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'is paper discusses how word-of-mouth marketing affects the profits of product sales in social network-based shopping under
good after-sales service. First, a new word-of-mouth communication model based on silent evaluation, positive evaluation, and
negative evaluation is proposed. Second, we use the way of increasing after-sales service to achieve high praise and thereby
maximize the expected profits. 'us, the proportion control problem of after-sales service investment is modeled as an optimal
control problem. 'ird, the existence of optimal control is proved, and an optimal control strategy for dynamic proportion of
after-sales service investment is proposed. Fourth, through data simulation of different real-world networks, it is verified that the
expected profits under the dynamic after-sales service strategy is higher than that under any uniform control strategy. Finally,
sensitivity analysis is performed to explore how different parameters affect the expected profits.

1. Introduction

With the boom of social networking, more and more
consumers are making purchase decisions based on word of
mouth (WOM). Nearly three-quarters (73%) of consumers
regularly recommend products to their friends, according to
an Accenture survey [1]. 'e rapid advancement of
e-commerce and logistics networks has changed the way of
shopping in China. Online shopping is characterized by easy
access to actual WOM. Compared with traditional adver-
tising strategies, WOM influence strategies cost less and
deliver more revenue [2–9].

In recent years, researchers have examined ways to
maximize product profits from different perspectives based
on WOM marketing. For example, the relationship be-
tween users was used to explore the impact of WOM
marketing on consumers [10–12]. Users’ WOM feedback

data was used to mine information that is conducive to
enterprises’ innovation or growth [13–15]. A dynamic
discount pricing strategy aiming at maximizing product
profits based on WOM marketing was proposed [16–18].
Using WOM as an epidemic, a framework was constructed
to discuss the impact of WOM on sales based on epidemic
models [19–21].

In recent years, social network-based shopping, typified
by shopping on WeChat, has emerged in China. 'e biggest
characteristic of this shopping lies in its reliance on social
networks for product sales. In particular, since the early
2020, when the COVID-19 outbreak caused a sharp drop in
customer visits and product sales in physical stores, more
andmore sellers have begun to set up shopping groups to sell
products on social networks such as WeChat. 'ese shop-
ping groups, which we call community buying groups, tend
to have the following characteristics:
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Members in such a group are often closely related, i.e.,
they may be members of the same company, neighbor
users, etc. 'is makes it easy to spread WOM among
different nodes within a social network, which directly
affects product sales. Since most customers are familiar
with each other, reviews are usually truthful and valid.
'erefore, positive WOM has a significant impact on
product sales.
Community group buying often involves repeat pur-
chases, and positive WOM, in particular, prompts
consumers to make repeat purchases. 'erefore, WOM
affects the initial purchase intention of customers.

After customers buy a product, their evaluation is
usually three-fold: silent, positive, and negative. Evi-
dently, positive WOM helps to increase the purchase
intention of the remaining customers, and negative
WOM reduces their purchase intention.

After-sales service works in two ways for enhancing
WOM. On the one hand, it encourages customers who
have been remaining silent to post more positive re-
views; on the other hand, it helps to reverse customers’
negative reviews and finally drive positive WOM
publicity.

We note that several studies have been conducted on
the positive and negative effects of WOM [22–26]. Based on
the cognitive dissonance theory and social support theory,
Balaji et al. [27] studied the roles of situational factors,
personal factors, and social network factors in determining
customers’ willingness to use social networking sites for
negative WOM communication. Verhagen et al. [28]
proposed a sender-oriented model to explore the effects of
emotions and negative online WOM on re-sponsorship
and switching intention. Dalman et al. [29] investigated
how high-equity and low-equity brands attract negative
WOM from consumers in the event of market failure.
Weitzl et al. [30] suggested that online care (i.e., messages
in response to online complaints) can mitigate com-
plainants’ adverse attributions of failure (i.e., track, con-
trollability, and stability).

Inspired by the epidemic model, this paper takes WOM
as a kind of epidemic and establishes a nodal dynamicWOM
propagation model. From the characteristics of community
group buying, it can be concluded that WOM has important
implications for product sales. However, community group
buying is small in scale and the profit it generates is limited.
Investing heavy resources to maintain WOM would be
costly. In this paper, we focus on how to dynamically invest
in after-sales service to maximize profits. 'e main con-
tributions are as follows:

First, a node-level model based on WOM marketing is
established to reveal the influence of WOM on con-
sumers’ purchase intention.
Second, on this basis, the dynamic control problem of
WOM through after-sales service is modeled as an
optimal control problem.

'ird, we prove that the model has optimal control and
obtain the optimal system for solving the model.
Fourth, by solving the corresponding optimal system,
some optimal control strategies are given, which are
then compared with uniform control. 'e comparison
demonstrates the superiority of optimal control strat-
egies over uniform control ones.
Finally, the influence of after-sales service on product
sales is further discussed through sensitivity analysis of
relevant after-sales service parameters.

'e remainder of the paper is organized as follows. In
Section 2, we establish a node-level Target-Buying-Refusing
(TBR) model based on WOM marketing and model the
dynamic after-sales service (DAS) problem as an optimal
control problem. In Section 3, we perform theoretical
analysis on the optimal control problem and give a dynamic
strategy for after-sales service investment. Some optimal
DAS strategies are given in Section 4. In Section 5, the
influence of some after-sales service parameters on expected
profits is further revealed. 'e concluding remarks are
drawn in Section 6.

