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Nuclear fusion is the process by which two or more atomic nuclei join together to form a single heavier nucleus. )is is usually
accompanied by the release of large quantities of energy.)is energy could be cheaper, cleaner, and safer than other technology currently
in use. Experiments in nuclear fusion generate a large number of signals that are stored in huge databases. It is impossible to do a
complete analysis of this datamanually, and it is essential to automate this process.)at is whymachine learningmodels have been used
to this end in previous years. In the literature, several popular algorithms can be found to carry out the automatic classification of signals.
Among these, ensemble methods provide a good balance between success rate and internal information about models. Specifically,
AdaBoost algorithm will allow obtaining an explicit set of rules that explains the class for each input data, adding interpretability to the
models. In this paper, an innovative approach to perform an online classification, that is, to identify the discharge before it actually ends,
using interpretablemodels is presented. In order to evaluate and reveal the benefits of rule-basedmodels, an illustrative example has been
implemented to perform an online classification of five different signals of the TJ-II stellarator fusion device located in Madrid, Spain.

1. Introduction

Energy is a crucial element for the subsistence of our modern
civilization. Almost all human activities require energy to
work. )is requirement is increased year after year, espe-
cially due to the growing population, which is estimated by
about 10 billion people in the middle of this century [1].
Nowadays, fossil fuels are the main source of energy because
of their relatively low cost of production and high energetic
capacity. However, they are not a long-term option. Al-
ternatives like renewable energies are increasing their par-
ticipation in modern life. However, the current technology
of renewable sources is still not able to supply all energy
needed [2, 3].

On the contrary nuclear sources can provide great
quantities of energy. Although fusion energy is still devel-
oping, its potential is enormous, even compared with nu-
clear fission. Nuclear fusion is the process by which two or
more atomic nuclei join together to form a single heavier

nucleus. )is is usually accompanied by the release of large
quantities of energy. Fusion is the process that powers active
starts, the hydrogen bomb, and some experimental devices.
Nuclear fusion could be cheaper, cleaner, and safer. Fusion
power would provide much more energy than any other
technology currently in use, and the fuel required for fusion,
mainly deuterium, exits abundantly in the oceans. Fusion
could, in theory, supply all the energy needs of the world for
millions of years [4, 5].

Achieving full control of the energy generated by nuclear
fusion devices involves an analysis over huge databases with
thousands of signals that is impossible to do it manually.
)is amount of data implies performing the analysis (e.g.,
finding significance or regular patterns) in high dimensional
spaces and it is essential to automate the process using
machine learning [6–9]. To this end, we can find several
algorithms in the literature in order to perform pattern
recognition in an automatic way. In the context of the
pattern classification problem, the most popular algorithms
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are Support Vector Machines and Neural Networks; both
have shown high performance in previous applications in
fusion [10–12], but with an important inconvenient: these
algorithms produce black-box models, where it is not
possible to obtain explicitly a simple mathematical rela-
tionship that outputs the classification.

)e aim of this article is to present a new approach that
combines the pattern (waveform) classification online with
internal information about the decision model (i.e., inter-
pretability). In the literature, there are several examples of
using black-box models to automate the classification
problem. )e main reason for this is the high success rates
reported in different topics such as nuclear fusion [12–14].
However, a black-box model does not give us any hint about
the reason for the classification; for example, we are not able
to know what the most important input variable is involved
in the decision.

In this sense, ensemble methods provide a good balance
between success rate and internal information about the
model [15, 16]. Particularly, the AdaBoost algorithm allows
obtaining an explicit set of simple rules that outputs the class
of the signal from the input data [17]. Such property adds
interpretability to the models, which could be useful to
understand the reason for the classification process and,
ultimately, for improving knowledge of the underlying
physical phenomenon. )is fact will allow a much more
precise adjustment of the obtained models.

)e main contributions of this article are as follows: (1)
the waveform classification using ensemble methods gen-
erate rules-based models (if-then rules) that are not black
boxes and could be useful to understand the entire process of
the plasma discharges in nuclear fusion devices and (2) the
classification system of waveform works online, which
implies that we do not need to wait until the discharge
finishes to obtain the class from the input data.

)e rest of the paper is structured as follows: Section 2
introduces some basics aspects of the Nuclear Fusion En-
ergy, the AdaBoost algorithm, and the signals used. Section 3
presents the offline and online approaches to classify the
signals. A brief analysis of the models and features obtained
is also presented. Finally, Section 4 summarizes the main
conclusions.

