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Localization is recognized among the topmost vital features in numerous wireless sensor network (WSN) applications. ,is paper
puts forward energy-efficient clustering and localization centered on genetic algorithm (ECGAL), in which the residual energy,
distance estimation, and coverage connection are developed to form the fitness function. ,is function is certainly fast to run.,e
proposed ECGAL exhausts a lesser amount of energy and extends wireless network existence. Finally, the simulations are carried
out to assess the performance of the proposed algorithm. Experimental results show that the proposed algorithm approximates the
unknown node location and provides minimum localization error.

1. Introduction

,e application of wireless sensor networks for precise lo-
calization of devices and humans in bounded scenarios
characterizes a significant feature in the provision of highly
classified essential services in the discipline of logistics and
administration [1]. ,e basic implementation force for
various localization means is monitoring, sensing, and
tracking. However, few instances include health monitoring,
habitat monitoring, agriculture monitoring, environment
monitoring, military investigation, intruder recognition,
pollution control, and space handling on planet and moon.
WSN is perceived to be in any environmental structure such
as underwater and terrestrial nature. Presently, the persistent
distribution of such systems is prohibited as a result of their
gelatinous intricacy and their costs of maintenance [2].
Primarily, this is owing to the fact that, in interior envi-
ronments, precise localization in the occurrence of unem-
bellished multipath fading frequently necessitates a huge
amount of static sensing nodes which are referred to as
anchors (also called beacon) with a recognized location [3]
and the utilization of complex signal processing algorithms
for disseminated proximity approximation [4]. In a broader
spectrum, accumulating more anchor nodes means higher

position accuracy. However, anchor nodes cost more than
ordinary nodes and are 10 times more expensive [5]. By and
large, if the position of an unidentified node is discovered, the
anchor nodes will then be negligibly ignored. Consequently,
with the decrease of quantity of anchor nodes, the positioning
of the node is affected [6]. Reducing anchor nodes cuts cost,
and the more the anchor nodes are slashed, the lesser the
accuracy is. Lately, the approach used in WSN localization is
based on the optimization problem of multidimensional and
multimodal which is solvable by utilizing stochastic methods
which are based on population [7]. Section 2 of our research
reviews several metaheuristic algorithms used in the field of
WSN localization. ,e results of those research studies show
that these algorithms have successfully and drastically min-
imized errors in localization [8].

,e two distinctive ways by which localization can be
performed are distributed and centralized localization. In
the former, each node finds the unknown nodes by them-
selves, while in the latter, information from each node is
transmitted to a centralized component for further pro-
cessing in order to obtain information about the position.
Furthermore, the clustering process of the nodes in the
second one is seen to be divided into the network that is
interconnected, called clusters, with each cluster having
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many energized sensor nodes led by a cluster center (cluster
head) node which is a coordinator. ,e cluster center works
in sequence with other cluster centers which are all
provisional base stations. Most WSN nodes are catego-
rized into several states including isolated, normal, cluster
center, and gateway. Ultimately, isolated nodes preserve a
secure neighbor table where neighbor node information is
stored. ,e selection of cluster centers is considered very
essential in clustering. Clustering in sensor networks is to a
large extent power efficient. In a broader term, localization
methods are categorized into range-free and range-based
methods [9]. Range-based localization exploits the distance
connecting an unidentified node and a recognized node
(anchor) even though range-free methods solely utilize nodes’
connectivity data. On the other hand, range-based methods
are fine-grained localization methods, whereas range-free
methods are coarse-grained [10]. Range-based methods can
be classified into four major classes, namely, time-difference-
of-arrival (TDOA), time-of-arrival (TOA), angle-of-arrival
(AOA), and received signal strength (RSS). On the other
hand, range-free localization methods include centroid al-
gorithm, Monte Carlo localization, approximate point in
triangle test (APTT), closest point-based method, assump-
tion-based coordinate method, DV-HOP, and amorphous
method.