2. The Modeling of the DAS
Investment Problem

In this section, we consider the WOM marketing problem
with DAS investment. In view of the sales activities involved
in community group buying, a DAS investment strategy is
developed in order to maximize profits for sellers. 'e
highlights of this section are as follows: (1) introducing basic
symbols and terms; (2) establishing a TBR model based on
WOM marketing; (3) modeling the DAS problem as an
optimal control problem.

2.1. Terms andNotations. Assuming the number of users for
a community group purchase is N, we let G � (V, E) denote
the topology of this network. Specifically,
V � (V1, V2, . . . , VN) represents the nodes of the network
and N is the number of nodes in the network; furthermore,
Eij � Vi, Vj􏽮 􏽯 ∈ E, which represents nodes Vi and Vj are
friends, so G is an undirected network; A � (aij)N×N rep-
resents the adjacency matrix of network G. When aij � 1, Vi

and Vj can share their reviews on products with each other.
Let the vector O(t) � (O1(t), O2(t), . . . , ON(t)) repre-

sent the state of N nodes in the network at time t. Assuming
that a product is sold in a finite time horizon [0, T], indi-
vidual users may have the following three states in com-
munity group buying: Oi(t) � 0, Oi(t) � 1, and Oi(t) � 2,
corresponding to target customers (who have not yet de-
cided whether to buy the product), buying customers (who
buy the product), and refusing customers (who refuse to buy
the product) at time t, respectively. Let
Ti(t), Bi(t), andRi(t) denote the expected probabilities of
node Vi being target customers, buying customers, and
refusing customers at time t, respectively:
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Ti(t) � Pr Oi(t) � 0􏼈 􏼉,

Bi(t) � Pr Oi(t) � 1􏼈 􏼉,

Ri(t) � Pr Oi(t) � 2􏼈 􏼉.

(1)

Note that Ti(t) + Bi(t) + Ri(t) � 1. Specifically, buying
customers are categorized into three groups in terms of
their evaluation: silent, positive, and negative. Let
Si(t), Pi(t), andNi(t) represent the expected probabilities
of buying customers who remain silent and give positive
and negative evaluations at time t, respectively.

To solve the WOM propagation problem with DAS
investment, we introduce the following assumptions:

Due to the shopping share of neighbor nodes who buy
the products, target customers become buying cus-
tomers with a probability of ρ on average
Due to the shopping share of neighbor nodes who
refuse to buy the products, target customers become
refusing customers with a probability of c on
average
For buying customers, α1, α2, and α3 represent the
probabilities of them remaining silent, giving positive
evaluation and giving negative evaluation; hence,
α1 + α2 + α3 � 1
Due to the positive WOM effect of buyers, target
customers become buying customers with a probability
of β1 on average
Due to the negative WOM effect of buyers, target
customers become refusing customers with a proba-
bility of β2 on average

'e above assumptions are independent of each other,
and the state transition diagram of the node is shown in
Figure 1. In practice, parameters ρ, c, α1, α2, α3, β1, β2 can be
estimated from the information of the network.

'e vector,

E(t) � (T(t), B(t), R(t)), (2)

represents the expected state of nodes in the network at time
t, where

T(t) � T1(t), T2(t), . . . , TN(t)( 􏼁,

B(t) � B1(t), B2(t), . . . , BN(t)( 􏼁,

R(t) � R1(t), R2(t), . . . , RN(t)( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩
(3)

For ease of understanding, a simple example is given.
Assume that there is a topological relationship between
network nodes, as shown in Figure 2, and the probability
that node 1 is a target customer is 1 at time t, i.e.,
T1(t) � Pr(O1(t) � 0) � 1. Suppose the adjacency matrix
of nodes in the network is

A �

0 1 1 1 0 0

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

'e probabilities of network nodes being in each state
are shown in Table 1.

Parameter values are shown in Table 2.
'en, the probability that node 1 is a buying node at

t + Δt is

B1(t + Δt) � Pr O1(t + Δt) � 1( 􏼁 � ρ􏽘
N

j�1
aijBj + β1α2 􏽘

N

j�1
Bj

� ρ a12 · B2 + a13 · B3 + a14 · B4( 􏼁 + β1α2 B1 + B2 + B3 + B4 + B5 + B6( 􏼁

� 0.1 · (0.7 + 0.7 + 0.2) + 0.02 · (0.7 + 0.7 + 0.2 + 0.6 + 0.2) � 0.208.

(5)

α1 α2 α3

Ti (t)

Bi (t)

Si (t) Pi (t)

Ri (t)

Ni (t)

j=1

j=1N

N

aijBj+β1α2

ρ

Bj

j=1
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aij Rj +β2 α3

γ
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Figure 1: State transition diagram of individual Vi at time t.
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'en, the probability that node 1 is a refusing node at t +

Δt is

R1(t + Δt) � Pr O1(t + Δt) � 2( 􏼁 � c 􏽘
N

j�1
aijRj + β2α3 􏽘

N

j�1
Bj

� c a12 · R2 + a13 · R3 + a14 · R4( 􏼁 + β2α3 B1 + B2 + B3 + B4 + B5 + B6( 􏼁

� 0.1 · (0.1 + 0.2 + 0.6) + 0.04 · (0.7 + 0.7 + 0.2 + 0.6 + 0.2) � 0.186.

