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Microexpressions have extremely high due value in national security, public safety, medical, and other fields. However,
microexpressions have characteristics that are obviously different from macroexpressions, such as short duration and weak
changes, which greatly increase the difficulty of microexpression recognition work. In this paper, we propose a microexpression
recognition method based on multimodal fusion through a comparative study of traditional microexpression recognition al-
gorithms such as LBP algorithm and CNN and LSTM deep learning algorithms.*emethod couples the separate microexpression
image information with the corresponding body temperature information to establish a multimodal fusion microexpression
database. *is paper firstly introduces how to build a multimodal fusion microexpression database in a laboratory environment,
secondly compares the recognition accuracy of LBP, LSTM, and CNN+LSTM networks for microexpressions, and finally selects
the superior CNN+LSTM network in the comparison results for model training and testing on the test set under separate
microexpression database and multimodal fusion database. *e experimental results show that a microexpression recognition
method based on multimodal fusion designed in this paper is more accurate than unimodal recognition in multimodal rec-
ognition after feature fusion, and its recognition rate reaches 75.1%, which proves that the method is feasible and effective in
improving microexpression recognition rate and has good practical value.

1. Introduction

*e term microexpression was introduced in 1996 by
Haggard and Isaacs after an in-depth study. Subsequently,
in order to be able to observe microexpressions with the
naked eye, Ekman [1] developed METT (Microexpression
Training Tool), a microexpression training tool. However,
with the help of this tool, the recognition rate of facial
microexpressions hovered around 50% at most, and the
recognition was not guaranteed. In the past, due to the
limitation of hardware, microexpressions were mostly
studied by traditional methods for experiments, for ex-
ample, local binary pattern method, optical flow method,
etc.

Based on the local binary pattern referred to as LBP
algorithm, its principle is mainly to convert microexpression

images from RGB to LBP images, which can attenuate the
effect of illumination in a small area. JiangWan [2] designed
a shallow dual spatiotemporal multiscale neural network
TSTNET model to extract the texture properties of SMIC
and CASME II microexpression databases using local binary
patterns, which are fed into a 3-dimensional convolutional
neural network with convolutional long-short-termmemory
network (LSTM) to extract both temporal and spatial in-
formation *e model incorporates a discard algorithm and
multiplexes the extracted features to reduce the risk of
overfitting while learning richer features. *e recognition
rates of 67.30% and 65.34% are achieved on SMIC and
CASME II microexpression databases, respectively, and the
model improves the training speed of the network and the
recognition rate of microexpressions compared with existing
deep learning methods.
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*e core idea of the optical flow-based method is to
extract the information of the optical flow in the vertex
frame and the start frame of the microexpression segment
and then compare and analyse them.Wen et al. [3] proposed
a combination of traditional methods and deep learning
methods for the problem of low recognition rate of cross-
library microexpressions, in which Apex frame localization
is performed in the image preprocessing part; in the feature
extraction part, the TVL1 information of Apex frames is first
calculated, and then the horizontal and vertical optical flow
component features are fused; finally, SVM is used to classify
the features. *is method has a great improvement over the
LPB-TOP (local binary patterns from three orthogonal
planes, LPB-TOP) method.

Since the 21st century, computer computing power has
developed rapidly, and the research onmicroexpressions has
gradually shifted to the field of CV.*e focus of the research
content has also gradually transitioned from traditional
methods to deep learning direction. *rough the analysis of
current domestic and foreign microexpression research al-
gorithms, Li [4] improved the optical flow method and
convolutional neural network, completed the design of a
prototype system for facial microexpression recognition,
and proved the feasibility and effectiveness of the method
through the comparison of experimental results. Su et al. [5]
analysed the motion feature maps of microexpressions,
proposed a method for feature reextraction as well as fusion
of multiple motion feature maps, extracted different features
and temporal features using multichannel CNN and LSTM,
tested under CASME database, and achieved excellent re-
sults. Khor et al. [6] proposed a network that can handle long
sequences (Enriched Long-term Recurrent Convolutional
Network, ELRCN), where microexpression picture segments
are encoded as they pass through the CNN network for each
frame within the microexpression cycle, and then the
microexpression category is predicted using a Long-Short-
Term Memory Network (LSTM). Ultimately, experimental
results show that the method is able to obtain fairly good
performance without increasing the data. Liu et al. [7]
proposed a local-based deep neural network with two do-
main adaptation techniques (opposing domain adaptation
and motion scaling up and down) that can automatically
learn to extract distinguishing features associated with the
face, and experiments show that the method at the Second
Microexpression Competition (MEGC) achieved a very
competitive result. In the field of microexpression recog-
nition, deep learning methods have occupied the majority of
the field. However, due to problems such as insufficient data
samples, it is difficult for deep learning to bring out its real
strength. How to solve this series of problems has become a
challenging and difficult work in the field of microexpression
recognition.