Energized sensor nodes in hostile environments must
stay alive for long time, but it is ambiguous or almost im-
possible to boost or change their batteries [11], and this
necessitates inventing new energy-efficient alternatives to
some of the existing traditional wireless networking chal-
lenges which include intermediate access control, self-
organization, bandwidth distribution, security, and routing.
Some factors to consider in prolonging the lifetime of
networks is by utilizing the gains of trade-offs such as
power, latency, and accuracy, coupled with using hierar-
chical (tiered) architectures. ,e position of a localized
unknown node is important because it helps solve bigger
WSN problems like routing and data aggregation. For this
reason, it is necessary to focus on localization methods in
WSN works [12]. Localization occurs once when con-
sidering static nodes, whereas tracking is nonstop locali-
zation of the cell node over time. Clustering is a preferred
method for attaining competent and accessible overall
performance in WSNs [13]. Clustering nodes into sets
conserves power and minimizes disputes at the network
since the nodes transmit their information to their cluster
heads through reduced distances. ,us, the circulation of
command through the transmission facilitates permits
locality of transmission [14]. With respect to the diffi-
culties faced by energized sensor nodes in localization, this
paper’s aim is to establish an elevated energy-efficient
localization technique which is dependent on low energy
depletion and a clustering structure. ,e proposed ap-
proach continues to show strength by dealing with loca-
tion accuracy via clustering means in GA localization.
Additionally, ECGAL successively reduces the whole WSN
energy consumption.

In summary, the main contributions of this paper are
summarized as follows:

(1). We utilized genetic algorithm (GA) with an energy-
efficient clustering approach to solving localization
problems in WSN.

(2) ,e performance of the proposed ECGAL (energy-
efficient clustering in genetic algorithm localization)
is analyzed and compared with DV-HOP (distance
vector-hop), CENTA (centroid algorithm), EDV-
HOP (evolutionary distance vector-hop), and CGAL
(clustering in genetic algorithm localization).

(3) ,e results have shown that our proposed approach
outperforms the existing localization algorithms
with respect to energy efficiency, localized distance
error, and coverage connection.

,e remaining part of this paper is structured as follows.
Section 2 elaborates several previous research exertions
relating to localization. In Section 3, a brief description of the
utilized genetic algorithm (GA) is presented, while Section 4
analyzes a sensor node localization setup and cluster for-
mation in a wireless sensor network localization scenario.
Section 5 provides details on the fitness function proposal,
including the definitions of energy efficiency, distance
estimation, and coverage connection. Section 6 presents
the performance evaluation of ECGAL. Finally, the re-
search summary and derived conclusions are presented in
Section 7.

2. Related Works

Lately, there are several algorithms in the field of optimi-
zation used in reproving the drawbacks in the localization of
WSN nodes [15]. Some of these existing related research
studies are briefly discussed in this section.

,e authors in [16] proposed an efficient hybrid bio-
inspired optimization in localization methods which is
applicable in industrial WSNs. In their research, they pro-
posed particle swarm optimization (PSO) and dragonfly
algorithm (DA) which earns slight time of computation and
extensive accuracy. On the other hand, Kanoosh et al.
suggested a node localization design which is dependent on a
current bio-inspired algorithm known as salp swarm algo-
rithm (SSA). ,e performance of their results is measured
against similar optimization algorithms, specifically, particle
swarm optimization (PSO), firefly algorithm (FA), grey wolf
optimizer (GWO), and butterfly optimization algorithm
(BOA) under distinctive wireless sensor network positioning
[17]. Based on the current localization and monitoring
setups, the localization of sensor nodes and the application
of WSN target trailing technology had been examined from
the perspectives of accuracy perfection, extending the WSN
natural life with respect to coordination theory, particle
filter, range-free theory, and different computing ap-
proaches. Zhang et al. merged an energized sensor triggering
algorithm and dynamic clustering process to prolong a
parallel particle filter algorithm and further target moni-
toring system [18]. ,e authors adopted a two-object
tracking strategy used in WSNs primarily based on cluster
algorithms which have been combined together to perform
many features in the proposed algorithm. Musafer et al.
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benefited from using cluster algorithms to count and detect
node in a cluster by reporting an event to the cluster center
(also cluster head) node according to a query, conveying all
audible information to the base station [19].

Numerous device-free localization methods are
launched in wireless systems. Alippi et al. proposed a radio
tomographic imaging- (RTI-) based localization technique
imaging the received signal strength (RSS) reduction
resulting from the targets with inexpensive and standard
hardware [20, 21]. Xu et al. employed device-free wireless
localization in WSNs which utilizes the RSS differences
between sensor nodes in order to find solutions to problem
[22, 23]. Wang et al. explained that when a target is found in
a WSN deployment area, the existence of the target will
imitate, strew, and engage the WSNs radio signals [24]. ,e
outcomes of localization are determined with several RSS
values using (3). Zhang and Wong exercised the genetic
algorithm for gathering ecological questions within a WSN
for successfully localizing its sensor nodes [25]. However, all
the coordinates of the grid network offer random pertur-
bations of the quality of the received signal. Furthermore,
genetic algorithm can enormously acquire information
about the location and minimize the likely errors related
with the RSSI estimation assumed for every coordinate.
Sackey et al. showed the implementation of GA to practically
localize WSN nodes by means of three coordinates or more
anchors [26].