(6)

'en, the probability that node 1 is a target node at t + Δt
is

T1(t + Δt) � 1 − 0.208 − 0.186 � 0.606. (7)

2.2. Dynamic TBR Model Based on WOM Marketing. 'e
TBR model based on WOM marketing to be derived later
conforms to the above assumption. 'e following system
gives an equivalent form of the exact TBR model:

dTi(t)

dt
� − ρ􏽘

N

j�1
aijBj(t) + β1α2 􏽘

N

j�1
Bj(t) + c 􏽘

N

j�1
aijRj(t) + β2α3 􏽘

N

j�1
Bj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦Ti(t),

dBi(t)

dt
� ρ􏽘

N

j�1
aijBj(t) + β1α2 􏽘

N

j�1
Bj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦Ti(t),

dRi(t)

dt
� c 􏽘

N

j�1
aijRj(t) + β2α3 􏽘

N

j�1
Bj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦Ti(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

1

3

2

4

5

6

Figure 2: A simple network topology.

Table 1: Probabilities of nodes being in each state.

Node number Probability of Ti Probability of Bi Probability of Ri

2 0.2 0.7 0.1
3 0.1 0.7 0.2
4 0.2 0.2 0.6
5 0.3 0.6 0.1
6 0.7 0.2 0.1
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under the initial condition E(0) � E0.
System (8) may be written in system as

dE(t)

dt
� f1(E(t)), 0≤ t≤T,

E(0) � E0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

2.3. Optimal ControlModeling of the DAS Problem. We refer
to the function θ � θ1(t), θ2(t)􏼈 􏼉, 0≤ t≤T, as a DAS
strategy. θ1(t) is the proportion of investment in the first
type of after-sales service, including the proportion of silent
users converted into positive reviews through cash back.
θ2(t) is the proportion of investment in the second type of
after-sales service, including the proportion of negative
reviews converted into positive ones by compensating users
for their losses. 'erefore, we assume that the DAS strategy
is

θ � θ1(t), θ2(t)( 􏼁 ∈ L[0, T]
2
|0≤ θ1(t)≤ θ1, 0≤ θ2 ≤ θ2, 0≤ t≤T􏽮 􏽯,

(10)

where L[0, T]2 represents the set of all Lebesgue integrable
functions defined on [0, T] [31].

It is widely known that profits are closely associated with
the sales of products. 'eoretically, the higher the sales of
products is, the more negative reviews there will be. In
WOM-oriented community group buying, in particular,
negative reviews will directly affect the sales of products,
resulting in a decline in profits. 'e proportion of positive
WOM can be increased by investing in after-sales service.
However, such investment tends to increase the cost and
reduce the profit. In view of this, this paper intends to es-
tablish a dynamic proportion of investment in after-sales
service to maximize the final profit.

Remark 1. Assuming that the profit per unit of a product is
c1, the total profit from selling the product at time [0, T] is

L1(θ) � 􏽚
T

0
􏽘

N

i�1
c1Bi(t)dt. (11)

Remark 2. Assuming that the investment proportion of the
first type of after-sales service is θ1(t) and its average unit
cost is c2, the cost of after-sales service at time [0, T] is

L2(θ) � 􏽚
T

0
􏽘

N

i�1
c2α1θ1(t)Bi(t)dt. (12)

Remark 3. Assuming that the investment proportion of the
second type of after-sales service is θ2(t) and its average unit
cost is c3, the cost of after-sales service at time [0, T] is

L3(θ) � 􏽚
T

0
􏽘

N

i�1
c3α3θ2(t)Bi(t)dt. (13)

In summary, the expected profit is

J(θ) � L1(θ) − L2(θ) − L3(θ)

� 􏽚
T

0
􏽘

N

i�1
c1 − c2α1θ1(t) − c3α3θ2(t)( 􏼁Bi(t)dt

≡ 􏽚
T

0
F(E(t), θ(t))dt,

(14)

where

F(E(t), θ(t)) � 􏽘
N

i�1
c1 − c2α1θ1(t) − c3α3θ2(t)( 􏼁Bi(t).

(15)

Based on the above discussions and assumptions, this
DAS problem can bemodeled as an optimal control problem
as follows:

Table 2: Values of parameters based on network.

Parameter ρ c α1 α2 α3 β1 β2
Value 0.1 0.2 0.4 0.2 0.4 0.1 0.1
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max
θ∈Θ

� 􏽚
T

0
F(E(t), θ(t))dt

subject to

dTi(t)

dt
� ρ􏽘

N

j�1
aijBj(t) + β1 α2 + α1θ1 + α3θ2( 􏼁 􏽘

N

j�1
Bj(t)⎡⎢⎢⎣

+ c 􏽘

N

j�1
aijRj(t) + β2 α3 1 − θ2( 􏼁( 􏼁 􏽘

N

j�1
Bj(t)⎤⎥⎥⎦Ti(t),

dBi(t)

dt
� ρ􏽘

N

j�1
aijBj(t) + β1 α2 + α1θ1 + α3θ2( 􏼁 􏽘

N

j�1
Bj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦Ti(t),

dRi(t)

dt
� c 􏽘

N

j�1
aijRj(t) + β2 α3 1 − θ2( 􏼁( 􏼁 􏽘

N

j�1
Bj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦Ti(t),

E(0) � E0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

'e associated TBR model based on WOM can be re-
written as

dE(t)

dt
� f2(E(t), θ(t)), 0≤ t≤T,

E(0) � E0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

We refer to this optimal control problem as the DAS
problem. 'is model can be described as a 15-tuple problem
as follows:

Φ � G, ρ, c, α1, α2, α3, β1, β2, θ1, θ2, c1, c2, c3,E0, T􏼐 􏼑. (18)

3. Theoretical Study of the DAS
Control Problem

3.1. Solvability of the DAS Problem. First, we prove that the
DAS problem is an optimal control problem and is solvable.
Hence, we derive Lemma 1 [32].

