1 and aggre-
gation 2) are the same since the number of interactions
between nodes is identical in each time window. Meanwhile,
the connection series incorporates information regarding
both amounts and temporal fluctuation of interactions
between a pair of nodes, which may be more useful when
detecting dynamic states of temporal networks.

Figure 2 shows two real-world examples of connection
series of face-to-face contacts between two students in a
primary school [24] and contacts between two attendees at
an academic conference [25]. We can observe distinct
fluctuation patterns between each pair of individuals over
time. Both of the data sets were downloaded from
SocioPattern.org.

Like in [19], our method divides a given temporal network
data into subsequences using nonoverlapping time windows.
Our method then transforms each subsequence into a con-
nection series tensor. While tensors have been widely used in
machine learning and pattern recognition research [26–28], we
use tensors specifically as an extended representation of ad-
jacency matrices that involve temporal connection patterns.
Namely, every element in the adjacency matrix is replaced by a
connection series between the corresponding pair of nodes.
+ese connection series tensors generated from multiple
subsequences are then connected to each other into ametalevel
network whose edge weights are similarities between these
tensors. Nonoverlapping communities are detected on this
metalevel network to classify each connection series tensor into
one of distinct dynamic states (represented as communities in
the metalevel network). Experiments using two empirical
temporal network data sets demonstrated that our method was
capable of detecting interpretable and practical dynamic states
in temporal networks. Additionally, by comparing the detected
states with the already known sequence of events that took
place in each data set, our method also outperformed the
previous approach.

+e rest of this paper is organized as follows. Section 2
describes our proposed method. Section 3 describes em-
pirical temporal network data sets used in experiments.
Section 4 presents the results. In section 5, we conclude and
discuss limitations.

2. Method

A schematic overview of our method is presented in
Figure 3. Given a temporal network with n network
snapshots SO � [Gt1

(Vt1
, Et1

), . . . Gtn
(Vtn

, Etn
)], where Gti

is
the network snapshot at time point ti, in which Vti

and Eti

denote the set of nodes and the set of edges, respectively.
In this representation, ti+1 � ti + Δt, where Δt is the
sampling interval of the original temporal network data
set. First, we split the whole temporal network data into T

subsequences using nonoverlapping time windows of
length w≪ n. +e length of each subsequence is w, except
for the last one that can be shorter than w if n is not
divisible by w. We denote these subsequences as
SS � [s1, . . . , sT]. Second, we transform each subsequence
into a connection series tensor by setting each element in
an adjacency matrix to a connection series between the
corresponding pair of nodes. We denote the obtained
connection series tensors as A � [A(1), . . . , A(T)], where
A(i) is the ith connection series tensor. Each connection
series tensor A(i) is given by
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, (1)

where c
(i)
j,k denotes the connection series between node j and

node k during subsequence si and V(i) is the set of nodes that
appears in subsequence si. +ird, we quantify the similarity
between every pair of connection series tensors by a measure
of similarity that will be described later. Fourth, we construct
a fully connected, weighted metalevel network whose nodes
and edges represent these tensors and the similarities be-
tween them, respectively. Fifth, we run the Louvain method
[29] on the metalevel network to classify these connection
series tensors (nodes in this metalevel network) intomultiple
communities that are interpreted as dynamic states. We can
also adjust the community resolution, a tunable parameter of
the Louvain method, to study dynamic states at different
spatial/temporal resolutions in a given temporal network.

2.1. Similarity betweenConnection SeriesTensors. Let the two
connection series tensors we compare be A(1)and A(2),
whose node sets may be different: say V(1) and V(2). To make
the format of A(1) and A(2) consistent, we transform them
into A′

(1)and A′
(2), respectively, both of whose node sets are

redefined as V′
(1)

� V′
(2)

� V(1) ∪V(2). +e steps of our
proposed similarity measure are as follows.

Step 1. We compute the similarity between every pairwise
connection series in A′

(1)and A′
(2), sim( c

(1)
j,k , c

(2)
j,k ).