In this project, a microexpression recognition method
based on multimodal feature fusion is proposed after in-
vestigation and experimental research, and a micro-
expression database is established by ourselves. *e
feasibility and rationality of the designed microexpression
recognition method are verified through experiments.
Firstly, the volunteer’s body temperature was recorded

simultaneously with the infrared thermometer while col-
lecting the microexpression fragments, and the multimodal
fusion database was established after the image data was
organized, and then the data was preprocessed; then the
training set and test set were divided according to 6 : 4, and
the data was fed into the CNN+LSTM dual-channel neural
network for training, and the experimental results were
obtained. Finally, the training results are analysed and
compared with those using only the separate micro-
expression database under the same network.

2. Related Work

2.1. Database Establishment. Since microexpressions were
first discovered in the 1960s, along with the development of
microexpression psychology and the advancement of
computer image analysis technology, the research on
microexpressions has made great progress. At present, many
teams at home and abroad are working onmicroexpressions,
mainly the teams of Ekman,Matsumoto et al. [8], and Shreve
et al. [9] in the United States, Porter et al. [10] in Canada,
Zhao and Pietikainen [11] in Finland, and Wu et al. [12] and
Luo et al. [13] in Fudan University in China. It should be
emphasized that the sample sizes of these databases are very
small. *ere are less than 800 publicly published micro-
expression samples so far, which is a typical small sample
problem. *is causes that the current deep learning-based
methods cannot fully play their power in the micro-
expression problem. In fact, it is very difficult to build a
database of microexpressions. One reason is that micro-
expressions are difficult to elicit; researchers often ask
subjects to watch emotional videos that elicit their emotions
while asking them to disguise their expressions. Some
subjects may not show microexpressions or may show them
only rarely.

Based on many difficulties of traditional database es-
tablishment, this paper proposes and builds a micro-
expression database based on multimodal feature fusion
based on the summary of previous research results. We
construct the database by fusing the microexpression image
information with the corresponding thermographic tem-
perature text information with multimodal features. *e
method of coupling multimodal information is applied to
the field of microexpression recognition, which is a new
attempt.*e physiological signals and movements of human
body can be coupled to make judgments, but repeated ex-
periments are needed to prove the feasibility of the method.

2.2. Microexpression Recognition Method. Current research
on microexpression recognition has focused on optical flow-
based algorithms [14], texture feature-based algorithms [15],
and deep learning-based algorithms [16]. Most optical flow-
based algorithms use dynamic optical flow features to de-
scribe the differences in facial expression changes. Optical
flow mapping techniques use optical flow change features
between consecutive images to analyse the change pattern of
microexpressions and then construct an optical flow map of
the whole microexpression process as the basis for
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microexpression differentiation. *e Fast Hyperspectral
Optical Flow (FHOF) technique [17] extracts the changes in the
parts related to microexpressions by correcting the optical flow
method and feeds the optical flow features of the same parts
into the classification frame for detection, which effectively
excludes the interference generated by changes in facial
muscles. *e facial dynamic map (FDM) technique [18] aligns
the local pixels of microexpressions between images by optical
flow method, so as to accurately extract the dynamic change
trajectories of each part of the face. *e optical flow-based
algorithm has the advantages of low computational complexity
and easy implementation, but it requires a priori information,
such as peak images or positively defined samples, and has
some drawbacks in terms of recognition accuracy. Most tex-
ture-based microexpression recognition algorithms analyse the
differences between facial microexpressions through texture
features. Spatiotemporal Gabor (ST-Gabor) filter [19] uses
Gabor filtering to extract texture information from images and
optical flow techniques to extract features of microexpressions
in the time domain. Reisz Phase [20] uses Reisz spectrum
theory to detect the peak of microexpressions from the phase
information of the image, and this method effectively solves the
problem of low importance of microexpressions.

In recent years, deep learning techniques have been
extensively studied in problems such as pattern recognition
and image processing. *ree-Dimensional Fully Connected
Dimensional Convolutional Networks (3D-FCNN) [21]
designed a 3D convolutional neural network to extract the
spatiotemporal features of microexpressions and then input
them to a classifier for classification. Using deep convolu-
tional neural networks for learning spatiotemporal domain
features of video sequences requires an extremely long
training period. Visual Geometry Group Network
(VGGNet) [22] uses a convolutional neural network to learn
only the local features of microexpression spike images, thus
reducing the training time of the network.

After analysing the existing microexpression recognition
techniques, it is found that convolutional neural networks
(CNN) combined with long-short-term memory (LSTM)
artificial neural networks have certain advantages in
extracting facial spatial features and temporal features. In this
paper, a microexpression recognition method based on
multimodal fusion is proposed. *e temperature features are
passed into the CNN+LSTM neural network as input in the
form of text to obtain the feature vector after network con-
volution; then the microexpression feature vector obtained by
the same neural network output is fused with the temperature
data features, and after repeated iterations, a new feature
vector interval is obtained, and the k-nearest neighbor
method is used to classify the fused features to obtain the
training model. Finally, the experimental results are tested on
the test set of the multimodal database and then compared
with the models trained using the microexpression database
alone to complete the comparison of the experimental results.