Lemma 1. 4eDAS problem is an optimal control problem if
all the following five conditions hold.

(1) Θ is convex and closed
(2) 4ere exists θ ∈ Θ such that system (17) is solvable

(3) f2(E, θ) is bounded by a linear function in E
(4) F(E, θ) is convex on Θ
(5) 4ere exists δ > 1, d1 > 0, and d2 such that

F(E, θ)≥ ‖θ‖δ2 + d2

'en, we can deduce the following theorem.

Theorem 1. 4eDAS problem is an optimal control problem.

Proof. First, let θ � (θ1(t), θ2(t)) be a limit point ofΘ.'en,
there exists a sequence θn(t) � (θn

1(t), θn
2(t)), n � 1, 2, . . ., of

points of Θ, which approaches θ(t). Since

0≤ θ1(t) � lim
n⟶∞

θ(n)
1 (t)≤ θ1 ≤ 1,

0≤ θ2(t) � lim
n⟶∞

θ(n)
2 (t)≤ θ2 ≤ 1, 0≤ t≤T.

(19)

Θ is closed. Let θ(1), θ(2) ∈ Θ, 0< η< 1, 􏽢θ �

(1 − η)θ(1) + ηθ(2). As L[0, T]2 is a real vector space, we have
􏽢θ ∈ L[0, T]2 and 0≤ (1 − η)θ(1)(t) + ηθ(2) ≤ (1 − η)

θ + ηθ � θ. Hence, Θ is convex. Second, let θ∗(t) ∈ Θ. As
f2(E, θ∗) is continuously differentiable, it follows by the
continuation theorem for differentiable systems [33] that the
corresponding state evolution state is solvable.

'ird, it follows from (17) that for 1≤ i≤N. As Ti(t) �

1 − Bi(t) − Ri(t) and 0≤ θ(t) ≤ 1, then we have
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− ρ􏽘

N

j�1
aijBj(t) + β1 􏽘

N

j�1
Bj(t) + c 􏽘

N

j�1
aijRj(t) + β2α3 􏽘

N

j�1
Bj(t)⎛⎝ ⎞⎠≤

dTi

dt
≤ β2α3 􏽘

N

j�1
Bj,

ρ􏽘
N

j�1
aijBj(t) + β1α2 􏽘

N

j�1
Bj(t)⎛⎝ ⎞⎠Ti ≤

dBi

dt
≤ ρ􏽘

N

j�1
aijBj(t) + β1 􏽘

N

j�1
Bj(t)⎛⎝ ⎞⎠Ti,

c 􏽘
N

j�1
aijRj(t)⎛⎝ ⎞⎠Ti ≤

dRi

dt
≤ c 􏽘

N

j�1
aijRj(t) + β2α3 􏽘

N

j�1
Bj(t)⎛⎝ ⎞⎠Ti.

(20)

Hence, f2(E, θ) is bounded by a linear function in E. 'e
fourth condition follows that F(E, θ) is linear in Θ and is
therefore convex.

Finally, F(E, θ)≥ 0≥ (θ21 + θ22) − (θ
2
1 + θ

2
2) � ‖θ‖22 − (θ

2
1 +

θ
2
2). 'en, there exists d1 � 1, δ � 2, d2 � − (θ

2
1 + θ

2
2) such

that F(E, θ)≥ d1‖θ‖δ2 + d2. By Lemma 1, 'eorem 1 is
proved. □

3.2.4eOptimalitySystem. According to the optimal control
theory, the Hamiltonian function of the DAS problem is

H(E(t), θ(t), X(t)) � 􏽘
N

i�1
c1 − c2α1θ1 − c3α3θ2( 􏼁Bi(t)

+ 􏽘
N

i�1
λi(t) − ρ􏽘

N

j�1
aijBj(t) + β1 α2 + α1θ1 + α3θ2( 􏼁 􏽘

N

j�1
Bj(t)⎛⎝⎡⎢⎢⎣

+ c 􏽘
N

j�1
aijRj(t) + β2 α3 1 − θ2( 􏼁( 􏼁 􏽘

N

j�1
Bj(t)⎞⎠Ti(t)⎤⎥⎥⎦

+ 􏽘

N

i�1
μi(t) ρ􏽘

N

j�1
aijBj(t) + β1 α2 + α1θ1 + α3θ2( 􏼁 􏽘

N

j�1
Bj(t)⎛⎝ ⎞⎠Ti(t)⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 􏽘
N

i�1
]i(t) c 􏽘

N

j�1
aijRj(t) + β2 α3 1 − θ2( 􏼁( 􏼁 􏽘

N

j�1
Bj(t)⎛⎝ ⎞⎠Ti(t)⎡⎢⎢⎣ ⎤⎥⎥⎦,

(21)

where X(t) � (λ(t), μ(t), ](t)) � (λ1, λ2, . . . , λN, μ1, μ2,
. . . , μN, ]1, ]2, . . . , ]N) is the adjoint of H. We give the
necessary condition for the optimal control of the DAS
problem as follows.

