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Multivariate time series prediction is a very important task, which plays a huge role in climate, economy, and other fields. We
usually use an Attention-based Encoder-Decoder network to deal with multivariate time series prediction because the attention
mechanism makes it easier for the model to focus on the really important attributes. However, the Encoder-Decoder network has
the problem that the longer the length of the sequence is, the worse the prediction accuracy is, which means that the Encoder-
Decoder network cannot process long series and therefore cannot obtain detailed historical information. In this paper, we propose
a dual-window deep neural network (DWNet) to predict time series. &e dual-window mechanism allows the model to mine
multigranularity dependencies of time series, such as local information obtained from a short sequence and global information
obtained from a long sequence. Our model outperforms nine baseline methods in four different datasets.

1. Introduction

In the age of big data, sequence data is everywhere in life
[1, 2]. Time series prediction algorithms are becoming more
and more important in many areas, such as financial market
prediction [3], passenger demand forecasting [4], and heart
signal prediction [5]. In most cases, time series data is
multivariate.&e key to multivariate time series prediction is
to obtain the spatial and temporal relationships between
different attributes at different times [6]. As a widely used
traditional time series prediction algorithm, ARIMA [7] has
shown its effectiveness in many areas. However, ARIMA
cannot model nonlinear relationships and can only be ap-
plied to stationary time series [8–10]. Recurrent neural
network (RNN) [11] has achieved great success in sequence
modeling. But RNN has the problem of vanishing gradients,
and it is difficult to capture the long-term dependence of
time series [12]. Long Short-Term memory (LSTM) [13] and
gated recurrent unit (GRU) [14, 15] alleviate the problem of
RNN’s vanishing gradients and have developed many
models for time series prediction, such as Encoder-Decoder
networks [15, 16]. Encoder-Decoder networks are excellent
in time series prediction tasks, especially Attention-based

Encoder-Decoder networks [17]. Attention-based Encoder-
Decoder network can not only find the spatial-temporal
correlation between different series but also find important
information in raw data and increase its weight [17]. Among
them, dual-stage attention-based recurrent neural network
(DARNN) is one of the state-of-the-art methods, creatively
using a two-stage attention mechanism [18].

Although DARNN can capture spatial correlations be-
tween different attributes at the same time and the temporal
correlations between different times in the same attribute,
when the length of the sequence is too long, the prediction
effect will be worse [18]. &is problem is common to all
Encoder-Decoder networks. A long sequence means more
historical information, so better results should be obtained.
However, due to the limitations of Encoder-Decoders, the
information of the long sequence is not effectively used, even
interfere with the prediction results. &is is because LSTM
does not solve the problem of vanishing gradient, and when
the length of the time series is too long, the previous in-
formation will be covered by the latter. &erefore, Encoder-
Decoders generally use a small window size to ensure the
accuracy of prediction. Dual-stage two-phase attention-
based recurrent neural network (DSTP) [19] has made
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improvements to this problem of DARNN and optimized
the prediction effect of long sequences. However, DSTP still
does not make effective use of long sequences.

When the time window size is small, the series is very
close to the prediction point. Such data has the closest re-
lationship with the prediction point. For instance, if the
values before the prediction point are gradually increasing,
then the value at the prediction point is also likely to in-
crease. When the time window size is large, series contain
more time steps. It is difficult for other models to extract
recent information, such as trends, in such a long series, so it
cannot get good prediction results. However, more infor-
mation brought by more time steps is very important for
time series prediction. It is key to how to make good use of
the different characteristics of short sequence and long
sequence.

To solve this problem, we propose a dual-window deep
neural network (DWNet). DWNet consists of two parts. &e
first part captures spatial and temporal correlations from the
short sequence and is responsible for providing recent de-
tails, based on Encoder-Decoder [15]. &e second part
obtains long-term dependencies such as periodicity and
seasonality from the long sequence, based on TCN. Tem-
poral convolutional network (TCN) [20] is an emerging
CNN-based model. With the parallelism of convolution
operation and large receptive field, it has gained everyone’s
expectations in the areas of sequence modeling. Short-term
time series generally contain only one or two periods.
However, long-term time series are the opposite, including
enough time steps. &e setting of two different time window
sizes for long sequence and short sequence makes it possible
to mine multigranularity dependencies.

