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Traditional methods for stiffness analysis of the air spring are based on deterministic assumption that the parameters are fixed.
However, uncertainties have widely existed, and the mechanic property of the air spring is very sensitive to these uncertainties. To
model the uncertainties in the air spring, the interval/random variables models are introduced. For response analysis of the
interval/random variables models of the air spring system, a new unified orthogonal polynomial expansion method, named as
sparse quadrature-based interval and random moment arbitrary polynomial chaos method (SQ-IRMAPC), is proposed. In SQ-
IRMAPC, the response of the acoustic system related to both interval and random variables is approximated by the moment-based
arbitrary orthogonal polynomial expansion. To efficiently calculate the coefficient of the interval and random orthogonal
polynomial expansion, the sparse quadrature is introduced. *e proposed SQ-IRMAPC was employed to analyze the mechanic
performance of an air spring with interval and/or random variables, and its effectiveness has been demonstrated by fully
comparing it with the most recently proposed orthogonal polynomial-based interval and random analysis method.

1. Introduction

Air springs are widely used for isolating vibrations to en-
hance comfort for the passengers in railway vehicles. Stiff-
ness is an important characteristic parameter to evaluate the
performance of an air spring. Traditional methods to analyze
the stiffness of air spring are deterministic methods, in which
the input parameters are fixed [1]. However, due to the
manufactory error and other factors, the uncertainty related
to the material properties is inevitable. It is shown in [1] that
the stiffness of the air spring is very sensitive to the input
parameters such as cord angle and material of cord. *us, it
is desirable to predict the response of the air spring system
with uncertainties.

To deal with the uncertainty in the air spring, a suitable
uncertain model should be established to describe the un-
certain parameters. *e probabilistic method can be viewed
as the most valuable uncertainty analysis method as it can
provide detailed statistical properties of response for engi-
neering design [2]. In the probabilistic method, the

uncertainty is modeled as a random variable whose detailed
statistical properties are available. Research studies on re-
sponse analysis of the random uncertain system are rather
mature, and different probabilistic methods have been
proposed, including Monte Carlo method (MCM) [3],
perturbation stochastic method [4], and polynomial chaos
method [5, 6]. Among various probabilistic methods, the
polynomial chaos method is the most popular uncertainty
propagation approach for random analysis due to its good
accuracy and efficiency.

In the polynomial chaos method, the response of interest
is approximated in terms of orthogonal polynomials [7]. By
using the optimal random polynomial basis, the polynomial
chaos method can converge exponentially for random
analysis. In order to construct the optimal random poly-
nomial basis, lots of polynomial chaos methods have been
developed [8–10]. *e generalized Polynomial chaos (gPC)
has become the most widely used polynomial chaos method
due to the ease of the construction of polynomial basis [7]. In
the gPC, the orthogonal polynomial from the Askey scheme
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is employed to establish the polynomial chaos expansion.
However, the Askey scheme can only provide the optimal
polynomial basis for some well known probability distri-
butions. For the random problem with complex probability
distribution, a nonlinear variable transformation should be
employed in gPC and the accuracy of gPC may be deteri-
orated. To obtain the optimal random polynomial basis
related to arbitrary probability distribution, the Arbitrary
Polynomial Chaos (APC) was then developed. In the
framework of APC [8], the optimal random polynomial
basis related to arbitrary PDFs can be numerically con-
structed. Originally, the polynomial basis of APC was
constructed according to the PDF by using Gram–Schmidt
orthogonalization. Subsequently, Oladyshkin et al. found
that the APC can be directly based on a matrix of the
moment of the random variable [9]. As the Moment-based
Arbitrary Polynomial Chaos (MAPC) can avoid the fitting
error introduced by the construction of the PDF for random
variable, the convergence of the MAPC was significantly
better than that of the conventional APC [10].

In these above random methods, a huge number of
statistical data is needed to obtain the moment or PDF of
random variables. However, in practice, the available data
may be not sufficient to construct the precise statistical
property of the random variable. For the uncertain problem
with limited probability information, lots of non-
probabilistic methods and imprecise probabilistic methods
have been developed, such as the interval analysis [11, 12],
the fuzzy sets [13, 14], the p-box theory [15], and the evi-
dence theory [16–18]. In most of these nonprobabilistic
methods, a definition of the imprecise probability of un-
certain parameters is required, while in the interval ap-
proach, only the bounds of variables should be obtained. In
practice, as the bounds for an uncertain parameter is more
convenient to be obtained, the interval analysis technique
has become a very popular nonprobabilistic method. During
last decades, a lot of interval analysis techniques have been
developed, such as the first-order perturbation technique
[19], the modified first-order perturbation technique [20],
the interval factor technique [21], the rational expansion
technique [22], the polynomial interval expansion methods
[23, 24], and the vertex method [25, 26].