,e research of Wang et al. [27] centered on range-free
localization as a cheap choice in comparison to range-based
methods. But the localization based on range-free undergoes
greater localization mistakes in contrast to the range-based
algorithms. Furthermore, Sivakumar et al. offered an ex-
panded form of DV-HOP which is a famous range-free
method that is reliant on hop-proximity calculation [28].
Primarily, the enhancement in the DV-HOP algorithm is
done depending on GA. Song et al. provided simulation
results to prove the superior precision performance of the
proposed localization algorithm in localization against the
performance of other localization algorithms in [29]. Kumar
discussed the localization of sensors in motion to deliver the
advancement of connectivity, security, and energy con-
sumption [30]. ,is needs to be an uncomplicated, dynamic,
and adaptable localization method. Wang et al. presented a
mobile sensor localization algorithm which is independent
and has the capacity of coping with the ambiguities, con-
nection breakdowns, and node flexibility in the network
[31]. Nonetheless, computational intelligence (CI) possess
qualities identical to such algorithms. Sharma et al. showed
that CI methods can function in a setting of imprecision and
ambiguity [32, 33]. CI consists of methods that can be al-
tered. ,ese methods can act logically in composite
situations.

3. Brief Introduction of GA Algorithm

,e proposed methodology relies on efficient clustering and
strong global search for GA in order to increase accuracy and
efficiency. Subsequently, the ensuing subsection presents
the GA.

3.1. Genetic Algorithm. Genetic algorithm (GA) is derived
from biological behaviors used in the field of optimization.
GA is an existing metaheuristic driven by the approach of
evolutional algorithms for natural selection. ,e assumed
population size is said to consist of Np competitors (can-
didates) on the possible solution which is made up of
decoding and encoding chromosomes to a fixed dimension
of binary numbers. ,e given interval contains 0 s and 1 s
with N bits. ,e GA approach follows a specific procedure
which is apportioned along with the genetic algorithm
operators into initialization, selection, crossover, and mu-
tation. Figure 1 shows a sample structure of a chromosome.

3.1.1. Initialization. Firstly, the countless mixed-up candi-
date solutions created tend to shape the preliminary pop-
ulation. ,e general population range is subjected to natural
adversities but characteristically comprises a number of
hundreds or more viable solutions. Conventionally, the now
scattered populace produces an overlay which completes the
varying feasible options (the search space). ,e search space
entails all likely options to the question. Seldomly, the
options might be “seeded” in the search space with high-
quality solutions.

3.1.2. Selection. ,e technique of decision making relies on
the chromosomes’ fitness capacities to control the mating
process for every individual. ,e chromosome holds the
results in the shape of genes and is chosen in accordance to a
particular selection method. ,e better the fitness value of
these chromosomes, the greater the probability of being
selected. Solutions with higher fitness have more chance to
duplicate. However, ranking takes place after the chromo-
some with the highest fitness value attains the most ap-
propriate chromosome. ,e defined function portrays the
nearness a solution can change to, providing best results.
Based on the value of likelihood selection, one or more
individuals multiply to bring forth offspring. ,e probability
of selecting is Pa of which each individual is determined by

P
a

�
Fitnessa

􏽐
Np

b�1 Fitness
b
, (1)

where a ∈ 1, . . . , Np{ }, and the fitness of the selected indi-
vidual ath is denoted as Fitnessa. ,e selection of a chro-
mosome denoted as a is based on r ∈ (0, 1) random
numbers. ,e cumulative probability Ca is well defined in
(2), and it satisfies a chromosome selected at random within
Ci− 1 < r≤Ca.

3.1.3. Crossover. Crossover operator pairs two formerly
selected chromosomes to copulate and produce offspring
that share positive characteristics of both parents. Copu-
lating comprises choosing two arbitrary crossover points c1

and c2 along the stretch of the chromosome. As a result, the
encoded binary numbers are surrounded by some points
that can be swapped between carefully chosen chromosomes
interchangeably.

Complexity 3



C
a

� 􏽘
Np

b�1
Fitnessb

. (2)

(1) Single-Point Crossover. In single-point crossovers, two
parents can produce a cut point and re-merge the first
fragment of the original parent crosses with the second
fragment of the subsequent parent to create one offspring.
,e second fragment of the original parent is then fused with
the first fragment of the subsequent parent to create another
offspring. In Figure 2, a random point is preferred from two
parents. Parents are then divided at the crossover point.
Finally, children are created by exchanging tails.