&e main contributions of our work are as follows:

(i) We propose a dual-window mechanism that can
extract multigranularity information from se-
quences of different lengths.

(ii) We propose the DWNet approach, which includes
the advantages of Encoder-Decoder networks and
TCN at the same time. Encoder-Decoder networks
have a strong ability to mine dependence from the
short sequence. Meanwhile, TCN’s large receptive
field and fast training speed are more suitable for
long sequences.

(iii) DWNet can be applied to time series prediction
tasks in many domains, and there is no requirement
for input data. To justify the effectiveness of the
DWNet, we compare it with nine baseline methods
using the Human Sports dataset, SML 2010 dataset,
Appliances Energy dataset, and EEG dataset. &e
experiment showed the effectiveness and robustness
of DWNet.

2. Related Work

For the time series prediction task, there are various ap-
proaches from traditional methods to deep learning
methods. As the most famous traditional method, ARIMA
can effectively obtain the long-term dependence of target

series [7]. However, ARIMA does not consider the spatial
correlation between exogenous series [18], can only be used
to deal with stationary series [7], and cannot model non-
linear relationships [8]. ARIMA is not suitable for the in-
creasingly complex time series data analysis. As a deep
neural network dedicated to machine learning and data
mining applications [21–23], RNN can model nonlinear
relationships [24] and has achieved great success in time
series prediction. However, the gradient vanishing of RNN
makes it difficult to obtain long-term dependence from time
series. LSTM [13] and GRU [15] add a gating mechanism
based on RNN and process the addition and deletion of
timing information through the gating mechanism, which
alleviates gradient vanishing of RNN. Based on LSTM and
GRU, many influential deep neural networks have been
proposed, such as the Encoder-Decoder network that has
received great attention in the area of natural language
processing [17]. Encoder-Decoder networks convert input
series into context vector through Encoder and then convert
context vector into output through Decoder. Encoder-De-
coder networks have a problem. When the length of the
sequence increases, the performance of Encoder-Decoder
will first become better and then worse [17]. Attention-based
Encoder-Decoder network can automatically select impor-
tant information, thereby effectively alleviating the short-
coming of performance degradation when the length of the
sequence increases.

Many attention-based models emerge endlessly. And
DARNN [18], GeoMAN [25], andDSTP [19] are models that
are improved based on the Attention-based Encoder-De-
coder and used for time series prediction. Inspired by some
theories of human attention [26], DARNN uses a dual-stage
attention mechanism. &e first stage uses a spatial attention
mechanism to assign different weights to exogenous series to
the hidden state of Encoder at the previous time step. &e
second stage uses a temporal attention mechanism to select
the most relevant Decoder hidden states in all time steps.
After DARNN was proposed, it has always been one of the
state-of-the-art methods in time series prediction. Multilevel
Attention Network (GeoMAN) is specially used to predict
geo-sensor time series data. Many time series data are
collected by sensors distributed in many locations. Such data
is called geo-sensor time series data. If each series in the geo-
sensor time series is simply treated as a normal attribute, it
will lose the connection between different locations. Geo-
MAN adds local spatial attention and global attention
mechanisms to Encoder and adds external factor informa-
tion to Decoder to solve this problem. DSTP adds a new
spatial attention mechanism to Encoder to obtain a spatial
correlation between target series and exogenous series so
that DSTP achieved better results in the long time series
prediction.

While the Attention-based Encoder-Decoder network
has attracted much attention, TCN has also shown strong
sequence modeling ability [20]. TCN is based on CNN and
includes causal convolution, dilated convolution [27, 28],
and residual block [29]. To apply to series data, TCN is
specially adjusted for different data formats of series and
image. TCN has advantages that RNNs do not have. (1) TCN
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can process series in parallel and does not need to be
processed sequentially like RNN or LSTM. &is means that
there is no possibility that the information of the previous
time step will be overwritten and it also means that there is a
faster training speed. (2) TCN’s receptive field varies with
the number of layers, kernel size, and dilation rate and can be
flexibly changed according to a different situation. (3)
Compared with LSTM, TCN rarely has the problem of
gradient vanishing. Due to the flexible receptive field, fewer
parameters than LSTM, and parallel processing, TCN can
not only reduce the training time of long sequence but also
ensure that the information of the previous time step will not
be covered. &erefore, TCN has a strong ability to obtain
information from long sequences and is suitable for long
sequence modeling.