As aforementioned, the probabilistic method and in-
terval method are suitable to solve the uncertain problem
with pure random variables or pure interval variables. But,
in real engineering, the interval and random variables may
exist simultaneously if the available information on un-
certain parameters is different. *erefore, the engineering
application prompts a growing demand for developing the
hybrid interval and random analysis method. In particular,
lots of hybrid interval and random analysis methods have
been proposed based on the perturbation technique and the
polynomial chaos theory. *e hybrid perturbation method
can achieve high efficiency for uncertainty analysis with
both the interval and random variable, but it is limited to
the uncertain problem with the small uncertainty level [27].
To solve the hybrid uncertain problem with the large
uncertainty level, Wu et al. proposed a hybrid polynomial
chaos method by integrating the Chebyshev interval

expansion and gPC [28]. Based on gPC and dimension-
wise analysis technique, Xu et al. developed a hybrid un-
certainty analysis method for response analysis of the
structure-acoustic system [29]. Based on the parametric
Gegenbauer polynomial from the Askey scheme, Yin et al.
proposed a unified polynomial chaos method for interval
and random analysis of the acoustic system [30]. To im-
prove the accuracy of the polynomial chaos method for the
hybrid uncertain structure-acoustic problem with complex
probability distributions, the APC has been recently de-
veloped for hybrid interval and random analysis [31, 32].
As the APC can obtain the optimal random polynomial
basis related to arbitrary PDFs, the APC-based hybrid
uncertainty analysis method shows a better accuracy than
the traditional gPC-based hybrid uncertainty analysis
method.

From an overall perspective, the APC has achieved great
success in the field of interval and random analysis. In the
interval and random arbitrary polynomial chaosmethod, the
Gauss quadrature is used to calculate the expansion coef-
ficient. However, the computational burden of IRAPC by
using Gauss quadrature will increase exponentially with the
number of variables. *e air spring system always involves
lots of uncertain parameters, and the computational burden
for finite element analysis of the air spring is relatively large.
*us, it is necessary to improve the computational efficiency
of IRAPC for uncertainty quantification especially when it is
used for response analysis of the air spring.

*e paper aims to develop a robust orthogonal poly-
nomial expansion approach for interval and/or random
analysis of the air spring system with arbitrary statistical
data. To avoid the errors introduced by estimating the PDF
of random variables, the moment-based polynomial chaos
is introduced for hybrid interval and random analysis.
Especially, the choice of optimal polynomial basis for
interval analysis is justified in the framework of moment-
based polynomial chaos theory. To efficiently calculate the
expansion coefficient of the moment-based polynomial
chaos, the sparse quadrature is introduced. Based on the
moment-based interval and random polynomial chaos
expansion and the sparse grids quadrature, a new method
named as Sparse Quadrature-based Interval and Random
Moment Arbitrary Polynomial Chaos (SQ-IRMAPC)
method is proposed. *e proposed method has been used
to analyze the uncertainty of response for the air spring
system, and the effectiveness of the proposed method has
been also compared with the recently proposed interval
and random APC method. Note that the main difference
between the proposed method, the recently proposed
interval, and random APC method is that different inte-
gration methods are used to calculate the expansion
coefficient.

2. Basic Theory of MAPC

InMAPC, the orthogonal polynomial, which is derived from
the moment of the random variable, will be used to ap-
proximate the response of interest.*eMAPC expansion for
the approximation of a function can be expressed as follows:
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Y(x) � 􏽘
N

i�0
yiφi(x), (1)

where N is the retained order of MAPC expansion, yi

represents the expansion coefficient to be estimated, φi(x)

denotes the polynomial basis of order i, and φi(x) varies for
different random variables. In MAPC [9], the polynomial
basis can be obtained according the moment of the random
variable without knowing the PDF. As a comparison, the
polynomial basis in the gPC [7] and the original APC [8] is
obtained on the condition that the PDF of the random
variable is well defined.

*e orthogonal polynomial of MAPC can be denoted by
the three-term recurrence as follows:

φ− 1(ξ) � 0,

φ0(ξ) � 1,

φk+1(ξ) � ξ − ak( 􏼁φk(ξ) − bkφk− 1(ξ), k � 0, 1, 2, . . . .

