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,e aim of this numerical research is to study the stagnation point flow of the electrical magnetohydrodynamicmicropolar nanofluid
with slip conditions past a stretching sheet. ,e phenomenon of linear thermal radiation, Ohmic and internal heating, has also been
considered in the energy equation.,e modelled PDEs are converted into ODEs via similarity transformation, and converted ODEs
are tackled via the shooting technique. ,e features of assorted parameters on the axial and angular velocities and energy and
concentration fields are sketched.,e numerical values of the Sherwood and Nusselt numbers have been computed numerically and
displayed in the form of tables. Our analysis shows that the heat transfer rate is decreased as the thermal slip parameter and the
diffusion slip parameter are enhanced.,e present study illustrates that the energy and concentration distribution are decreased with
each of the mass free convection parameter, stagnation parameter, and thermal free convection parameter.

1. Introduction

,e phenomenon of transfer of heat, which has significant
application in many engineering and industry disciplines, is
affected positively by the implementation of an appropriate
magnetic field. ,e investigation of magnetohydrodynamic
flow past a heated surface has gained significant attention
due to its vast applications in engineering problems, i.e.,
magnetohydrodynamic power generators, petroleum in-
dustries, and crystal growth. Swedish scientist Alfven [1] was
the first to introduce the magnetohydrodynamic fluid flow.
He won the Nobel Prize in Physics for his work on MHD in
1970. He described the class of magnetohydrodynamic
waves, which are now known as Alfven waves. Zheng et al.
[2] reported the magnetohydrodynamic 2-D (dimensional)
flow past a porous shrinking surface with slip conditions

with conclusion that an acclivity in the shrinking parameter
enhances the thermal boundary layer. By considering the slip
effects in a porous medium, Ullah et al. [3] explored the
magnetohydrodynamic (MHD) Casson fluid and noticed
that boosting the unsteadiness parameter enhances the wall
shear stress. Rahbari et al. [4] examined the magnetohy-
drodynamic Maxwell fluid flowing through parallel plates
and determined that increase in the Deborah number in-
creases the velocity. By investigating heat transfer in the
magnetohydrodynamic flow past a radially shrinking/
stretching sheet, Soid et al. [5] concluded that dual solutions
exist only in case of suction and for small values of magnetic
parameters. Decline in surface drag due to increment in the
squeezed flow parameter in Carreau fluid with thermal
radiation and magnetohydrodynamic effect past a sensor
surface was reported by Atif et al. [6]. Transverse
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magnetohydrodynamic effect on nonlinear stretching sheet
was ascertained by Ramana et al. [7]. ,ey used modified
Fourier flux law and concluded that the relaxation and
retardation time have opposite effects on the thermal profile.
For further studies, see [8, 9].

Stagnation point flow is one of the fields in which sci-
entists and engineers show keen interest. Some of the recent
studies include the following: For MHD viscoelastic nano-
fluid, the dual solution of stagnation point past a porous
stretching surface with radiation effect was reported by
Juosh [10]. It was found that an acclivity in the Deborah
number contributes to upsurge in the drag coefficient.
Impact of MHD on stagnation point flow of a nanofluid with
nonuniform thermal reservoir was analyzed by Rashid et al.
[11]. Pal [12] put light on magnetohydrodynamic stagnation
point flow with suction effect and reported that the Sher-
wood number was decreased as the Lewis number increased.
Bioconvective stagnation point of Maxwell nanofluid flow
past a convectively heated surface was reported by Abbasi
et al. [13]. ,ey observed that energy, concentration, and
density profiles were higher for nonconvective surfaces than
in convective heated surfaces. Lund et al. [14] performed the
stability analysis and reported the dual solution of MHD
stagnation point of Casson fluid.,eir main observation was
that the sign of the smallest eigenvalues shows that the first
solution was stable. Effect of solar radiation on MHD
stagnation point nanofluid flow was discussed by Ghasemia
and Hatami [15] with a key finding that the energy profile is
hiked as the Biot number is increased rapidly. ,e phe-
nomena of thermal radiation have much significance in the
transfer of heat and were discussed by many authors in the
literature [16–19].