3. Materials and Methods

In recent years, great progress has been made in the com-
bination of psychology and computer technology in the

research of microexpression recognition technology.
However, the formation mechanism of microexpression is
special and the research started late; in particular the es-
tablishment level of microexpression database is relatively
backward. In the establishment of the microexpression
database, there are some problems, such as small number of
samples (the largest published database sample number is
247), incomplete types (the number of some emotion
samples that are difficult to be captured is very small), and
inconsistent acquisition standards (different experimental
environments and methods).

*erefore, on the basis of summarizing the previous
experience, this study improved the experimental method
and combined with the characteristic that the temperature of
a specific part of the body changes with the change of human
emotions proposed by Lauri Nummenmaa et al. from Aalto
University. A microexpression database based on multi-
mode fusion is constructed by fusing temperature data with
microexpression image data.

3.1. Existing Microexpression Database. *e micro-
expression database can be divided into active database and
passive database according to the inductionmode.*e active
database allows participants to watch emotional videos or
pictures and enables participants to generate micro-
expressions after being stimulated. *e collection method of
passive database is to ask participants in the experiment to
make well-set and weak expressions, but it is difficult for this
method to simulate the real and natural emotions of human
beings, and it is difficult to meet the training requirements.
Table 1 shows 5 public spontaneous microexpression
databases.

*e CASME II dataset, created by the Chinese Academy
of Sciences et al., used a 200 fps camera to capture micro-
expression clips, with a high frame-rate camera designed to
capture subtle changes in the participants’ faces. A total of 26
participants took part in the experiment and collected 255
microexpression clips of seven emotions, including disgust,
happiness, surprise, sadness, fear, depression, and others.
Davison et al. set up the SAMM dataset and used a 200 fps
frame-rate camera to capture 195 microexpression clips
from 32 participants. SAMM contains seven emotions:
anger, contempt, fear, disgust, sadness, joy, and surprise.

It is important to emphasize that because micro-
expressions range of motion is very small, and relatively
regular expressions often face local movement, because the
face database on sentiment classification is not very clear,
database of the mood of the calibration standard is different,
often similar movement was as different kinds of micro-
expression, and different sport is viewed as a kind of ex-
pression. *is situation leads to the inconsistency of the
results obtained by using various databases to train the
microexpression recognition algorithm. In addition, due to
the short duration, low intensity, and often local movement
of microexpressions, the video quality of many current
microexpression databases cannot meet the needs of
microexpression recognition and analysis, which requires us
to make certain improvements to the database.
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3.2. A Microexpression Database Based on Multimodal
Fusion. After analysing the advantages and disadvantages of
the microexpression database listed in Table 1, we gathered
13 volunteers to participate in the establishment of a
microexpression recognition database based on multimode
fusion. Next, we will explain the establishment process of the
microexpression database.

3.2.1. Microexpression Image Acquisition. Mind Vision in-
dustrial camera (MV-UBS31GC) was used to record 255
microexpression clips with a resolution of 1280× 720 for 13
volunteers standing in front of a 15.6-inch computer at a
frame rate of 75FPS. *e segment contains seven emotional
categories, namely, happy, surprised, sad, angry, disgusted,
scared, and normal. In terms of acquiring microexpression
data, in order to collect more accurate microexpression data,
we required volunteers to maintain facial neutralization
during the test process and use 7 videos of different contents
as microexpression eliciting materials. In this study, vol-
unteers experienced high arousal and strong motivation to
mask their true emotions. But they were asked not to move
their eyes or look away from the screen, to rewatch their own
facial movements after the recording, and to point out any
facial movements in the video that were not associated with
generating emotion for subsequent analysis of the micro-
expression data.

3.2.2. Corresponding Temperature Data Acquisition.
While the volunteers watched the video, the temperature
data of each volunteer’s head, chest, and shoulder were
collected by the HIKMICRO-H11 handheld thermometer,
and 765 temperature data corresponding to the self-built
database tags were collected after screening and counting, as
shown in Table 2.

3.3. Preprocessed. In the multimode microexpression rec-
ognition task, the recognition image is preprocessed, in-
cluding the time domain image interpolation, face detection,
feature point location, data expansion, and other steps. *e
preprocessing of microexpression data is beneficial to the
subsequent data feature extraction and classification.

3.3.1. Time Domain Image Interpolation. Under natural
conditions, microexpressions are naturally and continuously
changing. But each frame of the image contained in the

video clip captured by the camera is discontinuous. If we can
find a function to fit this continuous line and resample the
line more intensively, we can represent the same expression
in more images.

Since the microexpression duration period is very short
and difficult to observe, Zhou et al. proposed the TIM [23]
algorithm to make the whole microexpression period longer
without losing microexpression features, which first treats a
video clip as a graph and uses nodes in the graph to represent
a frame of the image, and adjacent frames in the video are
represented in the graph as adjacent nodes as well, and
frames in the video that are not the frames that are adjacent
in the video are also represented as adjacent nodes in the
graph, and the frames that are not adjacent in the video are
also not adjacent in the graph; subsequently, the graph is
embedded into a low-dimensional model using the graph
embedding algorithm, and finally the graph vector is
substituted to calculate this high-dimensional continuous
curve.*e changes that occur in microexpressions after TIM
processing and the corresponding temperature and ex-
pression changes are shown in Figure 1.