(2) Two-Point Crossover. ,e single-point crossover and the
two-point crossover share many similarities exempting the
number of cut points they both create. In the two-point
crossover, two offspring are created, but in the single-point
crossover, only one cut point is made. As observed from the
representation in Figure 3, there are two arbitrary numbers
differing between 0 and 1 (length of the chromosome).,e
genes found between these two arbitrary chosen numbers
are delivered from the initial parent to offspring and the
complementary genes in the second parent are neglected.
,e vacant cells of the offspring are then singly filled with the
unused genes from the second parent.

(3) N-Point Crossover. In Figure 4, n random crossover
points are chosen from a chromosome sample, which is then
fragmented along with those points. ,en, exclusive parts
are joined, which are alternating between parents. Finally,
there is generality of 1 point (still some point preference).

3.1.4. Mutation. Immature concurrences in the algorithm
are avoided since the mutation follows a GA mechanism
which brings out uncharted results in the GA population.
,e arbitrary binary changes in chromosomes direct the
process of mutation.,e sequence from selection, mutation,
and crossover is looped.,e global optimum of a perfect but
average individual is closely realized after multiple con-
secutive iterations of an expanding population.

(1) Displacement Mutation. ,e displacement mutation
process arbitrarily selects two genes and transposes them
after the parents are chosen. Figure 5 illustrates the
implementation of the displacement mutation.

(2) Shift Mutation. Following the selection of the parent
chromosome, two different points are carefully chosen
randomly in a 1 to n interval (chromosome span) and the
genetic factors positioned amidst these two points are moved
towards the left corner, rotationally. An illustration of this
shift mutation is presented in Figure 6.

3.1.5. Termination. ,e process of generation is recurrent
until an end state is attained. Specifically, the termination
criteria include the following: the value of the objective
function reaches a certain predefined value, the number of
iterations reaches the preset maximum iteration, the time or
calculation cost of the budget allocation is reached, the

1 0 1 1 0 0 1 1 0 0

Figure 1: Structure of a sample chromosome.
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Figure 3: Two-point crossover.
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Figure 2: Single-point crossover.
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Figure 4: N-point crossover.
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Figure 5: Displacement mutation.
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objective function value does not improve within a certain
number of iterations, and various mixed termination criteria
of the above termination conditions.

3.2.GAPseudocode. ,eGA process is concisely analyzed in
this section. Firstly, Figure 7 demonstrates the GA flow chart
which describes the step-by-step approach of the proposed
genetic algorithm. Secondly, the pseudocode for the GA is
shown in Algorithm 1.

4. Design of Localization Problem for WSN

4.1. Description of Localization. Since the received signal
strength (RSS) measurements are comparatively low-priced
and simple to implement in hardware, they are widely used
in real-world localization applications and are also approved
as a preserved confined measurement in most research
projects. ,e RSS at a reliable place within a localization area
can be stated as follows:

RSS do( 􏼁 � Pt + Ke − 10η log
do

d1
􏼠 􏼡 + α + β, (3)

where Pt symbolizes the nominal transmission power (dBM),
Ke stands for a constant depending on the system, η signifies the
path loss coefficient, d1 is a reference distance for the antenna in
far field, α denotes the fast fading effect, and β represents the
random attenuation sparked by shadowing.,e RSS is analyzed
by adjusting d0 which is the real transmitter-receiver distance.

,e anchor nodes are nodes whose precise locations are
recognizable prior to localization process. ,ese can also be
referred to as known nodes. When A represents the number
of anchor nodes, a group of all WSN nodes with known
locations is represented as KN. ,us, a known node position
Kx is denoted by (pkx, qkx). Furthermore, unknown nodes
are nodes whose location is calculated using a particular
localization algorithm. ,e group of unrecognized WSN
nodes is represented using UN:

KN � Kx|x � 1, 2, . . . , A

UN � Ux|x � 1, 2, . . . , B − A

RN � Ex|x � 1, 2, . . . , C

⎫⎪⎪⎬

⎪⎪⎭
. (4)

Consider B − A as the quantity of unrecognized nodes.
In real-time request, the actual positions of Ux defined by
(pux, qux) are undiscoverable. Let us assume the radius of the
communication range to be R. Given that two energized
sensor nodes are represented by px and py, if px is placed in

the broadcasting range of py, px is directly considered a
neighbor of py. As long as all the energized WSN nodes are
endowed with very similar range of transmission, py is
correspondingly a neighbor of px.