Step 2. We average all the similarities obtained in Step 1 as
the similarity between A(1) and A(2),
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Figure 1: Connection series and network aggregation. (a) A simple example of connection series between nodes 1 and 2. (b) Comparison of
connection series and network aggregation between two illustrative cases.
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Figure 2: Real-world face-to-face contact sequence (i.e., connection series) involving two individuals. Connection status ‘1’ and status ‘0’
(values in y-axis) represent the fact that two nodes are connected and disconnected, respectively, at corresponding time points. (a) Contact
sequence between “node 1558” and “node 1567” in the first day’s primary school data [24]. (b) Contact sequence between “node 1080” and
“node 1125” in the first day’s conference data [25]. Note that the sampling interval (i.e., time resolution) is 20 seconds in both 2(a) and 2(b).
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where m denotes the number of nodes in V′
(1) and V′

(2).
Note that c

(i)
j,k does not contain self-connection series c

(i)
j,j .

To compute the similarity between two connection se-
ries, sim(c

(1)
j,k , c

(2)
j,k ), we developed a simple method informed

by the well-developed similarity measures of time series
[30–32]. Our similarity measure is based on the principle of
maximizing the number of matched items. A schematic
illustration of our proposed method is shown in Figure 4.
+e formula of similarity between two connection series is
shown as follows:

sim c
(1)
j,k , c

(2)
j,k  �

max
1≤i≤w

Mi

w
⎛⎝ ⎞⎠, (3)

where Mi represents the number of matched elements in
case i, while w is the length of time window. Note that the
maximum length of the connection series equals the length
of time window w.

2.2. Community Detection on Metalevel Network.
Figure 5 gives a simple example of the metalevel network.
We apply community detection to the metalevel network to
assign each node (� a connection series tensor, or a sub-
sequence of the original temporal network) with a distinct
dynamic state label. Many community detection algorithms
have been developed and employed with varying levels of
success [29, 33–35]. Here we use the Louvain method [29],
one of the most popular modularity maximization algo-
rithms. In the case of a metalevel network, the modularity is
defined as

Q �
1
2n

  
ij

Sim A
(i)

, A
(j)

  −
kikj

2n
  δ cmi, cmj ,

(4)

where Sim(A(i), A(j)) is the edge weight between tensors
A(i) and A(j), ki � jSim(A(i), A(j)) is the sum of the
weights of the edges connected to node i , cmi is the
community label node i is assigned to, δ(cmi, cmj) is
Kronecker’s delta function, and n is the sum of all of the edge
weights in the network. +e Louvain method is beneficial to
our work mainly for two reasons. First, it can take edge
weights into account. Two nodes connected by an edge with
greater edge weight (i.e., higher similarity between
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Figure 3: A schematic overview of our proposed method. Here we present a temporal network made of three nodes and set w � 3.
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connection series tensors) in the metalevel network are more
likely to be assigned to the same dynamic state. Second, it
also provides a tunable parameter of community resolution
that allows for exploration of dynamic states at different
spatial/temporal resolutions of interest, which is especially
helpful for unknown temporal networks.

3. Data

We used the primary school and conference data sets
downloaded from SocioPattern.org to run experiments. We
chose them because there were known “ground truth” states
to evaluate the performance of our method. Both the data
sets represent the physical proximity between people. +e
basic properties of the two data sets are listed in Table 1.

3.1. Primary School Data. +e primary school data was
collected in a primary school in Lyon, France. In the school,
each of all the five grades was divided into two classes [24].
+e schedule of a school day was shown in Table 2. Note that
different classes took turns to take breaks in a playground
and to have lunch in a canteen because the playground or the
canteen could not accommodate all the students at the same
time [24]. +e face-to-face contacts between 232 children
and 10 teachers in the school were measured and recorded
by body-mounted RFID devices. Two individuals were
joined when they faced each other in a close range (about
1m to 1.5m).+e data were collected from 8 : 45 to 17 : 20 on
+ursday, October 1st, 2009, and from 8 : 30 to 17 : 05 on
Friday, October 2nd, 2009. We used only the first day’s data
in this paper.
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Figure 4: A schematic illustration of our proposed similarity measure for connection series. Given two connection series, say (1, 1, 1, 0, 0)