We applied the TIM algorithm to extend the period of
microexpression generation, and it can be seen in Figure 1
that the state of the corners of the mouth of the recruited
volunteers changed between the 0ms and 2000msmoments,
and the corresponding head temperature changed from
33.4°C to 34.6°C. *is change is identical to the findings of
Lauri Nummenmaa et al. of Aalto University [24], where the
temperature of specific parts of the body changes when
human emotions change. In addition, this has greatly fa-
cilitated the production of subsequent datasets. After fin-
ishing the video processing, it is also necessary to convert the
video into images for the next step of delineating the face
regions.

3.3.2. Face Detection and Feature Point Localization.
Microexpressions are muscle changes produced by subtle
movements of human face muscles. In order to study
microexpressions more accurately, it is necessary to first
perform face detection on the image, remove interference
from regions other than the face, and crop out the face
region. *is can be achieved by using the Harr plus cascade
classifier in OPENCV. *e flowchart of the face detection
procedure is shown in Figure 2.

Face feature point localization is to detect the shape
feature points such as eyebrows, eyes, nose, and lips from the
face, which are represented by 68 points. DIIB is a library in
OPENCV that can quickly calculate the location of feature
points.

*e DIIB-based detection method first needs to get the
average data of the image of the face feature points as the
initial face shape and then get the pixels of the current
feature points by calculating the value of the pixels of a
random point in the range of the initial feature points and
then doing the variance with the average. Finally, we start to
construct the residual tree, calculate the size of the difference
between the current feature point and the target feature
point, select multiple segmentation points using methods

Table 1: Existing database of spontaneous microexpressions.

CASME CASME
II

CAS (ME)
2 SAMM

Number of
samples 195 255 53 159

Frame rate 60 200 30 200
Resolution 640∗ 480 640∗ 480 640∗ 480 2040∗1088
Number of races 1 1 1 13
Number of
categories 8 7 N/A 7

4 Complexity



such as annealing, perform left and right tree division, and
select the point with the smallest difference as the best point.
*e flow of the face feature point localization procedure is
shown in Figure 3, and the results of face detection and
feature point extraction are shown in Figure 4, respectively.

3.4.Multimodal FusionMicroexpression RecognitionMethod.
For multimodal image fusion methods, a lot of research has
been done for this purpose in recent years [25–30]. In 2013,
Nummenmaa et al. of Aalto University [24] invited a total of
700 people from all over the world and showed themmovies,
stories, etc. that evoked different emotions and then used an
infrared thermographic camera to measure the change in
body temperature in various parts of their bodies. *e study
found that when human emotions change, the temperature
of specific parts of the body also changes. *e researchers
created a graph of the body temperature distribution of 14
emotions. *e experimental temperatures show that each
emotion corresponds to a different part of the body.

Based on the above research findings and addressing the
current problems of low recognition accuracy and insuffi-
cient model generalization ability in microexpression rec-
ognition tasks, this study proposes a microexpression
recognition method based on multimodal feature fusion for
the first time. *e method uses CNN+LSTM spatiotem-
poral depth network model to extract the feature values of
each microexpression in a self-built multimodal fusion
microexpression database and fuses them in series with the
features of body temperature text data during the micro-
expression change cycle to extract the multimodal standard

feature values of each microexpression and then selects test
samples to classify microexpressions according to the
standard feature values of different kinds of micro-
expressions. In the following, we will introduce the role of
CNN and LSTM neural networks in this method, the fusion
method of face feature extraction data and body temperature
data, and the multimodal fusion model in detail.

3.4.1. CNN-LSTM. CNN neural network is a feedforward
neural network consisting of a combination of super-
imposed convolutional and pooling layers, which has good
learning ability for high-dimensional features and has been
widely used in image processing, speech recognition, and
other fields [31]. *e convolutional layer is the core part in
multimodal microexpression image processing, processing
a large amount of microexpression image data that passes
through this network; as such most of the computational
effort is generated here. *e pooling layer usually appears
periodically between successive convolutional layers dur-
ing the processing of image data, and it serves to reduce the
data dimensionality and is effective in reducing the number
of data parameters in the network, reducing the compu-
tational effort, and effectively controlling over data fitting.
*e fully connected layer is used to do weighting on the
extracted microexpression features and can also act as a
classifier.

LSTM (long-short-term memory network) was pro-
posed by Hochreiter and Schmidhuber in 1997 [32] and is a
network based on RNN improvement; this method can be
used to solve the problem of gradient disappearance during
training of long sequences of temperature text features due
to gradient concatenation leading to the inability to update
the parameters of the previous neurons, as the neurons
between each layer of CNN are not connected. *e context-
dependent information of the input text is captured, while
the RNN will judge the previous information by memory
and apply it to the current computation. *e traditional
RNN is prone to gradient explosion and gradient disap-
pearance problems; LSTM can effectively solve these
problems and has become the most commonly used re-
current neural network. *e network structure of LSTM is
shown in Figure 5.