Micropolar fluids can be characterized as fluids which
exhibit the micro-rotational effects and micro-rotational in-
ertia. Analysis of the micropolar fluids has been an active field
of interest for many researchers. ,is class of fluids possesses
certain simplicity and elegance in their mathematical for-
mulation which should appeal to mathematicians. ,e
micropolar fluids can support couple stress and body couples
only. Physically, they may represent adequately the fluids
consisting of dipole elements. Certain anisotropic fluids e.g.,
liquid crystals which are made up of dumbbell molecules are
of this type. In fact, animal blood happens to fall in this
category. Other polymeric fluids and fluids containingminute
amounts of additives may be represented by the mathematical
model underlyingmicropolar fluids. Eringen [20, 21], through
his pioneering work, invited the attention of the researchers’
community in this interesting area of fluid dynamics. Sui et al.
[22] investigated the nonlinear constitutive diffusionmodel in
the micropolar fluid with the main finding that both the
velocity and energy profiles are increased as the power ex-
ponent n is decreased from 1. Heat transfer of the free
convective micropolar fluid with heat source past a shrinking
sheet was noticed byMishra et al. [23].,ey observed that the
fluid motion is declined as the heat generation coefficient is
upsurged. Atif et al. [24] analyzed the bioconvective mag-
netohydrodynamic micropolar nanofluid with stratification
and reported that the density distribution decreases as the
density stratification and mixed number parameter are hiked.

Micropolar nanofluid flow with nonlinear convection and
multiple slip effects was examined by Zemedu and Ibrahim
[25] with concluding remarks that boosting the solutal
nonlinear convection parameter causes an increase in the
velocity.

,e heat transfer in base fluids like mineral oils, water,
and ethylene glycol is not as much effective as in nanofluids
[26–31]. Nanofluids have the ability to improve the heat
transfer properties. ,eir ability to move through capillaries
and microchannels without making any blockage in flow
makes them unique. By considering the induced magnetic
field, Atif et al. [32] investigated the magnetohydrodynamic
micropolar Carreau nanofluid and found that the angular
velocity is increased rapidly as the magnetic Prandtl number
increases. ,ree-dimensional Eyring–Powell nanofluid with
Arrhenius energy was reported by Taseer et al. [33]. Khan
[34] reported that nanoparticle dispersion reduces the
Nusselt number in a partially heated vertical annulus. For
a solutal-dominated regime, both Nusselt and Sherwood
numbers declined for micropolar nanofluid as reported by
Manaa et al. [35].

In recent years, researchers have paid serious attention to
electrical magnetohydrodynamics. Electrical magnetohy-
drodynamic stagnation point nanofluid with mixed con-
vection and slip boundary over a stretching surface was
scrutinized by Hsiao [36]. A major conclusion was that an
acclivity in either the electrical or the magnetic parameter
led to an upsurge in the temperature profile. Literature
review indicates that the EMHD stagnation point micro-
polar nanofluid with mixed convection and slip boundary
has not been investigated yet. In the present article, linear
thermal radiation, Joule’s heating, and heat source have also
been incorporated in the energy equation. In this study, four
aspects have been focused. First, the heat and mass transfer
of micropolar nanofluid are addressed. Second, the impact of
thermal radiation and electrical magnetohydrodynamics on
different profiles is examined. ,ird, the stagnation point
flow is analyzed. Fourth, the analysis of the mixed con-
vection and slip boundary conditions is performed. ,e
arising ordinary differential equations for the problem are
tackled through the shooting method. ,e influence of all
the prominent parameters is examined numerically and
displayed graphically.

2. Mathematical Model

An incompressible, 2D, mixed convection micropolar
nanofluid flow over a stretching sheet with slip effects has
been analyzed. By using Ohm’s law andMaxwell’s equations,
the continuity equation, linear and angular momentum, and
fluid energy and concentration equations have been for-
mulated. Joule’s heating, thermal radiation, and heat source
effects have also been considered in the energy equation.
C, C∞, T, and T∞ denotes the surface concentration, am-
bient concentration surface temperature, and ambient
temperature, respectively. ,e flow is assumed along the
x − axis which is considered to be in the upward direction,
whereas the y − axis is perpendicular to the sheet. A uniform
magnetic field B0 has been implemented towards
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the y − axis as illustrated in Figure 1. It is also assumed that
the magnetic Reynolds number is very small due to which
induced magnetic number is ignored.