and (0, 0, 1, 0, 1), we keep the sequential order of each series unchanged and find the best matching between them. To do this, we roll them
into rings and fix one of them, say (0, 0, 1, 0, 1), as the inner ring, and the other one, say (1, 1, 1, 0, 0), as the outer ring. +en we rotate the
outer ring clockwise element by element until we make a full rotation and obtain multiple cases regarding one-to-one correspondence
between elements in the respective rings. In this example, we can obtain 5matching cases. Note that the number of matching cases is equal to
the length of connection series (i.e., length of time window).+enwe count the number of matched elements in each case and choose the one
that has the most matched elements as the best matching between these two given connection series. Here, case 3 provides the best matching
between (1, 1, 1, 0, 0) and (0, 0, 1, 0, 1), in which the number of matched elements is 4. Finally, we divide the number of matched elements in
the best matching case (case 3) by the length connection series w (length of the window), where w � 5 in the example shown here. +e final
similarity between (1, 1, 1, 0, 0) and (0, 0, 1, 0, 1) is 0.8.+e bottom left panel in a light-yellow frame gives a special case when two connection
series are different in length, say (1, 1, 1, 0, 0) and (0, 0, 1, 0). In this case, we fix the shorter one as the inner ring and the longer one as the
outer ring, respectively. +en we still keep the one-to-one correspondence of elements in the respective rings and leave the missing digits in
the inner ring empty (the red square in the bottom left panel). +e rest of the process of finding the best matching is the same as previously.
For the final step, we divide the max number of matched elements in the best matching case by the length of the longer connection series and
then obtain the similarity between the two given connection series of different lengths.
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3.2. Conference Data. +is data set is named “Hypertext
2009 dynamic contact network” on the website of
SocioPattern.org, which we call “conference data” for short.
+e data set represents the temporal network of face-to-face
contacts of about 110 attendees at an academic conference. It
was collected during the ACM Hypertext 2009 conference
(http://www.ht2009.org/) hosted by the Institute for Sci-
entific Interchange Foundation in Turin, Italy, from June
29th to July 1st, 2009 [25]. +e data collection method was
the same as that used for the primary school data. We used
only the first day’s (Monday, June 29, 2009) data in this
paper, whose program was given in Table 3.

4. Experiments

We applied our proposed method to the two real-world
temporal networks to demonstrate how this approach can be
used to detect meaningful insights regarding complex in-
teractions among elements in time-varying complex sys-
tems. We used the event information shown in Tables 2 and
3 as the ground truth for our results. In the experiments, we
varied the community resolution parameter in the Louvain
method from 1.0 to smaller values (decreasing 0.01 in each
variation) to scan the hierarchical temporal structure and
uncover dynamic states at different resolutions. Note that a
smaller community resolution parameter in the Louvain
method indicates a higher resolution of system states. For
comparison, we also implemented the approach using
network aggregation and graph similarity proposed in [19].
Here we choose DeltaCon [36] from multiple graph simi-
larity measures used in [19], because it takes the node
identity into account that is compatible with our proposed
method, and also because it is a relatively new, computa-
tionally scalable method.

4.1. Results for Primary School Data. We partitioned the
primary school data into subsequences through time win-
dows of length of 20 minutes, which was the same as that
used for the same data set in [19]. Figure 6 presents the
results for the primary school data obtained by our method.
Figure 6(b) exhibits the detected two dynamic states, state 0
(the approximated periods are 8 : 40∼11 : 50 and 14 :10∼17 :
20) and state 1 (the approximated period is 11 : 50∼14 :10) at
the community resolution of 1.0. By comparing the results
with the primary school’s schedule, state 1 corresponds to
the lunchtime, while state 0 can be simply assumed as class
time. However, the morning and afternoon breaks were not
revealed with such a large community resolution parameter
value (low resolution of system states).

Figure 7 provides more representative results that ob-
tained at distinct community resolutions. +e results at
community resolution of 0.92 are shown in Figure 7(b).
+ere are three detected dynamic states, state 0, state 1, and
state 2, which are consistent with class time, break time
(morning and afternoon), and lunchtime, respectively. +e
detected two breaks are longer than the break time in the
schedule of a school day, which may be led by the fact that
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Figure 5: A schematic example of the generated metalevel network
of connection series tensors. Here we consider only four tensors
(i.e., A(1), A(2), A(3), A(4)) as an example. +e edge weight between
node i (i.e., A(i)) and node j (i.e., A(j)) is defined by the similarity
between A(i) and A(j)Sim(A(i), A(j)).

Table 1: +e properties of the temporal network data sets used in
this paper.