*e LSTM cell has one more hidden state and many
structures called cell state Ct and gating structures. *e
gating structure contains an input gate, an oblivion gate, and
an output gate.

Table 2: Number of each mood type in the database and the corresponding temperature data.

Serial number Microexpression type Head temperature (°C) *oracic temperature (°C) Shoulder temperature (°C) Number of
emotions

1 Happy 34.5 35.1 34.1 42
2 Sadness 34.6 34.3 33.1 20
3 Disgusted 35.1 35.2 34.7 56
4 Anger 35.2 35.5 34.2 42
5 Surprise 35.1 35.8 34.9 43
6 Fear 34.8 35.2 34.2 8
7 Normal 33.7 34.1 33.8 44

433 ms 2000 ms 4600 ms 5830 ms (end)

33.4°C 34.0°C 34.6°C 34.2°C 33.8°C

0 ms (start)

Figure 1: Changes in microexpressions after TIM treatment and
corresponding temperature and expression changes.
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*e forgetting gate represents the selective memory of
the image information passed from the previous node, i.e.,
retaining the important information and forgetting the
unimportant information. *e mathematical representa-
tion is

ft � σg Wfxt + Ufht−1 + bi , (1)

where σg is a sigmoid function and ft ∈ [0, 1], 0 means “no
image information passed,” and 1 value means “all image
information passed.”

*e input gating updates the cell state using the current
input xt, mathematically represented as

it � σg Wixt + Uiht−1 + bi( , (2)

where σg is also a sigmoid function and it ∈ [0, 1] denotes
the probability of remembering the input image information
at the current moment. From this, the cell state can be
updated according to the forgetting gate and the input gate
for the purpose of whether to retain the image information
or not. *e symbol ∗ denotes multiplication by bit and is
mathematically represented as

ct � ft ∗ ct−1 + it ∗ σc Wcxt + Ucht−1 + bc( . (3)

A new hidden state ht is then generated by ct:

ot � σg Woxt + Uoht−1 + bo( ,

ht � ot ∗ σh ct( ,
(4)

where σg is a sigmoid function, ot ∈ [0, 1], σ_h is generally a
tanh function, and the tanh function is multiplied with ot to
obtain the final hidden layer h_t, and then the final output
can be obtained from ht as follows:

Read image
information

Analysis using
Harr features

Extraction of
facial features 

Delineate the
face area

Figure 2: Flow chart of face detection program.

Read image
information and

convert the image
to grayscale

Use the matrix
function to find the

key points of
the face

Get the
coordinates of
68 key points

Use the circle function
to draw a circle at each

feature point

Use the puttext
function to output

numbers 1-68 

Figure 3: Flow chart of face feature point localization procedure.

(a) (b) (c) (d)

Figure 4: Face detection and face extraction framework. (a) Original image. (b) Face detected with 68 feature points. (c) Facial regions
delineated using points 1–27. (d) *oroughly extracted facial regions.

Input Gate

Cell

Output Gate

Forget Gate

xt

xt

xt

ht

xt

it

Ct

Ot

ft

Figure 5: LSTM network structure.
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ht � ot ∗ oh ft ∗ ct−1 + it ∗ σc Wcxt + Ucht−1 + bc( ( .

(5)

From the above equation, it can be seen that the value of
ht is related to ct and the value of ct is independent of Wc,
which is the important reason for the disappearance of
gradients in the network.

*e CNN-LSTM model combines the advantages of
CNN and LSTM. *e CNN model extracts locally relevant
features of microexpression image data layer by layer
through local connectivity, weight sharing, and pooling
mechanisms. *e LSTM model can effectively retain the
historical information features of temperature text data
sequences contained in human temperature images due to
its excellent performance in temporal dependencies.
*erefore, we construct a multimodal recognition neural
network with a parallel combination of CNN and LSTM, as
shown in Figure 6. *e LSTM branch of the multimodal
recognition neural network consists of two LSTM layers and
flatten layer, and the text information of temperature data is
converted into a feature vector named β in flatten layer after
two LSTM layers; the convolutional neural network branch
consists of four convolutional layers, four pooling layers, and
one flatten layer, and the microexpression image is con-
verted into a feature vector named β after four convolutional
and pooling layers in the convolutional neural network
branch. *e microexpression image is converted into a
feature vector named α in the flatten layer after 4 convo-
lutions and pooling. After fusing the two feature vectors in
series, the multimodal series fusion feature vector c is ob-
tained by full-connected layer FC-1 dimensionality reduc-
tion, and feature classification is performed to predict the
classification results.

3.4.2. Implementation of Multimodal Data Fusion. In this
subsection, the self-collected pairs of data are preprocessed
according to Chapter 3.*e first step uses the TIM algorithm
to process the data set to extend the microexpression cycle
and expand the data sample; the second step converts the
fragment into a frame by frame form for normalization. *e
feature vector of a picture in the CNN+LSTM network in
the self-built database is a matrix of 190 rows and 198
columns, as shown in Figures 7(a) and 7(b).*e temperature
images containing the head, chest, and shoulder temperature
data of the volunteers are shown in Figure 7(c). After
manually reading the temperature data of specific parts of
the volunteers, the feature vector of these temperature data
in the CNN+LSTM network is a 3-row and 2-column
matrix, as shown in Figure 7(d).