Long- and short-term time series network (LSTNet) [30]
is based on CNN and RNN and realizes that time series have
two different dependencies, short-term and long-term.
&erefore, LSTNet uses a recurrent-skip mechanism to
obtain short-term dependence and then uses RNN to obtain
long-term dependence from previous results. But it does not
consider that the closer to the prediction point, the more
important the information. &erefore, LSTNet will lose
some recent information in the time series prediction.

3. Dual-Window Deep Neural Network

3.1. Notation and Problem Statement. In our work, there are
two different window sizes, Tl and Ts. Given n exogenous
series, that is,
X � X1 � (x1l , x2l , . . . , xn

l )⊤ � (x1, x2, . . . , xTl
) ∈ Rn×Tl , we

segmented a short series like this
X2 � (x1s , x2s , . . . , xn

s )⊤ � (xTl−Ts+1, xTl−Ts+2, . . . , xTl
) ∈ Rn×Ts .

We use xi
l � (xi

1, xi
2, . . . , xi

Tl
)⊤ ∈ RTl to represent the i-th

long exogenous series, use
xi

s � (xi
Tl−Ts+1, xi

Tl−Ts+2, . . . , xi
Tl

)⊤ ∈ RTs to represent the i-th
short exogenous series, and use xt � (x1

t , x2
t , . . . , xn

t )⊤ ∈ Rn

to denote a vector of n exogenous series at time t. We use
Y � (y1, y2, . . . , yTl

)⊤ ∈ RTl to represent target series, which
has the long window size Tl.

Given previous values of target series and exogenous
series, that is, (y1, y2, . . . , yTl

) with yt ∈ R and
(x1, x2, . . . , xTl

) with xt ∈ Rn, we aim to predict the next time
step value of target series yT+1:

yTl+1 � F y1, . . . , yTl
, x1, . . . , xTl

 , (1)

where F(.) is a nonlinear mapping function we aim to learn.

3.2.Model. Figure 1 presents the framework of our method.
&e input of DWNet is divided into two parts, long series
with window size Tl and short series with window size Ts.
Short series is a part of long series and is located at the end of
the long series (Figure 1 shows the relationship between the
two series). Long series is processed by TCN [20] and used to
obtain more detailed historical information than short se-
ries. &e short series is processed by Encoder-Decoder to
capture local information. Finally, the output of the two

parts is combined to get the predicted value of the target
series at time Tl+1.

3.2.1. Capture Short-Term Dependence. First of all, we in-
troduce the short series processing module. &is part is
based on Encoder-Decoder and uses spatial attention and
temporal attention mechanism [18] to emphasize key in-
formation in short series. Encoder is based on LSTM, the
input data of Encoder is short series
X2 � (xTl−Ts+1, xTl−Ts+2, . . . , xTl

) ∈ Rn×Ts . Given i-th short
exogenous series xi

s � (xi
Tl−Ts+1

, xi
Tl−Ts+2

, . . . , xi
Tl

)⊤ ∈ RTs ,
we use the spatial attention module to adaptively obtain the
spatial correlation between exogenous series:

e
i
t � v⊤e tanh We ht−1: st−1  + Uex

i
+ be , (2)

αi
t �

exp e
i
t 


n
j�1 exp e

j
t 

, (3)

where ve ∈ RTs ,We ∈ RTs×2p,Ue ∈ RTs×Ts , and be ∈ RTs are
parameters to learn. Here, p is the hidden size of Encoder
and ht−1 ∈ Rp and st−1 ∈ Rp are the hidden state and cell
state of LSTM unit in the Encoder at time t − 1. αi

t is the
attention weight measuring the importance of i-th exoge-
nous series at time t. After we get the attention weight, we
can adaptively extract exogenous series with

xt � α1t x
1
t , α2t x

2
t , . . . , αn

t x
n
t 
⊤

. (4)

&us, the hidden state at time t can be updated as

ht � fe ht−1, xt( , (5)

where fe is an LSTM unit in the Encoder. &e spatial at-
tention module calculates the weight of each exogenous
series through equations (2) and (3) at time t and uses xt to
adjust the hidden state at time t.