Data Primary school data
[24] Conference data [25]

Number of
nodes 242 110

Selected period First day, 8 : 40∼17 : 20 First day, 9 : 00∼19 :
00

Sampling
interval 20 seconds 20 seconds

Table 2: Schedule of a school day in the primary school in Lyon,
France [24].

Time Event
8 : 30∼10 : 30 Class time
10 : 30∼10 : 55 (approximate time) Break time
10 : 55∼12 : 00 Class time
12 : 00∼14 : 00 Lunchtime
14 : 00∼15 : 30 Class time
15 : 30∼15 : 55 (approximate time) Break time
15 : 55∼16 : 30 Class time

Table 3: +e first day’s program of ACM hypertext 2009 con-
ference (http://www.ht2009.org/).

Time Event
9 : 00∼10 : 30 Setup time for posters and demos
10 : 30∼11 : 45 Workshops 1
11 : 45∼12 : 00 Coffee break 1
12 : 00∼13 : 30 Workshops 2
13 : 30∼15 : 00 Lunch break
15 : 00∼16 : 30 Workshops 3
16 : 30∼16 : 45 Coffee break 2
16 : 45∼18 : 05 Workshops 4
18 : 05∼18 :10 Short break
18 :10∼19 : 00 Wine and cheese welcome reception

6 Complexity
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students in different classes took turns to take breaks due to
the limitation of the playground [24]. +e results in
Figure 7(c) that were obtained by using an even smaller
community resolution (0.91) show that the morning break
can be broken into two dynamic states, state 1 and state 2,
which may suggest a distinction in collective behaviors of
different classes. If we continue to decrease the community
resolution to 0.89 (Figure 7(d)), we can even find the subtle
differences between morning class time (state 0 in
Figure 7(d)) and afternoon class time (state 4 in Figure 7(d)).
Additionally, the results in Figure 7 indicate that smaller
community resolution parameter values (higher resolution
of system states) are beneficial to discover more subtle
dynamic states.

As a comparison, Figure 8 gives the results for the
primary school data obtained by the method using network
aggregation and graph similarity in [19]. +is method dis-
covered two optimal system states shown in Figure 8(b)

through hierarchical clustering and Dunn’s index [20].
+ough it detected the lunchtime and class time, it failed to
recognize the two breaks between classes.

4.2. Results for Conference Data. +e conference temporal
network was divided into subsequences by nonoverlapping
time windows of length of 5 minutes, which were chosen
according to the shortest event (short break (18 : 05∼18 :10)
in Table 3). Figure 9 shows the results obtained by our
method, which are mainly aligned with the first day’s
program of ACM hypertext 2009 conference. For example,
the results in Figure 9(b) suggest that coffee break 1, coffee
break 2, wine and cheese welcome reception, and part of
lunch break (approximately from 13 : 30∼15 :15) are rec-
ognized as the same dynamic state 2. Workshops 1, 2, 3, and
4 correspond to state 0, state 3, state 1, and state 4, re-
spectively. Figure 9(c) provides more subtle insights at
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Figure 6: Results for the primary school data using our proposed method. (a) Similarity matrix. (b) Detected states obtained by setting
community resolution as 1.0. We use the red dotted line and spans with distinct greyscales to represent the dynamic states.+e schedule of a
school day is displayed in a horizontal bar on the top of the figure.+e letters ‘C’, ‘B’, and ‘L’ in the bar correspond to the class time, the break
time, and the lunchtime in the schedule, respectively. Note that the time span (8 : 45∼17 : 20) of the collected data is not aligned with the
schedule of a school day (8 : 30∼16 : 30).
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relatively smaller community resolution (0.99), in which a
new period (state 5) emerges at the end of the whole day’s
program.+is new period may be interpreted as the “ending
time” of a conference day.

On the contrary, the results displayed in Figure 10 were
obtained by using the method in [19]. As shown in
Figure 10(b), the only two detected system states, state 0 and
state 1, failed to match the first day’s conference program.
+erefore, it performed poorly in revealing meaningful
system states in the conference data.