,e likelihood of locating a node without a specific location
is given as an estimated point because other unknown nodes
are also being located during the positioning. ,e estimated
position, actual position, and reference position are shown in
Figure 8. ,e estimated position of Ux is represented by
(p0

ux, q0ux). Apparently, the rationale behind localization is to
make (p0

ux, q0ux) � (pux, qux) for Ux. ,e reference nodes
comprise localized unknown nodes and known sensor nodes in
the course of trying to locate an energized sensor node. ,e
array of reference nodes is symbolized by RN, where
B≥C≥A. ,e reference node point Ex with an exact position
is defined by (pex, qex). In fact, if Ex is anchoring Ky, then
(pex, qex) � (pky, qky). However, if Ex contains localized
unknown nodes Uk, at the moment (pex, qex) � (p0

uk, q0uk).
,e actual distance which is represented by dxy is the

distance covered concerning the actual points of Ux as well
as Ex. ,emeasurement distance d1

xy is obtained by a certain
measurement method based on the error z, and this error is
determined by the random used measuring instrument. For
convenience, follow-up studies generally use random value
instead of this error. We presuppose that

Parent

Offspring

1 0 1 1 0 0 0 1

1 0 0 1 1 0 0 1

Figure 6: Shift mutation.

Start

End

Population initialization and
parameter initialization

Fitness evaluations

Crossover and mutation

Selection

The maximum number
of iterations

Yes

No

Output results

Figure 7: Flowchart for the genetic algorithm.

Complexity 5



d1
xy � dxy + N(0, dxyz), where (N(0, dxyz)) is the Gaussian

function with a mean value of 0 and a variance of dxyz.
,e distance covered by the estimated positions Ux and

Ey is denoted by d0
xy (estimated distance). Suppose un-

known node Ux has m neighbor reference nodes
E1, E2, . . . , Em, where y � 1, 2, . . . , m. We can derive the
following equations to get (p0

ux, q0ux):

d
1
xy �

�������������������

p − pey􏼐 􏼑
2

+ q − qey􏼐 􏼑
2

􏽲

, (5)

where (p, q) is an unknown dimension to resolve and pey, qey

is the position of Ey. Due to the existence of the distance
measurement error z and the estimated position (p0

ux, q0ux) it is
impossible to know the actual point (position) of Ey in a broad
sense. Making use of the estimated position (p0

ux, q0ux), the
estimated distance d0

xy at that point is expressed as

d
o
xy �

����������������������

p
o
ux − pey􏼐 􏼑

2
+ q

o
ux − qey􏼐 􏼑

2
􏽲

. (6)

Because of the uncertainty of dxy, that is, the actual
distance is different, and the goal of positioning is to achieve
an infinitesimal distance from d1

xy to d0
xy. Finally, we

construct the location problem denoted Ux as

􏽘

n

y�1
wy d

o
xy − d

1
xy􏼐 􏼑

2
,

􏽘

n

y�1
wy

�������������������

p − pey􏼐 􏼑
2

+ q − qey􏼐 􏼑
2

􏽲

− d
1
xy􏼠 􏼡

2

,

(7)

where wy � (1/d1
xy) 􏽐

m
x�1(1/d

1
xy), which gives better un-

derstanding pertaining to the reference point closer to Ux. In
factual terms, the distance covering the communication
range of an energized sensor is a halfway circle caused by
multipath fading, asymmetrical message delivery, and re-
dundant noise.

In finding the minimal localization error of unidentifi-
able (unknown) location points Ux, the change in estimated
and actual location point should be always be considered
which is found in the equation below.

LEx �
1
R

����������������������

p
o
ux − pux( 􏼁

2
+ q

o
ux − qux( 􏼁

2
􏽱

. (8)

4.2. Clustering Model. During the course of node clustering,
the most approximate energized sensors are observed to be in
the same locality (cluster) which tries to save energy by re-
ducing the transmission range and the closest point amidst the
energized sensors. Figure 9 shows a setup of the suggested
clustering scheme. ,e key concern is to discover the precise
location which depends on several decisions on how to locate
it. With the goal of finding the preferable location for a
particular energized sensor, the distance of a sensor node is
calculated using (5). Our new approach for well-organized
clustering splits the entire WSN nodes using Euclidean dis-
tance connecting sensor nodes into numerous clusters.
However, equal cluster size must be assured at some point in
the clustering process. Taking one cluster into consideration,
the sensor nodes are however placed in order tominimize (14),
that is, the Euclidean distance between the location points and
their immediate central point. ,erefore, if the location point
is initiated with a sensing range R in a deployment area
consisting of energized sensors at the central point, then it is
said to be covered. Consequently, the distance of a location
point px and the central sensor node at a point qc should be
less than or equal to the distance between a location point px

and any energized sensor node at point qy,∀y � 1, 2 to R, and
it is mathematically represented as d(px, qc)≤ d(px, qy).