&e input of Decoder is the previous target series and the
output of the Encoder, which is the hidden state of Encoder.
Decoder aims to predict yTl+1. To get accurate prediction
results, we need to capture the temporal correlation between
each series. So, we add a temporal attention module to the
Decoder. &e same as Encoder, the attention weight of
Encoder hidden state at time t is calculated based upon the
previous Decoder hidden state and cell state of LSTM unit
with

d
i
t � v⊤d tanh Wd ht−1′ : st−1′  + Udhi + bd(  (6)

βi
t �

exp d
i
t 


Ts

j�1 exp d
j
t 

, (7)

where v⊤d ∈ R
p,Wd ∈ Rp×2q,Ud ∈ Rp×p, and bd ∈ Rp are

parameters to learn. q is the hidden size of Decoder, and
ht−1′ ∈ Rn and st−1′ ∈ Rn are the hidden state and cell state of
LSTM unit in the Decoder at time t − 1. βi

t is the attention
weight and can show the importance of i-th Decoder hidden
state at time t − 1. And, we can get context vector with
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ct � 

Ts

i�1
βi

thi. (8)

Context vector ct is the sum of all weighted encoder
hidden states at time t. &en, we combine context vector ct

and target series to update the Decoder hidden state ht
′:

ht
′ � fd ht−1′ , ct : yt ( , (9)

where fd is an LSTM unit in the Decoder.

3.2.2. Capture Long-Term Dependence. We obtain long-
term dependence through TCN [20], because TCN can
process time series data in parallel and have much fewer
parameters than LSTM. &erefore, TCN can quickly handle
long series and improve time efficiency. And TCN does not
have the problem of the previous information being covered.
When window sizes are too large, the integrity of the in-
formation can be guaranteed. In our model, the input of the
TCN part is long series from time 1 to Tl. In time series
analysis, we cannot allow leakage from the future into the
past. A high layer element at time t is obtained by convo-
lution of elements from time t and earlier in the previous
layer. To avoid information leakage, TCN uses casual
convolution. To expand the receptive field, TCN uses dilated
convolution [27, 28]. For long exogenous series
X1 � (x1, x2, . . . , xTl

) ∈ Rn×Tl and filter g: (g0, g1, . . . , gk−1),
the element at time t is

Ot � x∗ dg (t) � 
k−1

i�0
gixt−d·i, (10)

where d is the dilation factor, k is the filter size, and O is
dilated convolution operation. d will increase exponentially
with the number of layers to expand the receptive field. A
deep neural network is so easy to have the problem of
gradient exploding and gradient vanishing, so TCN uses
residual block [29]. &e residual connection enables the
network to transfer information in a cross layer and improve
the efficiency of feature extraction.

3.2.3. Training. Figure 1 shows that the predicted value is
determined by two parts.We combine the output of Decoder
hTs
′ and TCN OTl

to predict yTl+1
:

yTl+1 � F y1, . . . , yTl
, x1, . . . , xTl

 

� v⊤y Wy hTs
′ : OTl

  + bw  + bv,
(11)

where vy ∈ Rq,Wy ∈ Rq×(q+m), bw ∈ Rq, and bv ∈ R are
parameters to learn. Here, m is the number of hidden units
per layer, and [hTs

′: OTl
] ∈ Rq+m. We use the back-

propagation algorithm to train DWNet. We use the Adam
optimizer [31] to minimize the mean squared error (MSE)
between the predicted value yTl+1

and the ground truth yTl+1
:

L(θ) � yTl+1
− yTl+1

�����

�����
2

2
, (12)

where θ are all parameters to learn in DWNet.

4. Experiment

Our model and all baseline methods are implemented on the
PyTorch framework [32]. In this section, we first introduce
four different datasets used in the experiment. &en, we
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introduce nine baseline methods. Next, we introduce the
model evaluation methods and parameters. Finally, exper-
iment results show the effectiveness of DWNet.

4.1. Datasets. We use four datasets to verify the effect of our
model. &ey are in the field of sports, energy, climate, and
medicine. We divide datasets into training sets and testing
sets according to the ratio of 4 :1.

4.1.1. Human Sports [33]. Human Sports data is collected by
10 volunteers of different genders, heights, and weights who
performed sports including squat, walking, jumping jacks,
and high knee. Four sensors worn on the arms and thighs
record data every 50 milliseconds, including acceleration
and angular acceleration of the x-axis, y-axis, and z-axis. In
our experiment, we take the resultant acceleration as the
target series and others as exogenous series. We only use the
squat data of one volunteer and use the first 8796 data points
as the training set and the remaining 2197 data points as the
testing set.