2. Background

2.1. Nuclear Fusion Energy. In order to reproduce on the
Earth the fusion power, some fusion reaction can be used.
One of the most important is the deuterium-tritium cycle
[18], which release 17.58MeV as follows:

2
1D+

3
1T⟶

4
2He(+3.52MeV)+

1
0n(+14.06MeV). (1)

In a fusion device, the reaction is produced at very high
temperatures, about 150 million degrees Celsius. To this
temperature, the matter inside of fusion devices is found like
plasma, which is a state of matter similar to gas with a
portion of its particles ionized. Magnetic fields are used to
confine plasma in the shape of a torus. )e most common
configurations for magnetic confinement of plasma are

stellarators and tokamaks. Figure 1 shows a simple and
general scheme of the process of generating electrical energy
from the nuclear fusion. )e reactor uses deuterium (D) and
tritium (T) to produce the reaction. )e water is heated by
the energy of the reaction and it feeds a turbine generator
that produces the electricity.

)e International )ermonuclear Experimental Reactor
(ITER) is an international nuclear fusion research and en-
gineering project, which is currently building the world’s
largest and most advanced experimental tokamak nuclear
fusion reactor at the Cadarache (France) [18]. ITER is ex-
pected to demonstrate that more energy is obtained than is
used to initiate the fusion process, something that has not
been achieved by any experimental fusion reactor. After
ITER, the first commercial demonstration fusion power
plant, named DEMO [19], will be intended. Currently, there
are many experimental fusion devices in operation.)e Joint
European Torus (JET) [20] is an experimental tokamak
reactor located in Oxfordshire (UK). It is currently the
largest facility of its kind in operation. TJ-II [21] is a medium
size stellarator located at CIEMAT in Madrid (Spain). DIII-
D is another tokamak machine developed by General
Atomics in San Diego (USA) [22].

Experiments on fusion reactors are carried out by
producing discharges or shot, in which plasma exists inside
the torus. )e duration of the shot is normally tens of
seconds. ITER would keep the shot for about 30 minutes.
During the discharges, many diagnostics around the reactor
acquire data at high sampling frequencies. About 10 GBytes
per discharge can be acquired in JET [20] (ITER could
storage 1 TByte per shot). Bolometry, density, temperature,
and soft X-rays are just some examples of the thousands of
data sets acquired during a discharge. Huge databases, with
an enormous amount of data, are a common situation in
experimental fusion reactors.

However, nowadays only 10% of the generated data is
processed, while the rest is not processed at all. )erefore, in
order to achieve fusion energy as a clean, inexhaustible, safe,
and cheap energy source, the current databases of experi-
mental devices (tokamaks and stellarators) should be ana-
lyzed completely. Performing complete analysis will involve
an optimal operation planning of ITER and, in turn, will be
basic for a successful design of DEMO. For that reason, this
project proposes the use of advanced pattern recognition
and machine learning techniques in order to analyze in a
faster and more efficient way massive fusion databases.

In this paper, the AdaBoost algorithm is used to build a
rule-based model to classify five different waveform classes
of the TJ-II stellarator. )e plasmas in TJ-II are produced
and heated with ECRH (2 gyrotrons, 300 kW each, 53.2GHz,
2nd harmonic, X-mode polarization) and NBI (300 kW)
[21]. Figure 2 shows a view of the TJ-II device.

2.2. AdaBoost Algorithm. )e adaptive Boosting algorithm
(AdaBoost) was proposed by Yoav Freund and Robert
Shapire [17, 24]. AdaBoost is a general method to obtain a
strong classifier (in our case a rule-based model) from a set
of T weak classifiers (also called hypotheses, or rules in our
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case). )is algorithm takes as input a set S � F, y􏼈 􏼉, where F

is a features vector of the signal that is going to be classified,
y is the label of class for each signal (+1 or −1), and m is the
total number of signals. Note that ht is a rule, and T rep-
resents the number of rules that composes the rule-based
model. Algorithm 1 is the pseudocode that shows the
implementation of this algorithm.

)e basic idea of boosting is to select the best weak (and
simple) classifier after each iteration.)e hypothesis selected
is weighted according to its capacity to classify the training
set correctly. Samples that were not correctly classified are
also weighted in order to look for a suitable hypothesis for
them in the next iteration. AdaBoost uses exponential error
loss as an error criterion. )e final model corresponds to a
weighted sum of the selected weak hypotheses. )e most
important issue is that the resulting model is based on if-else
rules, which means that the model is not based on a black-
box type model. )is represents an advantage compared to
other classification algorithms [24].