Theorem 2. Suppose θ � (θ1(t), θ2(t)) is an optimal control
of the DAS problem (16) and E is the solution to the associated
TBR model (17). 4en, there exists an adjoint function X(t) �

(λ(t), μ(t), ](t)) such that the following equations hold:
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dλi(t)

dt
� λi − μi( 􏼁 􏽘

N

j�1
ρaij + β1 α2 + α1θ1 + α3θ2( 􏼁􏼐 􏼑Bj(t)

+ λi − ]i( 􏼁 􏽘

N

j�1
caijRj + λi − ]i( 􏼁 􏽘

N

j�1
β2α3 1 − θ2( 􏼁Bj,

dμi(t)

dt
� − c1 + c2α1θ1 + c3α3θ2 + 􏽘

N

j�1
ρajiTj(t) λj − μj􏼐 􏼑

+ β1 α2 + α1θ1 + α3θ2( 􏼁 􏽘

N

j�1
λj − μj􏼐 􏼑Tj(t) + β2α3 1 − θ2( 􏼁 􏽘

N

j�1
λj − ]j􏼐 􏼑Tj(t)

d]i(t)

dt
� c 􏽘

N

j�1
aji λj − ]j􏼐 􏼑Tj(t),

0≤ t≤T, i � 1, 2, . . . , N,

λ(T) � μ(T) � ](T) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Moreover, let

g1(t) � β1α1 􏽘

N

i�1
Ti(t) μi − λi( 􏼁 − c2α1,

g2(t) � 􏽘
N

i�1
Ti(t) β1α3 μi − λi( 􏼁 + β2α3 λi − ]i( 􏼁( 􏼁 − c3α3.

(23)

'en, for 0≤ t≤T, we have

θi(t) �
θi, gi(t)> 0,

0, gi(t)< 0.

⎧⎨

⎩ (24)

Proof. According to Pontryagin Minimum Principle [32],
there exists (λ, μ, ]) such that

dλi

dt
� −

zH(E(t), θ(t), X(t))

zTi

, 0≤ t≤T, i � 1, 2, . . . , N,

dμi

dt
� −

zH(E(t), θ(t), X(t))

zBi

, 0≤ t≤T, i � 1, 2, . . . , N,

d]i

dt
� −

zH(E(t), θ(t), X(t))

zRi

, 0≤ t≤T, i � 1, 2, . . . , N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

'e first 3N equations in system (22) follow by direct
calculations. Since the terminal cost is unspecified and the
final state is free, we have λ(T) � μ(T) � ](T) � 0.
According to Pontryagin Maximum Principle, we have

H(E(t), θ(t), X(t)) � argmax
θ∈Θ

H(E(t), θ, X(t)), 0≤ t≤T.

(26)

Equations (23) and (24) follow by the following direct
calculations:

zH

zθ1
� 􏽘

N

j�1
Bj β1α1 􏽘

N

i�1
Ti(t) μi − λi( 􏼁 − c2α1⎛⎝ ⎞⎠,

zH

zθ2
� 􏽘

N

j�1
Bj 􏽘

N

i�1
Ti(t) β1α3 μi − λi( 􏼁 + β2α3 λi − ]i( 􏼁( 􏼁 − c3α3⎛⎝ ⎞⎠.

(27)

□
By the optimal control theory, equations (16) and (22)

constitute the optimality system for the TBR model. We
refer to the control in each solution to the optimality system
as a potential optimal control (POC) of the DAS problem. It
is seen from equation (24) that the optimality system may
have more than one POC.

4. Examples of the POC

For the notion of POC we introduced earlier for the DAS
problem, now we provide some examples of the POC. First,
the optimality system (17) and (22) is solved using the
Runge–Kutta and backward Runge–Kutta fourth-order it-
erative procedure [34, 35].

To generate a large number of DAS examples, three real-
world networks are selected: Facebook network GFA, e-mail
network GEM, and Twitter network GTW. We select the
subnet of the network as the total number of nodes of the

8 Complexity



three networks with N � 100. Let AFA, AEM, andATW de-
note the adjacency matrix of GFA, GEM, andGTW, and the
network topology is shown in Figure 3. Let the initial value
E0 � (T0, B0, R0) � (0.7, . . . , 0.7, 0.2, . . . , 0.2, 0.1, . . . , 0.1).

Experiment 1. Stabilities of the three states.
'e parameters and their values are shown in Table 3.
As can be seen from Figure 4, in all of three networks, the

expected probabilities of the three states are stable at a fixed
value. Moreover, when the probability of negative evaluation
in the network is larger than that of positive evaluation,
nodes tend to refuse to buy the product.

Experiment 2. Optimal control strategies in networks.
Consider the TBR model (17) with G � GFA, G �

GEM, G � GTW, θ1 � 1, θ2 � 1, c1 � 50, c2 � 5, and c3 � 10,
and the remaining parameters are shown in Table 3. 'e
optimal control θpoc is obtained by solving the optimal
system, as shown in Figure 5. Figure 6 exhibits θpoc ∪
θp,q, p � (0, 0.1, 0.2, . . . , 1) and q � (0, 0.1, 0.2, . . . , 1). It is
seen that J(θpoc)> J(θp,q), for all p, q ∈ [0, 1]. θpoc is su-
perior to all the uniform controls in the three networks in
terms of expected profits. In the above experiment and 100
similar experiments, it is worth emphasizing that θpoc
outperforms all static controls in terms of expected profits
across all the networks, which demonstrates the optimality
of θpoc.