4.1.2. SML 2010 [34]. SML 2010 is a public dataset for indoor
temperature prediction. SML 2010 contains nearly 40 days of
data, which is collected by the monitoring system. &e data
were sampled every minute, computing and uploading it
smoothed with 15-minute means. In our experiment, we
take the weather temperature as target series and select
fifteen exogenous series. We use the first 1971 data points as
the training set and the remaining 493 data points as testing
set.

4.1.3. Appliances Energy [35]. Appliances energy is a public
dataset used for home appliance energy consumption pre-
diction. &is dataset is at 10 minutes for about 4.5 months.
Room temperature and humidity conditions were moni-
tored with a wireless sensor network. &e energy data is
recorded with m-bus energy meters every 10 minutes.
Weather data was downloaded from the nearest airport
weather station. In our experiment, we take energy use as
target series and others as exogenous series. We use the first
15548 data points as a training set and the remaining 3887 as
a testing set.

4.1.4. EEG [36]. EEG is a public dataset for classification and
regression. &is database consists of 30 subjects performing
Brain–Computer Interface for Steady-State Visual Evoked
Potentials. In our experiment, we only use the data from one
of those subjects. We take the electrode O1 attribute as the
target series and others as exogenous series. We use the first
7542 data points as a training set and the remaining 1886 as a
testing set.

4.2. Baseline

4.2.1. ARIMA [8]. It is one of the well-known statistical
algorithms for time series prediction.

4.2.2. LSTM [13]. LSTM is improved by RNN, through the
gating mechanism to control the adding and deletion of
information, alleviating the gradient vanishing.

4.2.3. Encoder-Decoder [16]. It is widely used in machine
translation. However, Encoder-Decoder has the disadvan-
tage of losing information.

4.2.4. Input-Attn-RNN [18]. It adds a spatial attention
module on the basis of Encoder-Decoder to the Encoder to
obtain the spatial correlation of raw data.

4.2.5. Temp-Attn-RNN [19]. It adds a temporal attention
module on the basis of Encoder-Decoder to the Decoder to
obtain the temporal correlation of Encoder hidden state.

4.2.6. TCN [20]. It is an emerging sequence modeling model
that has attracted much attention, including casual convo-
lution, dilated convolution, and residual blocks.

4.2.7. LSTNet [30]. It combines CNN and RNN to obtain
short-term and long-term dependencies in sequence.

4.2.8. DARNN [18]. As one of the state-of-the-art methods,
inspired by the human attention system, DARNN uses both
spatial attention and temporal attention to extract spatial-
temporal correlation.

4.2.9. DSTP-RNN [19]. It improves DARNN and adds an
attention module to Encoder. In the Encoder, more sta-
tionary weights can be obtained. DSTP-RNN is good at long
time series prediction.

4.3. Evaluation Metrics. We employ root mean squared
error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and symmetric mean absolute
percentage error (SMAPE) to evaluate our model and
baseline methods. &ese four evaluation metrics are scale-
independent and widely used in time series prediction.
RMSE has a strong feedback ability for predicted results that
deviate too much from the ground truth. MAE treats all
results equally. MAPE is able to compare forecast accuracy
among differently scaled time series data because relative
errors do not depend on the scale of the dependent variable.
However, when truth value yt is small, different yt will have
a huge difference inMAPE value. And SMAPE can solve this
problem. Assuming yt is predicted value at time t and yt is
the ground truth, RMSE is defined as follows:

RMSE �

�������������

1
N



N

t�1
yt − yt( 

2




. (13)

MAE is defined as follows:
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MAE �
1
N



N

t�1
yt − yt


. (14)

MAPE is defined as follows:

MAPE �
100%

N


N

t�1

yt − yt

yt




. (15)

SMAPE is defined as follows:

SMAPE �
100%

N


N

t�1

yt − yt




yt


 + yt


 /2

. (16)

4.4. Parameters Settings. Most time series prediction models
have chosen a small window size in their experiment. For
example, DARNN set the window size to 10 [18], and
GeoMAN set the window size to 6 [25]. To show the in-
fluence of window size on prediction, we select the window
size T � 2, 4, 8, 16, 32, 128{ }. For DWNet, we set Tl � 128
and Ts � 16. For baseline methods, we conducted experi-
ments on T � 16 and T � 128, respectively. In training, we
set the batch size to 128 and learning rate to 0.001. In our
model, there are also parameters such as the hidden size of
Encoder p, the hidden size of Decoder q, kernel size, and
levels of TCN. For simplicity, we use the same hidden size at
Encoder and Decoder, that is, p � q, and conducted a grid
search over 16, 32, 64, 128, 256{ }. For TCN level and kernel
size, we also conducted a grid search. &e setting in which
p � q � 128, level � 8, kernelsize � 7 outperforms the others
in the testing set. And we fixed these parameters in all
experiments.