In this way, AdaBoost can be used in a straight forward
manner with signals. For example, a simple rule could be to
predict a class if the average of the last 30 milliseconds is
greater than a threshold. )us, we can use if-then sentences
such as if (avg (signal)> threshold) then +1, else –1 as a weak
rule ht (as in lines 9 and 10 of the pseudocode above). )e
output of the AdaBoost classifier will be finally the sign of the
weighted sum of T rules (line 18 of the pseudocode) such as

in equation (2). Note that αt corresponds to the importance
or weight of each class:

Class(F) � sign 􏽘
T

t�1
αtht · (F)⎛⎝ ⎞⎠. (2)

)e algorithm can be easily extended for a multiclass
problem (more than two classes) using the approach the one
versus the rest, which implies building a model to classify the
waveforms of a particular class (+1) versus the waveforms
that belong to a different class (−1). )is process is repeated
in order to build one classifier for each class. For example, in
[24], there is a detailed explanation about fundamental
concepts of AdaBoost. In [11, 25], there are good descrip-
tions about implementing classifiers for two or more classes
in nuclear fusion databases combined with other algorithms
(autoencoder and wavelet).

Figure 3 shows an illustrative example of the AdaBoost
algorithm from [26], which is a previous work of the authors.
)ere are seven samples of two classes (red circle and blue
cross) in the upper image. Let us assume that a new sample
located at (3.5; 3.0) has to be classified in one of the two
classes. We can use the seven samples to build (train) a
supervised data-driven model to predict the class of the new
sample by using AdaBoost. )e feature vectors are the re-
spective Cartesian coordinates x1 and x2. After some iter-
ations, the new sample is classified as a cross. )e image
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Figure 1: Electrical energy produced from fusion.

Figure 2: )e TJ-II device [23].
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below shows the result of testing the AdaBoost model for 500
new samples. Interested readers can find more technical
details in the literature.

2.3.TJ-IIWaveforms. )edata generated by the experiments
of the TJ-II device is stored in the relational database called
TJ2RDB. )is database allows searches to find shots with
particular properties and to do scaling studies. More general
information about this database can be found in [27, 28].

To illustrate the complexity of the data used for this
work, we show the waveform of one of the signals involved
in this research. Figure 4 shows the signal ECE7 for 200
shots. As it can be seen, for the same signal, the shape of the
waveform is very different from a shot to another one. )is

implies that the classification of these kinds of signals can be
a difficult task if it is carried out manually.

In order to evaluate and reveal the benefits of this ap-
proach, we have implemented a proof-of-concept using an
illustrative example of the online classification for five dif-
ferent waveforms. )is explanatory classification problem
has been selected because the proposed approach can be
easily compared with other previous works, where black-box
algorithms have been implemented.

Figure 5 shows the temporal evolution of the 5 wave-
forms used to test the proposed approach in this work. From
top to bottom and from left to the right, the waveforms
(classes) are ECE7, GR, GR2, HALFAC3, and IACCEL1.

Table 1 presents a brief description of the selected TJ-II
signals. Note that the selection of other signals might provide

(1) Input: S � (Fi, yi), ∀i � 1 . . . m􏼈 􏼉

(2) #S: Training set example
(3) #D1: Initial weight distribution
(4) #m: Size of the training set
(5) #yi ∈ −1; +1{ }

(6) D1(i) � 1/m, ∀i � 1 . . . m

(7) #T rules that compose the rule-based model
(8) for t:� 1 to T do
(9) #Get weak hypothesis ht: F⟶ −1, +1{ }

(10) ht � GetWeakHypothesis(F, Dt)

(11) et � 􏽐i:ht(Fi)≠yi
Dt(i)

(12) αt � (1/2)ln((1 − et)/et)

(13) #Update Dt distribution
(14) Dt+1(i) � Dt(i)exp(−αtyiht(Fi))/Zt, ∀i � 1, . . . , m

(15) #Zt: Normalization factor Dt+1 is a distribution:
(16) #Zt � 􏽐

m
i�1 Dt(i)exp(−αtyiht(Fi))

(17) end for
(18) return hypothesis combination: C(F) � 􏽐

T
t�1 αtht(F)

(19) end AdaBoost

ALGORITHM 1: AdaBoost algorithm.
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Figure 3: (a) Two classes (training samples). (b) Classification of 500 new samples.
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different results to those presented here, but the approach is
enough general to obtain a classification with similar suc-
cessful rates.