After obtaining the body temperature data for each part
of each training sample, the mean values of the temperature
of each part of the body corresponding to each category of
microexpressions were calculated. *e final mean values of
infrared body temperature measurements for the seven
categories were obtained as shown in Table 2.

As can be seen from the table, the temperature of the
head, chest, and shoulder is stable around 34.7°C when the
emotions are happy. *ese mean values are the standard

values for each category of emotion and will be fed into the
CNN+LSTM network along with the microexpression
images for training.

Next, let α be the feature vector of extracted micro-
expression images after network, αi1, αi2, . . . , αim repre-
senting the matrix ofm images, respectively, and let β be the
feature vector of body temperature data after network,
βi1, βi2, . . . , βin representing the head, chest, and shoulder
temperature of n groups, respectively. *is algorithm fuses
the two-feature information in series, and the mathematical
representation is

α � αi1, αi2, αi3, . . . , αim ,

β � βi1, βi2, βi3, . . . , βin ,

c � α + β � αi1, αi2, αi3, . . . , αim, βi1, βi2, βi3, . . . , βin ,

(6)

where the temperature data are in text form, and when
different text, numbers, English, and punctuation are fed
into the network, different feature vectors are obtained.
Tandem fusion can add the feature vector α of the micro-
expression image with the feature vector β of the three body
temperature data to obtain a fused feature vector c, as shown
in Figure 8.

*e advantage of fusing diverse features by tandem
method is that this method is additive and no information is
lost in the process. However, this method has an obvious
disadvantage that when the amount of data is too large, data
filtering or dimensionality reduction is required before fusion;
otherwise it will inevitably bring a burden to the later training
and classification, resulting in excessive computation, slow
convergence of the model, overfitting, and other problems.

*e k-nearest neighbor algorithm is one of the common
classification algorithms used in data classification. k-nearest
neighbor algorithm is the core idea that when there is a new
data input with no category in a given labeled sample, the k-
nearest neighbor algorithm will find k similar and related
data in the training set, and if these k data belong to a
category, the new data will belong to that category. *e new
data belongs to this category.

Let the given sample be X � x1, x2, . . . , xn ; in n
samples there are k-nearest neighbors; if k1, k2, . . . , km are
the number of samples belonging to class w1, w2, . . . , wc in
k-nearest neighbors, respectively, then the discriminant
function can be defined as

gi(x) � ki,



c

i�1
ki � k, i � 1, 2, . . . , c.

(7)

*e k-nearest neighbor algorithm calculates the distance
between the points in the data set through known categories
and the current point and selects the k points with the
smallest distance from the current point. *en the proba-
bility of occurrence of the category in which the first k points
are located is determined, and the category with the highest
frequency of occurrence of the first k points is returned as
the predicted category for the current point.
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4. Experiment

4.1. Experimental Software and Hardware Environment.
Operating system: Microsoft Windows 10 64-bit.

Development language: Python, MATLAB.
Development Environment: TensorFlow, Keras.
Data sets: SAMM data set, CASME data set, CASME II

data set, self-built data set.
Hardware: MSI Laptop GL62VR-7RFX (Intel(R) Cor-

e(TM) i7-7700HQ CPU@2.80GHz), Hikvision *ermom-
eter H11, Mind Vision industrial camera.

Memory: 16GB.
Graphics card model: NVIDIA GeForce GTX 1060.

4.2. LBP. *is section uses the LBP algorithm to realize
microexpression recognition on the public database, so that
it can be compared with the recognition accuracy of the
following LSTM and CNN+LSTM. *e implementation of
this algorithm is divided into three steps; firstly, data pre-
processing: this step has been done in Chapter 3; secondly,
the features of each image are extracted using the LBP
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Figure 6: Multimodal recognition neural network model.

(a)

[[150 128 128 ... 169 252 244]
[122 1 0 ... 2 104 141]
[113 0 0 ... 4 183 159]

[66 0 0 ... 4 52 245]
[61 0 0 ... 1 76 152]
[219 61 61 ... 8 147 158]]
(190, 198)

...

(b) (c)

[[1 0]
[0 1]
[1 0]]

(3, 2)

(d)

Figure 7: Feature vectors (b, d) obtained from the text data contained in images (a) and (c) after CNN+LSTM neural network.
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Figure 8: Multimodal feature vector fusion framework.
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algorithm; finally, the classification is performed using the
classifier. After the experimental study, it is found that LBP
has many advantages, for example, the image grayscale value
is constant after extracting features using LBP and the
features will not change when the image is rotated and
shifted. However, LBP can only process images singly and
cannot process long sequence data.

4.2.1. Feature Extraction. *e core idea of the LBP algorithm
is to compare a pixel point in an image with the grayscale
value of its neighboring pixel points computationally, and if
the neighboring pixel value is larger than the pixel value of
that point, the value obtained is 1, and otherwise it is 0. *e
mathematical representation is as follows:

LBPP, R(xc, yc) � 
P−1

P�0
s(iP − ic)2P

, (8)

where (xc, yc) is the pixel at the center point, ic represents
the luminance, and s is the sign function satisfying the
following relationship:

(i) s(x)� 1, x≥ 0,
(ii) s(x)� 0, x< 0.