5. Results and Discussion

In this section, we first compare our model with baseline
methods on the four datasets.&en, we conduct a grid search
to show the performance of our model in different long time
steps and short time steps combinations. Next, we investi-
gate ablation experiments and study the time efficiency of
our model.

5.1. Model Comparison. To show the effectiveness of
DWNet, we compare DWNet with 9 different methods,
including the state-of-the-art methods and emerging
methods. For the sake of fairness, we use two different
window sizes for baseline methods so that we can compare
the baselines’ results of long window size and short window
size with DWNet. &e prediction results of DWNet and
baseline methods are shown in Tables 1 and 2 .

Table 1 shows that DWNet achieves the best RMSE
and MAE across four datasets. Table 2 shows that
DWNet also achieves the best MAPE and SMAPE in four
datasets. &is is because DWNet obtains not only the
short-term dependency in the short sequence but also the
long-term dependency in the long sequence. ARIMA
performs worse than other models for ARIMA cannot
capture linear relationships and does not consider the

spatial correlation between exogenous series [7]. Encoder-
Decoder network performs better than normal LSTM in
four datasets, which means Encoder-Decoder is easier to
obtain dependency from raw data [16]. Attention-based
Encoder-Decoder networks, that is, Input-Attn-RNN and
Temp-Attn-RNN, are better than normal Encoder-De-
coder networks in four datasets because the attention
mechanism pays more attention to more important fea-
tures in raw data. DARNN and DSTP combine spatial
attention and temporal attention mechanism and have
good performance in four datasets. &e performance of
TCN is very unstable, and its performance in Human
Sports is better than DSTP, but it is far worse than
DARNN and DSTP in other datasets, especially EEG.
LSTNet’s performance is also unstable. And it performs
very well in Human Sports, but it performs poorly in the
other three datasets. Meanwhile, we can also find that
LSTM-based networks perform better than long se-
quences in short sequences.

5.2. Time Step Study. In this section, we study the impact of
long window size Tl and short window size Ts on prediction.
When we varyTl andTs, we keep other parameters fixed.We
plot the RMSE versus different long window size
(Tl ∈ 64, 128, 256, 512{ }) and short window size
(Ts ∈ 4, 8, 16, 32{ }) in Figure 2.

It is easily observed that the performance of DWNet is
simultaneously affected by two parameters Tl and Ts. When
Tl is fixed, the performance of DWNet will be worse when Ts

is too large or too small and vice versa. And we notice that
DWNet achieves the best performance when Tl � 128 and
Ts � 16.

5.3. Ablation Experiment. To further investigate the effec-
tiveness of each model component, we compare DWNet
with Input-Attn-RNN, Temp-Attn-RNN, DARNN, and
other variants in Human Sports and EEG datasets. In this
experiment, we set window size T of Input-Attn-RNN,
Temp-Attn-RNN, and DARNN to 16 and set Tl � 128 and
Ts � 16. &e variants of DWNet are as follows:

(i) DWNet-ni: there is no spatial attention module in
the Encoder part.

(ii) DWNet-nt: there is no temporal attention module in
the Decoder part.

&e experiment results are shown in Figure 3. Input-
Attn-RNN performs better than Temp-Attn-RNN in the
EEG dataset but performs worse than Temp-Attn-RNN in
the Human Sports dataset. However, DARNN achieves
better RMSE and MAE than Input-Attn-RNN and Temp-
Attn-RNN in both two datasets. Apparently, the model
based on a two-stage attention mechanism is better than the
single attention model. And that is why DWNet is superior
to DWNet-ni and DWNet-nt. It is easily observed that
DWNet achieves the best RMSE in Human Sports and EEG,
which shows that the information in the long sequence is
valuable for the time prediction task. Without the long

6 Complexity



64 128 256 512 Tl

Ts

4 0.0685 0.0609 0.0610 0.0683

8 0.0656 0.0587 0.0599 0.0650

16 0.0626 0.0575 0.0584 0.0636

32 0.0699 0.0699 0.0650 0.0661

RMSE

Figure 2: Performance of DWNet in Human Sports based on different short window size Ts and long window size Tl. We use different
colors to indicate the prediction effect. &e better the prediction, the darker the color.