5. Proposed Fitness Approach for ECGAL

In this section, we derive the fitness function for the pro-
posed energy-efficient clustering and localization using a
genetic algorithm.

(1) Select: primary population
(2) Estimate: the individual capabilities of respective participant of the population
(3) Repeat

Choose optimally performed participant to replicate
Using a genetic operation (mutation and crossover), breed another generation and produce offspring
Estimate the discrete capabilities of the reproduced offspring
Substitute underperformed section of the population using the reproduced offspring

(4) Until <criteria are met>.

ALGORITHM 1: Pseudocode for the GA.

Actual distance

Measured distance

Estimated distance

Estimated position

Actual position

Reference position

Figure 8: Distance between sensor nodes.
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5.1. Energy Efficiency. ,e ability for a chromosome to
withstand all conditions helps it in lowering the energy
exhausted and to maximize lifespan of the network system.
,e channel description for free-space and multipath
fading used still considered the sum of distance connecting
the receiver and the transmitter. Suppose the upper
threshold value do is greater than the node distance pairs d,
then the energy amplification consumption assumes a free-
space model, but if d is greater than or equal to do, a
multipath decay model is implemented. ,erefore, the
amount of energy needed by the radio to convey a h-bit
message over a distance d is given in (9). ,e radio also uses
up energy to accept a h-bit message given in (10). Eelec

depends on factors for instance modulation, filtering,
digital coding, and combining the dispersion of signals, but
the amount of energy to amplify the system, εfsd

2 or εmpd4,
relies on the receiving structure per the distance travelled
and the suitable error per bit. Eelec is defined as the elec-
tronic energy required by the electronic circuit and
d0 �

������
εfs\εmp

􏽱
. εfs and εmp are the amplifier energies in free

space and multipath, respectively. We denote Ei to be the
residual energy once a message is communicated through
hth-bits at a distance d from the receiver in (11). E is the
node’s recent energy. ,en, E1 � ET(h, d) + ER(h) is the
energy needed to send a message plus the energy consumed
while receiving a message.

ET(h, d) �
h × Eelec + h × εfsd

2
, d< do,

h × Eelec + h × εmpd
4
, d≥ do,

⎧⎪⎨

⎪⎩
(9)

ER(h) � h × Eelec, (10)

Ei � E − E1. (11)

5.2. Distance Estimation. ,e total distance covered starts
with an energized node point to another sensor point which is
assumed to be the distance between two neighboring sensor
nodes. It is expressed as dist(pa, qb). However, the distance
from a locational node to the central cluster position should

be insignificant in order to get closer to our target com-
pared to the distance from the cluster center to another
node. ,e latter is represented by dist(pa, qc) and the
former is denoted as dist(pc, qb). ,is should be ensured
orderly so that the wastage of energy of each node in a large
network is minimal. ,is boosts the cluster strength and
reduces the lack of sensor node involvement. For all node
points pxεN, where N is the set of all nodes, we compute
the sum of the distance Di with all its neighboring points
qy. However, these energetic neighboring points could be
the position of a node without location which could be
activated using the position of a known node. ,is distance
is given in (14).

D
o
G � 􏽘

N

pa∈N
dist pa, qb( 􏼁, (12)

D
1
G � 􏽘

N

qb∈N
dist pa, qc( 􏼁 + dist pc, qb( 􏼁, (13)

Di � 􏽘
py∈N

dist px, qy􏼐 􏼑.
(14)

5.3. Coverage Connection. Every WSN can be considered as
a connected undirected figure denoted by G � (V, E), where
V consists of vertices comprising of v1, v2, . . . , vu􏼈 􏼉 which
denotes the energized node point found in the WSN along
with E which is the edge set e1, e2, . . . , ef􏽮 􏽯 representing the
distance between the energized sensor nodes. ,is approach
considers the weighted values depending on energy efficiency,
distance estimation, and coverage connection which are
represented on the edges. Furthermore, every edge in the
network possesses a finite real number which is represented as
wi. Let the sensing range of a node be denoted by Sr. Let
c � c1, c2, . . . , cm be the connectivity variables associated with
the energized sensor nodes px and py. However, Cy is the
area covered by yth cluster center node, N is the sum of all
recognized energized sensor nodes, and C is the WSN area.