*e difference between a pixel point and its neighboring
pixels is preserved in the LBP algorithm. External envi-
ronmental factors, such as changes in brightness and con-
trast, change the pixel value of the image, but the magnitude
of the LBP value remains unchanged, so LBP can avoid a
series of problems arising from the difference relationship
between pixel values in an image.

4.2.2. Classification Method. Classification is the process of
classifying the extracted features and outputting the clas-
sification results. Corinna Cortes et al. proposed in 1995 the
use of support vector machines (SVM), to solve problems
such as classification. For binary classification problems, the
core idea of SVM is to construct an optimal flat space to
classify the data into two classes; in case of high-dimensional
data, the algorithm constructs a mathematical representa-
tion of the hyperplane space as

f(x) � w
T
x + b, (9)

where both w and x are vectors. *e algorithm classifies the
data according to the value of f(x), comparing the data to
small black dots on the hyperplane. f(x)� 0 when the dots are
in the central hyperplane M0; M1 and M2 hyperplanes exist
on both sides of M0, and the values of f(x) of the data
distributed in M1 and M2 are 1 or −1, respectively.

SVM is stable and efficient compared with other algo-
rithms. Although the operation speed of random forest (RF)
is faster than SVM, it is easy to overfit when dealing with
noisy data of microexpression fragments; kmeans algorithm
is not applicable to high-dimensional data such as human
face. *erefore, SVM is still the mainstream choice for
microexpression recognition tasks at present.

4.2.3. Analysis of Experimental Results. In the experiments
to study the LBP algorithm, the number of samples is too
small, so the experiments use SVM classifier to avoid
overfitting. *e face region also needs to be divided into
chunks when LBP extracts features, and the final results are
different for different division methods. We divide the face
region into n × n(1≤ n≤ 8, n ∈ Z) regions and recognize
each image. *e recognition rates of different face region
divisions are shown in Figure 9.

From Figure 9, we can see that the recognition rate
increases with the increase of the number of regional blocks,
and the highest recognition rate of 62.8% is achieved when
the number of regional blocks is 7× 7. However, due to the
increasing number of regional chunks, the dimensionality of
feature vectors is also increasing, and the computation
volume is also increasing, which leads to the slow conver-
gence of the model, so the recognition rate of the model is
instead lower than that at 7× 7 when the number of chunks
is 8× 8. *e LBP algorithm has been developed for decades
and has a pivotal position in the microexpression recog-
nition task, and the traditional excellent algorithms are also
progressing and in the deep learning is still occupying a place
in the era of hot learning. Experimental results show that
feature extraction using LBP is simple and efficient, but there
is still much room for improvement at present. Below we will
compare the recognition accuracy obtained in this section
with the microexpression recognition accuracy obtained by
the experimental method below and select the best method
for multimodal feature fusion experiments.

4.3. CNN and LSTM. *is experiment will verify the effect
of microexpression recognition in LSTM alone and in the
combination of CNN+LSTM. Both approaches use the
CASME II dataset and divide the training set and test set
according to 6 : 4.

CNN+LSTM can be pretrained with CNN first and then
train the CNN+LSTMmodel by fine-tuning the parameters
and other methods when the network starts to converge,
which can make the network converge more rapidly. If the
two neural networks are trained directly at the same time at
the beginning, it will probably lead to the network not
converging or converging too slowly due to the small change
in the value of the loss function, which is time-consuming
and labor-intensive.

Algorithm framework is shown in Figure 10.
During training, both methods stabilized after about

3000 iterations, and the most obvious feature is that the
value of the loss function stabilized at about 1.0, and the
training process is shown in Figure 11. If the training is
continued, it will lead to overfitting of the model. After the
training is completed, the accuracy of the model is tested and
the confusion matrix is obtained, as shown in Figure 12.

As can be seen from Figure 12, the accuracy of the four
categories of normal, disgusted, surprised, and happy in this
model is higher than the recognition rates of several other
categories, which is due to the difficulty in evoking and
collecting certain categories when acquiring digital micro-
expression images, resulting in too few samples, too low
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recognition rates, and perhaps even overfitting problems.
*e recognition rates obtained by testing on each of the three
datasets with the two methods are shown in Figure 13.

From Figure 13, we can see that the recognition rate of
CNN+LSTM is higher under the three datasets than under

the LSTM model alone. *e reason for this is that after the
CNN convolutional layer the features contain redundant
information that has been filtered once and then filtered by
the LSTM, the redundant information in the features is
discarded, and the remaining information belongs to the
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essence, while when trained with the LSTM alone, no fea-
tures are available in the network at this time and further
training is required. *e experimental results do not differ
much under the three datasets. In the microexpression
recognition task, the recognition accuracy is higher using
CNN+LSTM neural network.