Table 1: RMSE and MAE performance comparison among different methods and datasets (best result is displayed in boldface).

Models
SML 2010 Human Sports EEG Energy

RMSE MAE RMSE MAE RMSE MAE RMSE MAE
ARIMA (16) 0.2786 0.2219 0.1371 0.0617 0.5694 0.4724 0.8640 0.5740
LSTM (16) 0.1905 0.1489 0.0831 0.0325 0.2244 0.1724 0.6907 0.3663
LSTM (128) 0.2099 0.1671 0.0983 0.0437 0.3033 0.2283 0.8017 0.4376
Encoder-Decoder (16) 0.1438 0.0907 0.0774 0.0296 0.2499 0.1401 0.5983 0.2839
Encoder-Decoder (128) 0.1648 0.1012 0.0831 0.0303 0.4650 0.3036 0.6524 0.3117
Input-Attn-RNN (16) 0.1296 0.0762 0.0680 0.0282 0.2055 0.1447 0.5452 0.2564
Input-Attn-RNN (128) 0.1008 0.0897 0.0766 0.0362 0.4217 0.2881 0.5782 0.2502
Temp-Attn-RNN (16) 0.1097 0.0692 0.0646 0.0311 0.2220 0.1500 0.5414 0.2507
Temp-Attn-RNN (128) 0.1105 0.0770 0.0740 0.0334 0.3943 0.2998 0.5488 0.2563
TCN (16) 0.1156 0.0817 0.0628 0.0270 1.1845 0.9545 0.8279 0.5186
TCN (128) 0.1473 0.1136 0.0727 0.0329 1.1050 0.8696 0.8126 0.4567
LSTNet (16) 0.1277 0.0957 0.0582 0.0269 0.2322 0.1807 0.5733 0.2762
LSTNet (128) 0.1352 0.1020 0.0642 0.0312 0.2384 0.1868 0.6078 0.3296
DARNN (16) 0.0977 0.0644 0.0643 0.0232 0.1804 0.1442 0.5270 0.2439
DARNN (128) 0.1093 0.0778 0.0733 0.0435 0.3483 0.3250 0.5556 0.2525
DSTP (16) 0.0932 0.0614 0.0641 0.0227 0.1805 0.1414 0.5320 0.2459
DSTP (128) 0.0954 0.0670 0.0641 0.0235 0.1754 0.1384 0.5456 0.2525
DWNet 0.0891 0.0565 0.0575 0.0217 0.1702 0.1371 0.5015 0.2362
&e window size of baseline methods is set to 16 and 128, and the short window size and long window size of DWNet are set to 16 and 128, respectively.

Table 2: MAPE and SMAPE performance comparison among different methods and datasets (best result is displayed in boldface).