As can be seen from Figure 6, when there is no after-sales
service (θ0,0) in the community group buying network, the
expected profit of sales in the whole network is the lowest
due to the influence of negative WOM. When q � 1, al-
though p is different, the expected profit generated by
community group buying is almost the same for the three
networks. 'is phenomenon indicates that reversing neg-
ative WOM through after-sales service is more helpful in
improving expected profits than operations such as cash
back. Moreover, it can be seen from Figures 5 and 6 that the
DAS optimal control strategies are concentrated at the initial
time, which suggests the importance of timely after-sales
service. Delayed or continuous after-sales service has no
obvious effect on improving consumers’ purchase intention
and increasing expected profits.

Experiment 3. Effects of optimal control strategies.
As shown in Figure 7, we compare the expected prob-

abilities of buying and refusing states without control and
with the optimal control strategy. It can be inferred that,
through DAS optimal control strategies, the probability of
buying is greatly increased, while that of refusing buying is
greatly decreased. 'is further proves the importance of
after-sales service.

5. The Influence of Parameters on
Expected Profits

In this section, we discuss how different parameters affect
the expected profits. On the one hand, taking node 30 as an
example, we discuss the effects of different parameters on

purchase intention. On the other hand, given the similar
simulation results of the three networks, the e-mail network
is taken as an example for illustration, as shown in Figure 8.

Experiment 4. Effects of parameters ρ, c, β1, β2 on purchase
intention.

Let ρ, c, β1, β2 � [0.1, 0.3, 0.5, 0.7, 0.9] respectively, and
the other parameters are shown in Table 3.'e probability of
the node’s purchase intention increases as ρ and β1 increase,
as shown in Figures 8(a) and 8(c), and decreases as c and β2
increase, as shown in Figures 8(b) and 8(d). 'is finding is
consistent with the actual representations of the parameters.

Experiment 5. Effects of parameters α1, α2, α3 on purchase
intention.

Since α1 + α2 + α3 � 1, let

(1) α1, α2 � [0.1, 0.2, 0.3, 0.4, 0.5] and α3 � 1 − α1 − α2
(2) α1, α3 � [0.1, 0.2, 0.3, 0.4, 0.5] and α2 � 1 − α1 − α3
(3) α2, α3 � [0.1, 0.2, 0.3, 0.4, 0.5] and α1 � 1 − α2 − α3
When T � 25, take the probability of buying for node 30

as an example. As shown in Figure 9(a), when α2 is very
small, the probability changes little with the increase of α1.
Specifically, despite the increased probability of silent
purchase, the probability of final node purchase does not
increase significantly. 'is is because the probability of
positive WOM is fixed at a small value. When α2 is large, the
probability increases significantly as α1 increases. When the
probability of positive WOM is fixed at a large value, the
probability of negative WOM decreases as the probability of
silent purchase increases, so the probability of final node
purchase increases significantly. 'e situation in Figure 9(b)
is similar to that in Figure 9(a). It can be clearly seen from
Figure 9(c) that the purchase probability increases with the
increase of α2 and decreases with the increase of α3.

Under optimal dynamic after-sales service control, the
expected profit exhibits different levels of sensitivity to
different parameters. 'erefore, we will further discuss how
the parameters affect the expected profit of the entire
community group buying network later in this section.

Experiment 6. Effects of parameters ρ, c, β1, β2 on the ex-
pected profit.

Let ρ, c, β1, β2 � [0.1, 0.3, 0.5, 0.7, 0.9], respectively, and
the other parameters are shown in Table 3. As can be seen from
Figure 10, the expected profit of the whole network increases
with the increase of ρ, β1 and decreases with the increase of
c, β2 after-sales service is available. Based on Figure 8, it can be
concluded that when consumers’ purchase intention increases,
the expected profit also increases in the network.

Experiment 7. Effects of parameters α1, α2, α3 on expected
profits.

Since α1 + α2 + α3 � 1, let

(1) α1, α2 � [0.1, 0.2, 0.3, 0.4, 0.5] and α3 � 1 − α1 − α2
(2) α1, α3 � [0.1, 0.2, 0.3, 0.4, 0.5] and α2 � 1 − α1 − α3
(3) α2, α3 � [0.1, 0.2, 0.3, 0.4, 0.5] and α1 � 1 − α2 − α3
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(a) (b) (c)

Figure 3: (a) Facebook network, (b) e-mail network, and (c) Twitter network.

Table 3: Parameters based on the network.