CL �
1, if px − py

�����

�����≤ Sr,

0, otherwise,

⎧⎪⎨

⎪⎩

Ci � 􏽛

N

y�1
∈ Cy

Cy

C
.

(15)

,e final fitness function that demands to be computed
in minimization is given below, and it constitutes the pre-
vious fitness minor objectives:

Fi � w1Ei + w2Di + w3Ci, (16)

where w � w1, w2, . . . , wf􏽮 􏽯 is the distance associated with
the edges. We define w1, w2, w3 to be the weight coefficients
attached to the fitness function in order to quantify its
contribution to each of the other subfunctions, and it is
expressed by 􏽐

3
i�1 wi ≥ 0, wi ∈ (0, 1).

Target position

Proposed cluster location result

Cluster

Anchor node
Cluster center

Node

Figure 9: Expected WSN cluster structure.
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6. Performance Evaluation

,eperformance of our approach is evaluated in this section.
,e device used for the evaluation was Intel(R) Core (TM)
i5-3317U CPU PC with 6144 RAM, which was accomplished
using MATLAB 2014a. It is compared with existing ap-
proaches such as DV-HOP (distance vector-hop), CENTA
(centroid algorithm), EDV-HOP (evolutionary distance
vector-hop), and CGAL (clustering in genetic algorithm
localization). ,e network scenario is considered realistic in
nature with 200 energized sensor nodes randomly deployed
with 25% anchor nodes, several unknown nodes, and ref-
erence nodes. ,e experimental parameters deployed in this
work are further presented in Tables 1 and 2.

Figure 10 provides a solid evidence to conclude that the
new approach performs impressively compared to other
location-based algorithms in error location. Almost all the
applied approaches work robustly in the same configuration.
ECGAL drops gently because of the additional anchor nodes
in the network which provided more reference points for the
target nodes. However, the network is boosted when there
are sufficient anchor nodes because the distance joining the
unknown nodes and the anchor nodes gets smaller. In our
simulation output, CGAL, EDV-HOP, and CENTA showed
less localization errors as well.

In Figure 11, it is assumed that as the transmission
range expands, the number of seconds of continuous
simulation operation increases. Simultaneously, the
transmission range starts from 5m and steadily increases
by 5m so as to evaluate the performance of our approaches.
,e ability to locate a node improves and could be achieved
when the radius of transmission inclines which reduces the
error in localization. Finally, when the transmission range
increases, ECGAL obtains better results in terms of location
accuracy.

,e experimental results in Figure 12 show the task of
location error computed against varying node numbers. On
top of it all, as the number of the energized sensor nodes
increases, the localization error for all the algorithms de-
creases slowly. Among all our localization approaches,
ECGAL shows fewer points for its localization error. As the
number of nodes reaches 200, more reference points are
found which help to localize the node with less error.
However, as there is increase in energized nodes, there is also
slack in lifetime contributing factor for CENTA and DV-
HOP.

Figure 13 shows the localization error against the
number of clusters considering different algorithms. ,e
clustering technique proposed in this paper improves the
energy efficiency in the network. With the increase of cluster
number, the localization error decreased. ECGAL and
CGAL dropped slowly because when the number of clusters
is high, fewer nodes will be found in their clusters, which
makes it easier to locate an unknown node, thereby reducing
the localization error drastically. However, CENTA is seen
to perform almost similar to EDV-HOP because of its special
clustering abilities. ,e energy depletion level of a network
enhances if there are some reasonable number of clusters. In
DV-HOP, the transmission scale has enough energized

nodes, which indicates that more of these nodes are found in
each cluster.

Figure 14 depicts the residual energy against the number
of iterations. ,e energy savings are meaningful in ECGAL
compared to CGAL, EDV-HOP, CENTA, and DV-HOP. All
the approaches dropped more and more until 80 iterations
where they start to drop significantly.,e amount of residual

Table 1: Parameters used in sensor field and GA.

Simulation parameters Value
Total number of nodes 200
Deployment field area 200∗ 200m2

Communication range R 40m
Number of anchor nodes 50
Number of unknown nodes 100
Maximum iterations 300
Number of clusters 5
Population size 50
Length of chromosome 5
Number of generations 150
Mutation rate 0.5
Crossover % rate 0.8

Table 2: Parameters used in the energy model.