Models
SML 2010 Human Sports EEG Energy

MAPE (%) SMAPE (%) MAPE (%) SMAPE (%) MAPE (%) SMAPE (%) MAPE (%) SMAPE (%)
ARIMA (16) 123.0993 62.0098 22.3507 18.4392 159.6348 83.7905 178.4365 77.4287
LSTM (16) 78.9095 45.0082 17.4439 13.9803 80.3427 56.9819 163.9849 65.8066
LSTM (128) 83.1021 49.5439 17.9035 12.0033 87.5609 63.5271 176.3415 69.5442
Encoder-Decoder (16) 70.7142 43.0760 13.3326 9.5610 66.4635 38.5606 170.0863 69.3110
Encoder-Decoder (128) 78.9981 50.5022 15.7987 10.0923 79.3445 40.2327 181.7583 76.1764
Input-Attn-RNN (16) 61.1121 30.0997 11.7831 7.9462 41.8856 32.4032 145.8688 67.5386
Input-Attn-RNN (128) 68.9089 35.3459 12.0034 7.9897 41.4628 29.7608 152.3287 64.7685
Temp-Attn-RNN (16) 54.3435 32.8703 11.2627 7.2110 40.8683 29.0871 140.6838 56.0774
Temp-Attn-RNN (128) 57.8065 31.9911 11.4980 7.1153 45.8705 30.0085 128.0644 59.3527
TCN (16) 83.2350 49.5797 18.5920 11.0097 675.9030 131.4202 258.1707 93.9882
TCN (128) 85.4479 67.3689 14.6141 10.7326 995.0083 133.4580 265.3023 100.9782
LSTNet (16) 50.5956 29.6186 13.0975 8.6524 46.9208 34.3753 135.8396 68.8810
LSTNet (128) 83.2999 46.3060 13.3192 9.3698 50.0573 41.5482 140.2021 72.9974
DARNN (16) 43.1275 28.9558 11.9568 8.0686 36.4658 26.6514 123.0556 59.8798
DARNN (128) 45.2110 33.1612 11.8951 7.4177 33.8550 27.1255 139.0686 64.3326
DSTP (16) 40.6946 24.5261 11.7359 7.1343 34.5063 22.7594 138.8959 59.8884
DSTP (128) 36.2600 24.8048 11.7928 7.3406 35.1179 24.0093 142.8744 56.9903
DWNet 31.5764 23.0888 10.3833 7.0483 31.3287 20.6706 82.1119 52.5880
&e window size of baseline methods is set to 16 and 128, and the short window size and long window size of DWNet are set to 16 and 128, respectively.
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sequence processing module, it is impossible to outperform
the state-of-the-art methods in time series prediction.

5.4. Time Complexity. &e time efficiency of deep neural
networks is also an evaluation metric that needs to be
considered. In this section, we compare the time efficiency of
DWNet and baseline methods. In this experiment, we set T

to 16, Tl to 128, Ts to 16, and fixed other parameters. We
experimented on Human Sports and EEG datasets and
recorded the time (in seconds) spent in 10 epochs. &e
results are shown in Figure 4. We can observe that, with
more attention modules, the time spent by the model
gradually increases. Input-Attn-RNN and Temp-Attn-RNN
have only one attention module: one is spatial attention and
the other is temporal attention, but the amount of com-
putation is essentially the same. Temp-Attn-RNN’s training
time is slightly longer than Input-Attn-RNN, but it is far less
than the DARNN that both attention modules have. DSTP
has two attention modules in the Encoder part and one
attention module in the Decoder part, so the training time
spent is longer than DARNN. TCN is superior to fewer
parameters and the characteristics of parallel processing and
has a very large advantage in time spent. It takes the least
time in both two datasets. In DWNet, there are two attention
modules and a long sequence processing module (imple-
mented by TCN). &erefore, DWNet is inferior to DARNN
in terms of time efficiency and even worse than TCN.
However, DWNet has stronger time series forecasting ca-
pabilities than DARNN and TCN and is more suitable for
situations that require high accuracy rather than low time
consumption.

6. Conclusion

In this paper, we propose a dual-window deep neural net-
work (DWNet) to make good use of the long sequence for
time series prediction. &e dual-window mechanism splits
the end of a sequence as a short sequence and treats this
sequence as a long sequence. &e long sequence processing
module in DWNet can extract historical information from
long time series, and the short sequence processing module
obtains recent information from short time series. &ese
allow the model to learn both long-term dependence and
short-term of the sequence. Our model outperforms the
state-of-the-art methods in four datasets. In the future, we
are going to perform model compression and reduce the
model running time. Moreover, we will improve the long
sequence processing module and enhance its stability,
thereby enhancing the performance of DWNet.
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Figure 3: Performance of different methods in Human Sports and EEG. (a) RMSE and MAE versus different methods over Human Sports.
(b) RMSE and MAE versus different methods over EEG.
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Data Availability

&e Human Sports dataset is available from Hangzhou
Dianzi University’s fitness club. Due to personal privacy,
data cannot be made publicly available. &e remaining
datasets analyzed during the current study were derived
from the following public domain resources: https://archive.
ics.uci.edu/ml/datasets/SML2010 https://archive.ics.uci.edu/
ml/datasets/Appliances+energy+prediction https://archive.
ics.uci.edu/ml/datasets/EEG+Steady-
State+Visual+Evoked+Potential+Signals.
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