In the light of the above assumption, the governing
equations of the modelled problem are as follows [36, 37]:
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,e related BCs are as follows:
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In equation (3), the Rosseland radiative heat flux qr is
given by qr � − (4σ∗/3κ∗)(zT4/zy). ,e spin gradient vis-
cosity is given by c � (μ + (k/2))j, where j � ]/a and k

represents the microinertia density and vortex viscosity,
respectively. For nondimensionlization, the following
transformation [36] has been considered:
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Continuity equation (1) is satisfied automatically, and
equations (2)–(5) yield the following:
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,e associated boundary conditions in the dimension-
less form are as follows:

f � S,

f′ � 1 + δ1f″,

g � 0,

θ � 1 + δ2θ′,

ϕ � 1 + δ3ϕ′

at η � 0,

f′ ⟶ 0,

g⟶ 0,

θ⟶ 0,

ϕ⟶ 0,

as η⟶∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (12)

Here, Pr � ]/α denotes the Prandtl number,
S0 � U2

∞(c + Lf″(0)
����
a3/]

√
)2/a2u2

w represents the stagna-
tion parameter, Ec � a2x2/Cp(Tw − T∞) denotes the Eckert
number, Nb � τDB(Cw − C∞)/] denotes the Brownian
motion parameter, K � k/μ represents the micropolar pa-
rameter, Gt � gxβt(Tw − T∞)(c + Lf″(0)

����
a3/]

√
)/a2Uw

represents the thermal free convection parameter,
M � σB2

0/aρ represents the magnetic number, E � E0/B0U

represents the electric field parameter, Nt � τDT

(Tw − T∞)/]T∞ denotes the thermophoresis parameter, S �

(c/a) + (L/a)f″(0)
����
a3/]

√
denotes the slip parameter, Sc �

]/DB denotes the Schmidt number,
Gc � gxβc(Cw − C∞)(c + Lf″(0)

����
a3/]

√
)/a2Uw denotes the

mass free convection parameter, Rd � 4σ∗T3
∞/kκ∗ denotes

the thermal radiation parameter, λ � Q0/a(ρCp) denotes the
heat generation coefficient, δ1 � L

���
a/]

√
represents the shear

stress parameter, δ2 � k1
���
a/]

√
represents the temperature

slip parameter, and δ3 � k2
���
a/]

√
represents the diffusion slip

parameter, where k1 and k2 are the slip parameters asso-
ciated with the reference temperature and concentration,
respectively.

3. Quantities of Interest

,e dimensionless Nusselt and dimensionless Sherwood
numbers are the most concerning quantities in engineering
and industries.
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In the nondimensional form, Nusselt and Sherwood
numbers are given by
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4. Solution Methodology

,e system of ODEs (8)–(11) along with BCs (12) is tackled
numerically by the shooting technique. Now, we introduce
ς1 � f, ς2 � f′, ς3 � f″, ς4 � g, ς5 � g′, ς6 � θ, ς7 � θ′,
ς8 � ϕ, and ς9 � ϕ′ as follows:
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Figure 1: Flow configuration.
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4.1. Code Validation. For the verification of the correctness
of the code, the results of the Nusselt and Sherwood numbers
which were presented by Khan and Pop [38] and Hsiao [36]
are successfully reproduced. Our simulations have a satis-
factory agreement with the already published results of Khan
and Pop [38] and Hsiao [36] in the literature which can be
seen in Table 1.