(2)

In the above equation, aj and bj denote the recurrence
coefficients to be estimated. In the framework ofMAPC, aj and
bj can be derived from a Hankel matrix of the random mo-
ments. *e Hankel matrix of the random moments can be
expressed as [9]

M �

μ0 μ1 . . . μp

μ1 μ2 μp+1

⋮ ⋱

μp μp+1 μ2p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where μk(k � 0, 1, . . . , 2p) is the kth moment of the random
variable and p should be no less than the retained order of
MAPC expansion.

Under the condition that the Hankel matrix is positive
definite, the Cholesky decomposition ofM can be computed,
namely, M � RTR. Rutishauser [32] has derived explicit
analytic formulas to obtain the recurrence coefficient from
the Cholesky matrix entries R. *e recurrence coefficients in
terms of rij can be expressed as

aj �
rj,j+1

rj,j

−
rj− 1,j

rj− 1,j− 1
,

bj �
rj+1,j+1

rj,j

,

(4)

where rij(i � 1, 2, . . . ; j � 1, 2, . . .) is the ith row jth column
element of R, r0,0 � 1, and r0,1 � 0. *e polynomial basis
obtained through equations (2)∼(4) can satisfy the following
orthogonality relation:

􏽚
Ω
φi(x)φj(x)ρ(x)dx � δij, (5)

where δij denotes the Kronecker delta and ρ(x) denotes the
PDF of a random variable. In the framework of MAPC, ρ(x)

can be an arbitrary discrete or continuous function.

Based on orthogonality of the polynomial basis, yi in
equation (1) can be calculated by [32]

yi �
〈Y(x),φi(x)〉
〈φi(x), φi(x)〉

�
1
hi

􏽚
Ω

Y(x)φi(x)ρ(x)dx. (6)

*e integral in the above equation can be calculated by
the Gaussian quadrature as follows [32]:

yi �
1
hi

􏽚
Ω

Y(x)φi(x)ρ(x)dx �
1
hi

􏽘

m

i�1
Y 􏽢xi( 􏼁φi 􏽢xi( 􏼁 􏽢wi( 􏼁, (7)

where 􏽢xi and 􏽢wi are the Gaussian nodes and the Gaussian
weights, respectively, m is the total number of Gaussian
nodes, and 􏽢xi and 􏽢wi can be obtained from the eigenvalue
decomposition of the Jacobi matrix assembled with ai and bi.
Particularly, the Jacobi matrix Jn can be expressed as [9]

Jn �

a1 b1

b1 a2 b2

b2 ⋱ ⋱

⋱ an− 1 bn− 1

bn− 1 an

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

In particular, if VTJnV � diag(λ1, λ2, . . . , λn) and
VTV � I, in which I is the n × n dimension identity matrix,
then the desired 􏽢xi and 􏽢wi can be determined by

􏽢xi � λi,

􏽢wi � b0v
2
i,1, i � 1, 2, . . . ,

(9)

where vi,1 is the first component of the ith column vector of
V. *e coefficient b0 can be arbitrary and set by convention
such that b0 � 􏽒 w(x)dx.

3. SQ-IRMAPC Method

In this section, the MAPC is introduced for interval and
random analysis, and the IRMAPC expansion is established.
In addition, the sparse quadrature is used to calculate the
expansion coefficient of IRMAPC. By a combination of the
IRMAPC and the sparse quadrature, a new hybrid uncer-
tainty analysis method, named as the Sparse Quadrature-
based Interval and Random Moment Arbitrary Polynomial
Chaos (SQ-IRMAPC) method, is proposed.

3.1. IRMAPC Expansion. In this section, both the random
and interval variables are considered in Y � F(xR, xI). *e
function contains random variable xR and an interval var-
iable xI. Hence, the output of the function will have the
characteristics of both random and interval variables, and
the proposed IRMAPC method will approximate the re-
sponse by IRMAPC expansion.

*e IRMAPC expansion for a function can be expressed
as

F � F xI
, xR

􏼐 􏼑 � 􏽘
0≤i1+···+iL1+···+iL≤n

fi1,...,iL
φi1,...,iL1

xI
􏼐 􏼑φiL1+1,...,iL

xR
􏼐 􏼑,

(10)

Complexity 3



where

φi1 ,...,iL1
xI

􏼐 􏼑 � φi1
x

I
1􏼐 􏼑 × · · · × φiL1

x
I
L1

􏼐 􏼑,

φiL1+1,...,iL
xR

􏼐 􏼑 � φiL1+1
x

R
iL1+1

􏼒 􏼓 × · · · × φiL
x

R
L􏼐 􏼑.