5. Discussion

In this paper, we developed a new method for detecting
dynamic states in temporal networks. We transformed a
given temporal network into a sequence of tensors that
consisted of connection series between each pair of nodes.
+ese connection series can help capture the collective
dynamics regarding temporal and spatial interactions be-
tween elements in time-varying complex systems. We also
proposed a simple method to evaluate the similarity between
two connection series tensors, which can be potentially
extended to a similarity measure of two temporal networks.
+e results with empirical temporal network data demon-
strated the effectiveness of our method in detecting dynamic
states. Our method also outperformed the previous ap-
proach in [19] in revealing actual events in real-world
temporal network data, which suggests that incorporating
timelines of interactions between pairs of nodes within time
windows helps detecting dynamic system states.

As demonstrated in Figure 7, the tunable parameter of
community resolution in the Louvain method is a useful tool
to detect the system states at various spatial/temporal res-
olutions. Users can choose the appropriate community
resolution parameter according to their research interests.
For temporal network data for which no ground truth or

underlying processes are known a priori, one possible way to
find the “right” level of system state detection is to scan the
parameter space gradually from high to low values and then
choose the most robust, persistent division of system states
as the final result. Users may also benefit from using several
community validation metrics [37–39] for this purpose.

We note that the choice of the length of nonoverlapping
time windows would influence the results of detected states
in our method. In general, a shorter time window helps
discover more subtle system states, whereas it may also make
the results less robust since the temporal sparseness of in-
teractions between nodes in many temporal networks [1]
could lead to insufficient topological information in each
time window. Using a large time window obviously can
avoid this problem, but the results may be too coarse-
grained because a large time window may include multiple
system states. Figure 11 gives an example of how the time
window length may influence the results of state detection,
showing results of our method applied to the primary school
data with varying lengths of time windows. +e shorter the
time windows were, the more subtle the system states were
uncovered. We consider it is important to choose the length
of the time windows according to the underlying dynamics
of the time-varying complex systems (e.g., the duration of
possible shortest events). If no such information is available
a priori, one should systematically vary the length of time
windows until a robust result of system states is identified.

Finally, we note several limitations of our work. First, the
proposed similarity measure for the connection series ten-
sors is limited in temporal networks with given node labels.
Furthermethodological exploration and development would
be needed to handle unlabeled temporal network data.
Second, consideration of all the connection series in tem-
poral networks may become computationally very expensive
when the size of the temporal network data is very large.
+ird, we have used only the Louvain method and have not
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Figure 7: More representative results for the primary school data using our method. (a) Detected states obtained by setting community
resolution as 1.0, which is the same as the results in Figure 6(b). (b) Detected states at community resolution of 0.92. (c) Detected states at
community resolution of 0.91. (d) Detected states at community resolution of 0.89. Note that the time span (8 : 45∼17 : 20) of the collected
data is not aligned with the schedule of a school day (8 : 30∼16 : 30).
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Figure 8: +e results for the primary school data obtained by the method using network aggregation and graph similarity in [19]. (a)
Similarity matrix. (b) Detected system states. Note that the time span (8 : 45∼17 : 20) of the collected data is not aligned with the schedule of a
school day (8 : 30∼16 : 30).
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Figure 9: Results for the conference data using our proposedmethod. (a) Similarity matrix. (b) Detected states with setting community resolution
as 1.0. (c) Detected states obtained by setting community resolution as 0.99.+e horizontal bar on the top of the figures 9(b) and 9(c) shows the first
day’s programof theACMhypertext 2009 conference.+e letters ‘S,’ ‘W1,’ ‘B,’ ‘W2,’ ‘L,’ ‘W3,’ ‘W4,’ and ‘W&C’ in the bar correspond to setup time,
workshop 1, coffee break, workshop 2, lunchtime, workshop 3, workshop 4, and wine and cheese welcome reception, respectively.
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Figure 10: Results for the conference data using the method in [16]. (a) Similarity matrix. (b) Detected system states.+e letters ‘S,’ ‘W1,’ ‘B,’
‘W2,’ ‘L,’ ‘W3,’ ‘W4,’ and ‘W&C’ in the bar correspond to setup time, workshop 1, coffee break, workshop 2, lunchtime, workshop 3,
workshop 4, and wine and cheese welcome reception, respectively.
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explored different community detection methods (although
we assume the main results would not be affected much as
long as community detection was done to maximize
modularity). Finally, our validation of the results remained
only qualitative comparison with the presumed “ground
truth”, while more objective, quantitative validation requires
further study using other empirical temporal network data
sets whose underlying system states (ground truth) are
rigorously established and available.
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