5. Results and Discussion

Table 2 is displayed to view the effect of the sundry pa-
rameters on the dimensionless Nusselt number and Sher-
wood number. It is observed that a boost in each of the
electric parameter E, slip parameter S, micropolar parameter
K, thermal radiation parameter Rd, the stagnation param-
eter S0, thermal free convection parameter Gt, diffusion slip
parameter δ3, andmass free convection parameter Gc, causes

an increase in Nusselt number, whereas it decreases for
a boost in each of the heat generation coefficient λ, shear
stress parameter δ1, magnetic parameter M, and the thermal
slip parameter δ2. ,e Sherwood number is hiked as each of
the material parameter K, magnetic parameter M, thermal
free convection parameter Gt, velocity slip parameter S,
electric parameter E, b mass free convection parameter Gc,
stagnation parameter S0, and heat generation coefficient λ,
and thermal radiation parameter Rd is boosted. However, it
diminishes as the diffusion slip parameter δ3, thermal slip
parameter δ2, and shear stress parameter δ1 are increased.

Figures 2–14 are sketched to study the variations oc-
curring due to dimensionless parameters in temperature
distribution θ(η). For all graphs of the temperature dy-
namics, the values of Rd � 1, K � Ec � Sc � 0.2, Pr � 10,
and M � λ � Nt � Nb � S � E � S0 � δ1 � δ2 � δ3 � Gt �

Gc � 0.1. Figure 2 is prepared to visualize the fluctuation in
the temperature distribution θ(η) in response to the vari-
ation in the magnetic effect M. ,e temperature of the fluid
is increased as M increases. ,is supports the general be-
haviour of the implementation of M. Resistance to the flow
of the fluid is increased as M increases due to which θ(η) is
enhanced. ,e temperature distribution θ(η) is diminished
as the stagnation parameter S0 is enhanced. ,is effect is
evident from Figures 3 and 4 demonstrated to view the effect
of Pr on temperature distribution θ(η). ,ese graphs in-
dicate that upsurge in the Prandtl number Pr causes de-
preciation in the thermal profile. ,ere is decline in the
thermal conductivity of the fluid due to which θ(η) is re-
duced. Fluctuation due to electrical parameter E in the
temperature is divulged in Figure 5. An increment in E

results in an enhancement in thermal profile. As the Lorentz
force is associated with the magnetic and electric field, it
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leads to an increment in the resistance causing the energy
distribution to enhance. ,e influence of the thermal ra-
diation parameter Rd on temperature distribution θ(η) is
chalked out in Figure 6. ,ese graphs reflect that an

enhancement in Rd increases the energy profile. To visualize
the behaviour of the thermophoresis parameter Nt on
temperature, Figure 7 is sketched, which shows that there is
an increment in θ(η) as Nt is hiked. Physically, in

Table 1: Comparison of the presently computed values of − θ′(0) and − ϕ′(0).

− θ′(0) − ϕ′(0)

Nt Nb [38] [36] Present [38] [36] Present
0.1

0.1

0.9524 0.9524 0.952371 2.1294 2.1294 2.129356
0.2 0.6932 0.6932 0.693173 2.2740 2.2740 2.273956
0.3 0.5201 0.5201 0.520081 2.5286 2.5287 2.528542
0.4 0.4026 0.4026 0.402584 2.5752 2.5752 2.795041
0.5 0.3211 0.3211 0.321059 3.0351 3.0352 3.034979

0.1

0.2 0.5056 0.5056 0.505580 2.3819 2.3819 2.381840
0.3 0.2522 0.2521 0.252156 2.4100 2.4100 2.409991
0.4 0.1194 0.1194 0.119406 2.3997 2.3997 2.399625
0.5 0.0543 0.0542 0.054254 2.3836 2.3836 2.383547

Table 2: Numerical values of − θ′(0) and − ϕ′(0) with Pr � 10 and Sc � 10.

K M S E Rd λ S0 δ1 δ2 δ3 Gt Gc − θ/(0) − ϕ/(0)

0.2 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.208651 2.024640
0.5 2.232818 2.036448