Parameters ρ c α1 α2 α3 β1 β2 T

Value 0.1 0.2 0.4 0.2 0.4 0.1 0.1 25
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Figure 4: (a) Facebook network, (b) e-mail network, and (c) Twitter network.
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Figure 5: Optimal control strategies θpoc in networks: (a) Facebook network, (b) e-mail network, and (c) Twitter network.
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Figure 6: Comparison between optimal control strategy θpoc and uniform control strategy θp,q in terms of expected profit J(θ): (a) Facebook
network, (b) e-mail network, and (c) Twitter network.
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Figure 7: (a) Expected probability of buying for node 30 under θpoc and without control θ0,0 and (b) expected probability of refusing for
node 30 under θpoc and without control θ0,0.
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Figure 8: Continued.
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Figure 8: Parameters on the expected probability of buying for node 30: (a) ρ, (b) c, (c) β1, and (d) β2.
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Figure 9: Parameters on the expected probability of buying for node 30: (a) α1, α2, (b) α1, α3, and (c) α2, α3.
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Figure 10: Parameters on the expected probability of buying for node 30: (a) ρ, (b) c, (c) β1, and (d) β2.
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Figure 11: Continued.
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As can be seen from Figure 11, the expected profit is not
closely related to the proportion of silent customers, but is
directly proportional to positive WOM and inversely pro-
portional to negative WOM. 'is conclusion is consistent
with the analysis in Figure 9.

'e experimental conclusions are summarized in
Table 4.

6. Conclusion

'is paper aims at maximizing the expected profits of
product sales in social network shopping by dynamically
controlling the proportion of after-sales service investment
based on word-of-mouth marketing. First, the problem is
modeled as an optimal control problem. Second, a potential
optimal control strategy is proposed and the optimal
control problem is identified by solving the optimal system.
Finally, some comparative experiments demonstrate that
the proposed dynamic control strategy is superior to any
uniform control strategy, and the expected profits show
different levels of sensitivity to different after-sales service
parameters. 'erefore, the proposed dynamic after-sales
investment strategy can serve as an effective approach to

maximizing the expected profits of product sales in social
network shopping. In this regard, there are a number of
research topics worthy of further study. 'e problem of
balancing profits and after-sales investment can be mod-
eled as a game theory problem to ensure maximum in-
terests for individuals.
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Figure 11: Parameters α1, α2, α3 on the expected profit. (a–c) α1, α2, α3 on Facebook network; (d–f) α1, α2, α3 on e-mail network;
(g–i) α1, α2, α3 on Twitter network.

Table 4: Summary of experimental conclusion.

Number Conclusion Supporting
experiments

C1 'e three states in the network will stabilize to a fixed constant over time Experiment 1

C2
'e DAS optimal control strategy outperforms any uniform control strategy and can greatly improve the

expected profit Experiments 2 and 3

C3 Reversing negative reviews is more helpful in improving expected profits than improve silent evaluation Experiment 2
C4 'e probability ρ of Ti being converted to Bi is positively correlated with expected profits Experiments 4 and 6
C5 'e probability c of Ti being converted to Ri is negatively correlated with expected profits Experiments 4 and 6
C6 'e probability of positive evaluation α2 is positively correlated with expected profits Experiments 5 and 7
C7 'e probability of negative evaluation α3 is positively correlated with expected profits Experiments 5 and 7
C8 Probability β1 influenced by positive WOM is positively correlated with expected profits Experiments 4 and 6
C9 Probability β2 influenced by negative WOM is negatively correlated with expected profits Experiments 4 and 6

C10
When the probability α2(α3) of positive (negative) WOM is fixed and small, the probability of silent

evaluation α1 has a weak positive (negative) correlation with purchase intention Experiment 5

C11
When the probability α2(α3) of positive (negative) WOM is fixed and large, the probability of silent

evaluation α1 has a strong positive (negative) correlation with purchase intention Experiment 5

14 Complexity



References

[1] “Accenture consulting,” Report of Chinese Consumer Insight
by Accenture, Dublin, Ireland, 2014.

[2] Dichter, “How word-of-mouth advertising works,” Harvard
Business Review, vol. 16, 1966.

[3] J. Chevalier,4e Effect ofWord of Mouth on Sales: Online Book
Reviews, Working Papers – Yale School of Management’s
Economics Research Network, Connecticut, CT, USA, 2003.

[4] L. Leskovec, “Adamic, he dynamics of viral marketing,” ACM
Transactions on the Web, vol. 1, 2005.

[5] S. Hill, F. Provost, and C. Volinsky, Viral Marketing: Iden-
tifying Likely Adopters via Consumer Networks, Social Science
Electronic Publishing, New York, NY, USA, 2005.

[6] S. Hill, F. Provost, and C. Volinsky, “Network-based mar-
keting: identifying likely adopters via consumer networks,”
Statistical Science, vol. 21, pp. 256–276, 2006.

[7] A. Vilpponen, S. Winter, and S. Sundqvist, “Network-based
marketing: identifying likely adopters via consumer net-
works,” Statistical Science, vol. 21, pp. 256–276, 2006.

[8] J. Brown, A. J. Broderick, and N. Lee, “Word of mouth
communication within online communities: conceptualizing
the online social network,” Journal of Interactive Marketing,
vol. 21, no. 3, pp. 2–20, 2007.

[9] D. D. Gunawan and K.-H. Huarng, “Viral effects of social
network and media on consumers’ purchase intention,”
Journal of Business Research, vol. 68, no. 11, pp. 2237–2241,
2015.

[10] D. Godes and D. Mayzlin, “Firm-created word-of-mouth
communication: evidence from a field test,” Marketing Sci-
ence, vol. 28, no. 4, pp. 721–739, 2009.

[11] J. Zhang, Y. Liu, and Y. Chen, Social Learning in Networks of
Friends versus Strangers, Social Science Electronic Publishing,
New York, NY, USA, 2015.