Parameters Values
Initial energy 2 J
Distance (d0) 87m
Packet size 200 bits
Energy for transmitting (ET) 50 nJ/bit
Energy for receiving (ER) 50 nJ/bit
Energy for data aggregated (ED) 50 nJ/bit/signal
Energy consumption of power amp in free
space (εfs)

10 pJ/bit/m2

Energy consumption of power amp in
multipath fading (εmp)

0.0013 pJ/bit/m4
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Figure 10: Localization error against the number of anchor nodes.
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energy found in ECGAL surpasses CGAL because the energy
left behind after 120 iterations is about 70 J.,is could due to
the optimal election of cluster centers and the equidistance
between the intracluster and intercluster. At the initial
position, the performances of CGAL and EVD-HOP are the
same. According to our graph, the energy remaining for
EDV-HOP and CENTA after 160 iterations was 55 J and
50 J, respectively. Finally, the decline in residual energy
affects the life expectancy of the network which in turn
increases the number of exchanged control packets
(overhead).

In Figure 15, the time taken to process the algorithm is
computed for 200 iterations over seconds. ,e number of
messages generated to messages sent to the final point is
described as the total success rate of packets delivered. Fi-
nally, ECGAL performs better in terms of the convergences
rate which is best compared to CGAL, EDV-HOP, CENTA,
and DV-HOP. It is clear that the ECGAL proves its success
in transporting about 90% information to its final desti-
nation. With an increase in the number of iterations, CGAL
and EDV-HOP showed better execution compared to
CENTA and DV-HOP. ,e performance output of CENTA
and DV-HOP is almost similar.
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Figure 14: Residual energy against the number of iterations.
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Figure 12: Localization error against the total number of nodes.
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Figure 11: Localization error against transmission range.
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Figure 13: Localization error against the number of clusters.
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Figure 16 shows the lifetime of the network. CGAL and
the proposed technique radically improved the life of the
network compared to EDV-HOP, CENTA, and DV-HOP
techniques. ,e live nodes are evaluated by increasing the
number of iterations to 200. ,e energy level of the net-
works’ energized sensor nodes drains after several iterations.
When the number of iterations reaches 180, compared with
CGAL's 50 active nodes, ECGAL has 60 active nodes. At the
same time, EDV-HOP and CENTA have only about 40 and
25 active nodes, respectively. ,e lines of the active nodes in
the figure indicate that our method has a longer life span
compared with other methods. On account of the developed

energy-efficient clustering localization approach based on
genetic algorithm, ECGAL showed better output than that of
the CGAL, EDV-HOP, CENTA, and DV-HOP algorithms.

In Figure 17, the influence of connected nodes is studied
by analyzing the coverage against the network node cor-
relation staring from 10 through 70. In our experiment, 200
energized sensors occupy 200 by 200m2 deployment area.
With an increase in connected nodes, the localization
coverage for ECGAL, CGAL, EDV-HOP, CENTA, and DV-
HOP also increases. When the readings on horizontal axis
reach 50 connected nodes, the network coverage still in-
creases for ECGAL and CGAL. When the coverage location
indicator accumulates 70 bars, the strength of the node to
node relationship still goes higher for EDV-HOP, CENTA,
and DV-HOP.,e density of neighboring energized sensors
warrants cost-effective and well-built connection between
known and unknown node points. In general, our improved
positioning method is superior to other existing methods in
terms of accuracy.

7. Conclusion

,e proposed ECGAL approach for ultimate location
problem shows significant results after employing, and it
proved that the energy-efficient clustering based on genetic
algorithm localization approximates the node that demands
to be identified and later assures a minimal location error
when matched with DV-HOP, CENTA, EDV-HOP, and
CGAL. ECGAL is better due to its efficient energy clustering
strategy. In fact, our improved approach for better locali-
zation reconstructs our solution to quickly detect the lo-
cation of the unidentifiable sensor node. However, nodes
with known location point are randomly dispersed in an
exact WSN because of the randomly deployed energized
node point. For that reason, anchor nodes assist in locating
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Figure 16:,e number of alive nodes against the number of nodes.
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Figure 17: Localization coverage against network connectivity of
nodes.
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wherever unknown sensors are even though the converse is
true, and thus excessive neighboring known points cause
more nodes to be unlocalized. In conclusion, we can ac-
knowledge that the proposed ECGAL performs effectively
when studied with other approaches in relation to true
position point and minimal error in terms of location.
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