1.0

2.261914 2.050800
0.5 2.184588 2.084730
1 2.080667 2.150170
2 1.739265 2.272888

0.2 2.243757 2.041956
0.3 2.275876 2.058062
0.4 2.305543 2.073151

0.2 2.218326 2.024963
0.3 2.226200 2.025659
0.4 2.232293 2.026724

2 2.984161 2.071179
3 3.592600 2.106463
4 4.112293 2.133076

0.2 1.942647 2.096437
0.3 1.642765 2.176308
0.4 1.297555 2.266894

0.2 2.642305 2.309297
0.3 3.086188 2.579879
0.4 3.535021 2.835314

0.2 2.150432 1.993731
0.3 2.101926 1.968131
0.4 2.060676 1.946477

0.2 2.040919 2.040302
0.3 1.893540 2.054700
0.4 1.763684 2.067856

0.2 2.289550 1.628650
0.3 2.345048 1.362008
0.4 2.385455 1.170300

1 2.274822 2.057306
5 2.488543 2.166622
10 2.670723 2.263403

1 2.251821 2.045980
5 2.405905 2.124113
10 2.549245 2.199092
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thermophoresis, the particles apply force on the other
particles due to which particles from the hotter region move
towards the colder region. Larger values of Nt denotes more
application of the force on the other particles and as a result,
more fluid moves from the higher temperature region to the
colder region. Figure 8 shows that θ(η) is increased as the
Brownian motion parameter Nb increases. Physically, the
Brownian motion heats up the fluid and also aggravates the
particles away from the fluid regime and therefore a dec-
rement is seen in concentration profile. Figure 9 is illustrated
to view the effect of heat generation coefficient λ on θ(η),
which shows that θ(η) is hiked for escalating values of λ. ,e
viscous dissipation effect which is represented by the Eckert
number Ec on energy field is analyzed in Figure 10. It is
a number that represents the relation between the kinetic
energy and the change in enthalpy. It is noticed that
gradually boosting Ec leads to an increase in θ(η). Influence

of the dimensionless slip parameter S on θ(η) is presented in
Figure 11, and it shows that an upsurge in S encourages the
energy distribution θ(η) to decline. ,e influence of the slip
parameter δ2 which is associated with temperature on the
temperature field is chalked out in Figure 12. ,e energy
profile is found to be increasing as slip parameter δ2 goes up.
,e variation in the thermal profile due to the thermal free
convection parameter Gt is shown in Figure 13. ,e energy
distribution declined as the thermal free convection pa-
rameter Gt is hiked. Figure 14 depicts that the energy profile
is decreases as Gc is boosted.

Figures 15–23 have been outlined to study the fluctua-
tions in the concentration field ϕ(η) due to variation in the
governing parameters. For all the graphical presentations of
ϕ(η), we have considered Pr � 10,Nb � 0.3, Ec � Sc � K �

0.2, andM � Rd � 1, λ � Nt � S � E � S0 � δ1 � δ2 � δ3 �

Gt � Gc � 0.1. Figure 15 is given to study the impact of
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Figure 2: Variation due to M in θ(η).
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Figure 4: Variation due to Pr in θ(η).
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Figure 3: Variation due to S0 in θ(η).
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Figure 5: Variation due to E in θ(η).
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Figure 6: Variation due to Rd in θ(η).

Nt = 0.1
Nt = 0.3

Nt = 0.5
Nt = 0.7

21 1.5 2.5 30.50
η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ 
(η

)

Figure 7: Variation due to Nt in θ(η).
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Figure 8: Variation due to Nb in θ(η).
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Figure 11: Variation due to S in θ(η).
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Figure 9: Variation due to λ in θ(η).
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Figure 10: Variation due to Ec in θ(η).
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Figure 13: Variation due to Gt in θ(η).
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Figure 14: Variation due to Gc in θ(η).
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Figure 15: Variation due to S0 in ϕ(η).
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Figure 16: Variation due to E in ϕ(η).
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Figure 12: Variation due to δ2 in θ(η).
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Figure 17: Variation due to Sc in ϕ(η).
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Figure 18: Variation due to Nt in ϕ(η).
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Figure 19: Variation due to Nb in ϕ(η).
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Figure 20: Variation due to S in ϕ(η).
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Figure 21: Variation due to δ3 in ϕ(η).
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Figure 23: Variation due to Gc in ϕ(η).
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Figure 22: Variation due to Gt in ϕ(η).
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stagnation parameter S0 on ϕ(η). ,e concentration dis-
tribution ϕ(η) is diminished as the stagnation point pa-
rameter is enhanced. Figure 16 represents the graph of ϕ(η)