4.4. Recognition Effect of CNN+LSTM under Multimodal
Fusion Database. Recognition effect under multimodal fu-
sion database using CNN+LSTM is measured by comparing
the LBP algorithm with CNN and LSTM algorithms. We
selected the CNN+LSTM neural network with higher rec-
ognition rate and added the corresponding human temper-
ature data to the individual microexpression images for
training and then compared the recognition rate of the model
trained by the individual microexpression images without the

temperature data with that of the model trained under the
multimodal fusion database. During the first training with the
multimodal fusion database, the accuracy of the model and
the value of the loss function are shown in Figure 14.

As can be seen from the figure, the model accuracy
during this training stabilized at 0.69 after 60 iterations, with
almost no change, and the loss value also stabilized at around
0.9. However, after evaluating the model, it is found that the
effect is very unsatisfactory, which is due to the inclusion of
Early Stopping function (Early Stopping) in the network
structure, the purpose of which is to prevent overfitting.
During this training, the value of the loss function dropped
quickly and the curve was almost stable, indicating that the
model was stuck in a local optimum that could not be
jumped out, which is one of the drawbacks of the Early
Stopping method.

Confusion Matrix

Disgusted Depression Happy Sad Surprise NormalFear

Normal
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Sad

Happy

Depression

Disgusted

Fear 0.61 0.0 0.07 0.04 0.09 0.01 0.09

0.18 0.72 0.0 0.0 0.03 0.02 0.02

0.19 0.0 0.63 0.04 0.17 0.09 0.1

0.02 0.0 0.01 0.69 0.02 0.01 0.03

0.1 0.0 0.11 0.03 0.62 0.01 0.17

0.02 0.0 0.07 0.04 0.0 0.7 0.0

0.04 0.0 0.03 0.07 0.12 0.02 0.73

0.0
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Figure 12: Confusion matrix of CNN+LSTM under CASME II.
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Figure 13: Recognition rates of different algorithm models under three datasets.
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After modifying the structural parameters of the neural
network, the second training in the multimodal feature
fusion database was started. For this experiment, we used a
migration learning approach to first pretrain micro-
expressions on the multimodal fused dataset using CNN.
*e accuracy of the model during training is shown in
Figure 15(a), and the loss function is shown in Figure 15(b).

From the figure, we can see that the model accuracy
reaches about 80% and the loss function drops to around 1.2.
*en, the model was allowed to continue training in the
network structure of CNN+LSTM using the data from the

multimodal fusion database, and the accuracy curve reached
about 75.0% as shown in Figure 16(a), and the loss function
curve is shown in Figure 16(b). *e average accuracy of the
final model on the test set is 75.1%, as shown in Figure 17.

Finally, we use CNN+LSTM trained separately in the
microexpression images in Chapter 3, and the average ac-
curacy obtained on the test set is shown in Figure 18. *e
average recognition rate obtained by training on the self-
built multimodal fusion database is plotted against the av-
erage recognition rate obtained by training the micro-
expression images alone, as shown in Figure 19.
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Figure 14: (a) Accuracy of CNN+LSTM under multimodal fusion database and (b) loss function of the training model.
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Figure 18: Average accuracy of models trained on microexpression images alone.
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5. Conclusion

*is study introduces the data preprocessing part of the
current microexpression recognition task in Chapter 3. Both
traditional and deep learning methods require preprocessing
of data. Reasonable and effective preprocessing methods
tend to make the results better and better. In this study, we
completed the partitioning of face regions and face feature
point detection in the preprocessing part and extended the
microexpression cycle using TIM algorithm to prepare for
the feature extraction later. Subsequently, we compared the
recognition rates of LBP, LSTM, and CNN+LSTM algo-
rithms in the public microexpression database. *e exper-
imental results show that the recognition rate increases with
the number of image region chunks in the LBP algorithm
and reaches the highest recognition rate of 62.8% when the
chunks of regions are 7× 7.*e feature extraction using LBP
is concise and efficient, but there is still much room for
improvement. *e recognition rate based on LSTM algo-
rithm reaches 52.6% in CASME dataset, 55.1% in CASME II,
and 50.8% in SAMM. *e recognition rate based on
CNN+LSTM deep learning algorithm reaches 63.2% on the
CASME database. It reached 67.1% in CASME II and 64.3%
in SAMM. It can be seen that the CNN+LSTM deep
learning algorithm is superior in recognizing micro-
expression images. *en, we proposed a diversified infor-
mation coupling method combining temperature data and
microexpression images and designed an algorithmic
framework to conduct an experimental study of multimodal
fusion for microexpression recognition. *e temperature
data of the head, chest, and shoulders of volunteers were
collected simultaneously by a thermometer, and the mean
temperature values of each category corresponding to the
three parts were calculated. Finally, use the CNN+LSTM
network to train in the self-built multimodal fusion data-
base, and use the k-nearest neighbor classification to get the
experimental results. *e experimental results show that a
microexpression recognition method based on multimodal
fusion is accurate and effective in improving the recognition
rate of microexpressions, and the recognition rate reaches
75.1% on the multimodal feature fusion database, which
proves that the method is effective and feasible.
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