Finally, note that a supervised training scheme requires a
previously labelled data set, and since in this context each
signal is acquired by a separated sensor system, all the labels
are known when data is stored. In a different context, the
labelling process could imply the assistance of many spe-
cialists to obtain such data sets.

3. Waveforms Classification

)e waveform classification is developed using AdaBoost
with two approaches: (1) offline and (2) online. In the offline
approach, the obtained model uses the entire signal to

perform the classification, which involves the classification is
done after the discharge has finished. On the other hand, a
sensitivity analysis was also performed to select a reduced set
of features in order to classify the waveform before it actually
finishes, which could be very interesting for real-time ap-
plications. For comparison purposes, the rule-based model
has been tested with signals used in previous works.

3.1. Offline Classification. For the offline approach, the
AdaBoost algorithm has been implemented to classify the
TJ-II waveforms using all the samples of the discharge. In
this case, 340 waveforms have been used in total (68
waveforms for each class). Each entire waveform is
resampled to 1024 samples to form the feature vector (F) in

0 50 100 150 200 250 300 350
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–0.5

0
Signal: ECE7

Figure 4: )e plot depicts amplitude versus time (ms) of the ECE7 signal for 60 random shots.
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Figure 5:)e plot depicts amplitude versus time (ms) of the five TJ-II waveforms classes: (a) ECE7, (b) GR, (c) GR2, (d) HALFAC3, and (e)
IACCEL1 described in Table 1.
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order to feed the AdaBoost algorithm. Finally, AdaBoost will
output a rule-based model (AdaBoost model) that allows
classifying a new waveform. Figure 6 shows the block dia-
gram of the implemented stages.

Table 2 shows three rules (ht) and their associated
weights (αt) of the obtained rule-based model to classify GR
signals (class 2). Note that the features F578 (magnitude of
GR signal at sample 578), F842 (sample 842), and F1024
(sample 1024) are used to perform the classification.

In the case of class 3 (GR2 signal), the classification can
be performed by using only the following rule: if
(F1 <−1.151) then +1 else −1, which implies that using only
the first feature of a discharge (F1), the approach is able to
classify GR2 signals successfully.

In order to evaluate the model, we split the data into two
subsets (cross-validation). )e training stage was carried out
with 60% of the data set (205 waveforms for each of the 5
classes) while 40% of the data set was used for the test stage
(135 waveforms for each class).

Table 3 shows the results of the offline classification of
the 5 types of signals. As it can be seen, the results are
encouraging. All the success rates are above 93%.

)e average success rate of the ensemble model is up to
98%, improving the results of previous works. In [25], a
Wavelet Transform with Support Vector Machines
(WT+ SVM) [25], the results were up to 92%.More recently,
in [11], a Stacked Autoencoder (a type of Neural Network) in
combination with Support Vector Machines (NN+ SVM),
the results were up to 94%.

One interesting thing about the proposed approach is the
ability to see the importance of each feature to perform the
classification. Figure 7 shows the features selected (samples)
by the algorithm to classify the ECE7 signals. )e blue line
represents shot and red circles represent the features used to
classify this signal.

)e size of the circles is proportional to the importance
of the rule (αt) that uses the feature. As it can be seen, the
most important values are located before sample 200, which
implies that some signals could be classified at the beginning
of the discharge; that is, an online classification could be
performed.

Based on the previous results, the idea of online clas-
sification came up. In this way, it is not necessary to wait
until the end of the discharge in order to perform the
classification. )e next section presents the online classifi-
cation algorithm.

3.2. Online Classification. )is approach starts the classifi-
cation at the very beginning of the discharge. First, the signal
is preprocessed in sliding windows obtained by grouping 10

consecutive samples and taking only one representative
sample for each window. In this way, the signal is reduced by
a factor of 10. )en, the feature extraction stage is applied to
obtain some specific characteristics of the signal that helps in
the classification. Figure 8 shows the block diagram of the
online approach.

Figure 9 shows an explanatory diagram of the algorithm.
)e red solid line represents the signal that is being analyzed.
)e blue dashed rectangle represents the sliding window,
which contains the segment of the signal analyzed at the
current iteration.