[12] D. Dubois, A. Bonezzi, and M. De Angelis, “Sharing with
friends versus strangers: how interpersonal closeness influ-
ences word-of-mouth valence,” Journal of Marketing Re-
search, vol. 53, no. 5, pp. 712–727, 2016.

[13] A. Timoshenko and J. R. Hauser, “Identifying customer needs
from user-generated content,” Marketing Science, vol. 38,
2019.

[14] Z. A. Min, B. Bf, Z. C. Ning, and E. Wf, “Mining product
innovation ideas from online reviews,” Information Processing
& Management, vol. 58, 2021.

[15] R. Y. Du, O. Netzer, D. A. Schweidel, and D. Mitra, “Cap-
turing marketing information to fuel growth,” Journal of
Marketing, vol. 85, no. 1, pp. 163–183, 2021.

[16] T. Zhang, P. Li, L.-X. Yang, X. Yang, Y. Y. Tang, and Y. Wu,
“A discount strategy in word-of-mouth marketing,” Com-
munications in Nonlinear Science and Numerical Simulation,
vol. 74, pp. 167–179, 2019.

[17] J. Chen, L. X. Yang, D. W. Huang, X. Yang, and Y. Y. Tang,
“Dynamic discount pricing in competitive marketing,” IEEE
Access, vol. 7, pp. 14534–145347, 2019.

[18] H. Peng, K. Huang, L.-X. Yang, X. Yang, and Y. Y. Tang,
“Dynamic maintenance strategy for word-of-mouth mar-
keting,” IEEE Access, vol. 8, pp. 126496–126503, 2020.

[19] M. Herrera, G. Armelini, and E. Salvaj, “Understanding social
contagion in adoption processes using dynamic social net-
works,” PLoS One, vol. 10, no. 10, Article ID e0140891, 2015.

[20] M. Wu, L. Wang, L. Ming, and H. Long, “An approach based
on the SIR epidemic model and a genetic algorithm for op-
timizing product feature combinations in feature fatigue

analysis,” Journal of Intelligent Manufacturing, vol. 26,
pp. 1–11, 2015.

[21] M. Pazoki and H. Samarghandi, “Word-Of-Mouth and es-
timating demand based on network structure and epidemic
models,” European Journal of Operational Research, vol. 291,
2021.

[22] S. Soobin and J. SooCheong, “A negative or positive signal?
'e impact of food recalls on negative word-of-mouth (N-
WOM),” Journal of Hospitality and Tourism Management,
vol. 47, pp. 150–158, 2021.

[23] F. Septianto, G. Northey, T. M. Chiew, and L. Ngo, “Hubristic
pride & prejudice: the effects of hubristic pride on negative
word-of-mouth,” International Journal of Research in Mar-
keting, vol. 37, 2020.

[24] H. H. Chang, Y.-C. Tsai, K. H. Wong, J. W. Wang, and
F. J. Cho, “'e effects of response strategies and severity of
failure on consumer attribution with regard to negative word-
of-mouth,” Decision Support Systems, vol. 71, pp. 48–61, 2015.

[25] P. Matthew and A. Laurence, “I should have known better!:
when firm-caused failure leads to self-image concerns and
reduces negative word-of-mouth,” Journal of Business Re-
search, vol. 116, 2020.

[26] C. Riza and S. Hyunju, “'e effects of harm directions and
service recovery strategies on customer forgiveness and
negative word-of-mouth intentions,” Journal of Retailing and
Consumer Services, vol. 27, pp. 103–112, 2015.

[27] M. S. Balaji, K. W. Khong, and A. Chong, “Determinants of
negative word-of-mouth communication using social net-
working,” Information & Management, vol. 53, 2016.

[28] T. Verhagen, A. Nauta, and F. Feldberg, “Negative online
word-of-mouth: behavioral indicator or emotional release?”
Serie Research Memoranda, vol. 29, pp. 1430–1440, 2012.

[29] M. D. Dalman, S. Chatterjee, and J. Min, “Negative word of
mouth for a failed innovation from higher/lower equity
brands: moderating roles of opinion leadership and consumer
testimonials,” Journal of Business Research, vol. 115, pp. 1–13,
2020.

[30] W.Weitzl, C. Hutzinger, and S. Einwiller, “An empirical study
on how webcare mitigates complainants’ failure attributions
and negative word-of-mouth,” Computers in Human Be-
havior, vol. 89, pp. 316–327, 2018.

[31] E. M. Stein and R. Shakarchi, Real Analysis: Measure 4eory,
Integration, &Hilbert Spaces, PrincetonUniversity Press, New
Jersey, NJ, USA, 2005.

[32] D. Liberzon, Calculus of Variations and Optimal Control
4eory: A Concise Introduction, Princeton University Press,
New Jersey, NJ, USA, 2012.

[33] R. C. Robinson, Calculus of Variations and Optimal Control
4eory: A Concise an Introduction to Dynamical Systems:
Continuous and Discrete, American Mathematical Society,
Providence, RI, USA, 2004.

[34] S. Lenhart and J. T. Workman, Optimal Control Applied to
Biological Models, Champion and Hall/CRC, London, UK,
2007.

[35] J. T. K. Soovoojeet, “A mathematical study of a prey–predator
model in relevance to pest control,” Nonlinear Dynamics,
vol. 74, no. 3, pp. 667–683, 2013.

Complexity 15