(11)

In traditional IRMAPC, the expansion coefficients are
calculated by

fi1 ,...,iL
�

1
hi1

× · · · × hiL

􏽘

M1

j1�1
. . .

􏽘

ML

jL�1
F 􏽢x

I
, 􏽢x

R
􏼐 􏼑φi1 ,...,iL1

􏽢x
I

􏼐 􏼑φiL1+1,...,iL
􏽢x

R
􏼐 􏼑􏽢wi1 ,...,iL

,

(12)

where 􏽢xI � [􏽢xj1
, . . . , 􏽢xjL1

] and 􏽢xR � [􏽢xjL1
, . . . , 􏽢xjL

] denote the
Gaussian nodes of interval variables and random variables,
respectively, 􏽢wj1 ,...,jL

� 􏽑
L
k�1 􏽢wjk

is the Gaussian weight,
Mj(j � 1, 2, . . . , L) denotes the number of Gaussian nodes
related to the jth variable, 􏽢xjk

and 􏽢wjk
denote the jkth

Gaussian node and weight related to the kth variable, re-
spectively, and 􏽢xjk

and 􏽢wjk
can be calculated through

equations (8) and (9).
It can be found from equation (12) that the total number

of Gaussian points to determine the coefficient is
N � 􏽑

L
k�1 Mk. Obviously, the total number of Gaussian

points will increase exponentially with the increasing
number of uncertain parameters, which may lead to tre-
mendous computational cost. In order to improve the
computational efficiency of moment-based polynomial
chaos expansion for interval and random analysis, the sparse
Gaussian quadrature will be introduced to calculate the
expansion coefficient.

3.2. Determine the Expansion Coefficient by Using Sparse
Quadrature. *e sparse quadrature is based on the Smolyak
algorithm, which has been widely used in the fields of
numerical integration and interpolation and image pro-
cessing. In this section, the basic principles of sparse
quadrature for calculating the expansion coefficient will be
deduced.

A continuous function F(x) defined on x ∈ [− 1, 1]

approximated by polynomial chaos expansion can be
denoted as Q1

l (F), where l denotes the retained order of
polynomial chaos expansion. According to the nested hi-
erarchical basis principle of the Smolyak algorithm, the
difference format of the approximated function is [33]

Δ1k(F) � Q
1
k − Q

1
k− 1􏼐 􏼑(F), Q

1
0(F) � 0. (13)

Furthermore, for a d-dimension problem, the approxi-
mated function with the order l of the Smolyak algorithm
can be contrasted as

Q
d
l (F) � 􏽘

|k|≤ l+d− 1
Δ1k1 ⊗ · · · ⊗Δ1kd

􏼐 􏼑(F), (14)

where |k| denotes the sum of the multidimensional indi-
cators (|k| � 􏽐

d
i�1 ki) and ⊗ expresses the operation of the

tensor product.*rough the operation of the tensor product,
equation (14) can be expressed as

Q
d
1(F) � 􏽘

l+1≤ |k|≤ l+d

(− 1)
l+d− |k|

d − 1

l + d − |k|
􏼠 􏼡 Q

1
k1
⊗ · · · ⊗Q

1
kd

􏼐 􏼑(F).

(15)

*erefore, the integration points in the square grids can
be defined as

U
d
1 � ∪

l+1≤ |k|≤ l+d
U

1
k1
⊗ · · · ⊗U

1
kd

􏼐 􏼑. (16)

*enumber of the integration points based on the sparse
grid method is estimated by

N ≈
2l

l!
d

l
. (17)

*e corresponding coefficient of the weights is

w
i1...id
k1...kd

� (− 1)
l+d− |k|

d − 1

l + d − |k|
􏼠 􏼡 w

i1
k1
⊗ · · · ⊗w

id
kd

􏼒 􏼓. (18)

3.3. Optimal Choice of the Polynomial Basis for IRMAPC
Expansion. According to Witteveen and Bijl [8], the ac-
curacy of MAPC expansion by using different polynomial
basis varies greatly. *erefore, when the MAPC expansion is
extended for interval analysis and hybrid analysis, a key
procedure is to determine the optimal polynomial basis
related to each random variable and each interval variable.
For the random variable, the polynomial basis derived from
the moment of the random variable (through equations
(2)∼(4)) can be viewed as the optimal random polynomial
basis [11]. For the interval variable, there may also exist an
optimal interval polynomial basis. In the following text, the
optimal choice of polynomial basis of MAPC for interval
analysis will be discussed.