)en, the four features of this window are obtained:
average value (F1), minimum value (F2), maximum value
(F3), and, finally, slope value (F4), which is calculated by
performing a least squares adjustment. After that, the
AdaBoost model classifies the signal into one of the five
classes. When the result of the AdaBoost is three consecutive
positive values (+1), the signal is classified as this class. In
this example, the signal is classified as HALFAC3 (Class 4) as
is represented by the red dashed rectangle.

Similar to the offline case, we can easily obtain the at-
tributes used by the algorithm to perform the classification.
Table 4 shows the features used for each class. Note that
classes 1, 2, and 5 use only three features.

Table 5 presents the confusion matrix that shows the
results of the online classification of the five classes. Rows
represent the class that is being classified and the columns
represent the predictions of the classification for the actual

Table 1: TJ-II waveforms.

Signal Description Class Samples
ECE7 Electron cyclotron em. 1 500
GR First gyrotron 2 500
GR2 Second gyrotron 3 500
HALFAC3 Hα line intensity 4 500
IACCEL1 Neutral beam injector 5 500

Signal Feature
extraction

AdaBoost
model ClassResampled

signal

Figure 6: Block diagram of the offline application.

Table 2: Example of rules obtained to classify GR signals.

ht αt

if(F578 < 2.127) then + 1 else − 1 0.3726
if(F842 < 2.108) then + 1 else − 1 0.3782
if(F1024 < 0.131) then + 1 else − 1 0.5675

Table 3: Results of the classification of the 5 signals.

Signal Success rate (%)
ECE7 99.18
GR 98.35
GR2 100
HALFAC3 93.83
IACCEL1 100
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signal. As it can be seen, almost all the 27 tested discharges
for each class are correctly classified. )is leads to the fact
that the average success rate is over 99%.

Table 6 shows the time fraction of the discharge required
to perform the online classification of the five classes for 27
randomly selected shots. )e second column is the average

(in percentage) of time fraction for all shots to carry out the
classification. )e third column is the standard deviation of
the time faction (in percentage) needed to make the clas-
sification. )e fourth and fifth are the minimum and
maximum values. As it can be seen, the algorithm takes more
time to classify the class HALFAC3 (0.23%) of the signal,

0 100 200 300 400 500 600
Samples

700 800 900 1000

Sampled signal

Figure 7: Features selected (samples marked as red circles) by the AdaBoost algorithm to perform the classification of ECE7 signals
(Class 1).

Signal

Preprocessing Feature
extraction 

Class

Sliding
window

AdaBoost
model 

Avg, min  
max, slope

Figure 8: Block diagram of the online application of the approach.
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Figure 9: Diagram of the method.
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which is a good result because this value is still short. )e
standard deviation is also short, which means that all the
signals are classified with a small initial segment of each
signal. )e minimum value indicates that, for all classes, the
algorithm never classifies a signal before 0.08% of the time.
)emaximum value indicates that the algorithm can classify
all the signals before 1.21% fraction of the entire signals,
which is a very good result.

)e experiments were carried out on a PC with an Intel
Core i7-8750H, 2.2GHz, 16GB of RAM, andUbuntu 18.04.1
LTS operating system. For this configuration, the classifi-
cation process time of each sliding window is less than 10
milliseconds (about 1ms for feature extraction and less than
9ms). Considering the nature of the rule-based model, this
time could be clearly reduced when using embedded
hardware such as field-programmable gate array (FPGA) or
Application-Specific Integrated Circuit (ASIC).

4. Conclusions

)is article proposes two approaches to perform a classifi-
cation of five TJ-II waveforms using the ensemble algorithm
AdaBoost. )e first method is carried out in an offline
manner and the signals are resampled to obtain distinctive
attributes in the feature extraction stage. )ese features are
translated into AdaBoost rules to classify the signals. With
this method, the classifications can achieve high success rates
and the classifiers are built with explicit relationships be-
tween features and rules of the AdaBoost algorithm, which
allows designers to understand better the physical

underlying phenomenon. In the second approach, the
classification is made for performing online classification.
Firstly, the signal is preprocessed in sliding consecutive
windows. )en, the feature extraction stage is performed to
obtain the average, the minimum, the maximum, and the
slope of the signal. )ese features are translated into rules of
the AdaBoost algorithm that is capable of classifying the
signals. )e main advantage of this approach is that we do
not need to wait until the discharge has finished in order to
classify, which means that the classification can be per-
formed online. Almost all the 27 tested discharges for each
class are correctly classified. )e average success rate is over
99%. )e results show that the online classification can be
performed by using only a very small fraction of the
discharge.
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