for growing values of E. From these curves, it is clear that
increasing electric parameter E diminishes ϕ(η). Figure 17
presents the role of Schmidt number Sc in the variation of
ϕ(η). ,e concentration field ϕ(η) is diminished as Sc is
rapidly increased. ,e effect of Nt on dimensionless con-
centration field ϕ(η) is reported in Figure 18. ,ese graphs
present that concentration field is enhanced as Nt is grad-
ually increased. Figure 19 is presented to view the fluctuation
in dimensionless ϕ(η) caused by the increase in Nb. An
increase in dimensionless parameter Nb causes a reduction
in ϕ(η). ,e impact of the variation of the dimensionless
velocity slip parameter S on the dimensionless ϕ(η) is shown
in Figure 20. ,ese curves indicate that with an increment in
the velocity slip parameter S, the dimensionless ϕ(η) de-
clined. Figure 21 depicts the graphs of the concentration
profile for various values of the dimensionless diffusion slip
parameter δ3. From these curves, it is noticed that an en-
hancement in the dimensionless diffusion slip parameter δ3
causes a decrease in ϕ(η). ,e fluctuation in the di-
mensionless concentration distribution due to the thermal
free convection parameter Gt is shown in Figure 22. ,e
concentration field is reduced as thermal free convection
parameter Gt is increased. Figure 23 depicts that ϕ(η) is
decreased as the mass free convection parameter Gc is
increased.

6. Concluding Remarks

In this study, two-dimensional free convection electrical
magnetohydrodynamic micropolar nanofluid is analyzed.
Some of the key observations are as follows:

(i) ,e energy field declined with an acclivity in the
stagnation parameter S0, slip parameter S, thermal
free convection parameter Gt, and thermal slip
parameter δ2

(ii) ,e Nusselt number is escalated for the increasing
values of slip parameter S, electric parameter E,
stagnation parameter S0, and thermal radiation
parameter Rd

(iii) ,e concentration field is diminished with an in-
crease in stagnation parameter S0, electric param-
eter E, diffusion thermal slip parameter δ3, and slip
parameter S

(iv) ,e Sherwood number is increased as slip param-
eter S, electric parameter E, heat generation co-
efficient λ, stagnation parameter S0, and mass free
convection parameter Gc are increased

Nomenclature

B0: Applied magnetic field
C: Fluid concentration inside the boundary layer
C∞: Fluid concentration outside the boundary layer
Cf: Skin friction coefficient
Cp: Specific heat

Cw: Concentration at wall surface
D: Coefficient of mass diffusion
DB: Brownian diffusion coefficient
DT: ,ermophoresis diffusion parameter
Ec: Eckert number
E: Electrical parameter
f: Reduced streamfunction
hw: Local surface heat flux transfer coefficient
j: Microinertia density
jw: Local mass flux
kf: ,ermal conductivity
K: Material parameter
M: Magnetic number
Nux: Nusselt number
Nt: ,ermophoresis parameter
Nb: Brownian motion parameter
N: Angular velocity
Pr: Prandtl number
qr: Radiative heat flux
Gt: ,ermal free convection parameter
qw: Heat transfer rate
Rd: ,ermal radiation parameter
Rex: Local Reynolds number
Sc: Schmidt number
T: Boundary layer temperature
Tw: Surface temperature
T∞: Ambient temperature
t: Time
u: Velocity in x direction
uw: Characteristics velocity
v: Velocity in y direction
vw: Stretching rate
S0: Stagnation parameter
S: Slip parameter
]: Kinematic viscosity
ρ: Fluid density
μ: Dynamic viscosity
σm: Electric charge density
θ: Dimensionless temperature
ϕ: Dimensionless concentration
c: Spin gradient viscosity
η: Dimensionless boundary layer thickness
δ1: Dimensionless shear stress parameter
δ2: ,ermal slip parameter
δ3: Diffusion mass slip parameter
(ρCp)p: Heat capacity of the nanoparticles
(ρCp)f: Heat capacity of the fluid
Gc: Mass free convection parameter.
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