*e main aim of this section is to choose an optimal
interval polynomial basis for interval analysis in the frame-
work of moment-based arbitrary orthogonal polynomial
expansion. *e interval analysis is to find the maximum and
minimum value of the response.*eoretically, the accuracy of
moment-based arbitrary polynomial interval expansion can
be improved by reducing the error ofmoment-based arbitrary
orthogonal polynomial expansion at the maximum and
minimum. However, the maximum or minimum may be an
arbitrary point in the range of variation of the interval var-
iable. *erefore, when the moment-based arbitrary orthog-
onal polynomial expansion is used to approximate the
response, we can determine the maximum value of the
possible error of Pn(x) over an interval as follows [33]:

ε∞ � max
a≤x≤b

F(x) − Pn(x)

F(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

F(x) − Pn(x)

F(x)

�������

�������∞
, (19)

where Pn(x) denotes the nth order moment-based arbitrary
orthogonal polynomial expansion. Among all the nth order
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moment-based arbitrary orthogonal polynomial expansions,
if P∗n (x) satisfied

F(x) − P∗n (x)

F(x)

�������

�������∞
� min

Pn(x)∈Hn

ε∞ � min
Pn(x)∈Hn

max
a≤x≤b

F(x) − Pn(x)

F(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(20)

then P∗n (x) can be viewed as the optimal interval polynomial
basis. In equation (14), Hn denotes the universal set of all nth
order moment-based arbitrary orthogonal polynomial ex-
pansion. According to the theory of Weierstrass [33], P∗n (x)

is available. However, when n≥ 1, the computation of P∗n (x)

is rather difficult. In addition, the polynomial basis of P∗n (x)

varies for different retained order n. *us, in general, a
polynomial basis whose ε∞ is relatively small is used for
numerical approximation instead of P∗n (x). In this paper, a
moment-based arbitrary polynomial basis whose ε∞ is
relatively small will be used as the interval polynomial basis.

According to the theory of orthogonal expansion, the
polynomial basis depends on its related weight function or
moment. In order to determine interval polynomial basis,
the effect of the weight function on ε∞ will be investigated
through a simple numerical example.

Example: suppose that y � ex2, where the range of var-
iation of x is [− 1, 1].

Different weight functions are considered, including the
weight function of Chebyshev expansion; the weight func-
tion whose weight is zero at the midpoint or the bounds of
the interval [− 1, 1] is shown in Figure 1; these two types of
weight functions are named as convex shape weight function
and concave shape weight function, respectively. For clarity,
the expression of each weight function is listed in Table 1. ε∞
of the moment-based arbitrary orthogonal polynomial ex-
pansion with different weight functions is shown in Figure 2.

It can be found from Figure 2 that ε∞ of the moment-
based arbitrary orthogonal polynomial expansion is rela-
tively large with the convex or concave shape weight
function. *e main reason may be that the moment-based
arbitrary orthogonal polynomial expansion will introduce
large error at the domain where the weight is approaching to
zero [32]. As a comparison, ε∞ of the moment-based ar-
bitrary orthogonal polynomial expansion with the Cheby-
shev weight function or constant weight function is small. In
addition, it can be found from Figure 2 that ε∞ of the
moment-based arbitrary orthogonal polynomial expansion
with the Chebyshev weight function is relatively small than
that with the constant weight function. Based on the above
analysis, the Chebyshev weight function will be used as the
weight function of interval polynomial basis, which can be
expressed as

wI(x) �
1

π
�����
1 − x

2
􏽰

􏼒 􏼓

.
(21)

From the application of MAPC for random analysis, we
can find that when the moment is set as μk � 􏽒

1
− 1 xkρ(x)dx,

the polynomial can be orthogonal ρ(x). It indicates that the
polynomial basis will be orthogonal to the weight function of
Chebyshev polynomial if the moment is determined by

μk � 􏽚
1

− 1
x

k
wC(x) � 􏽚

1

− 1
x

k 1

π
�����
1 − x

2
􏽰 dx, (22)

where wC(x) � 1/(π
�����
1 − x2

√
) is the weight function of the

Chebyshev polynomial. *erefore, the moment for each in-
terval variable can be determined according to equation (22).

Once the moment is determined, the polynomial basis
for interval analysis can then be calculated through equa-
tions (2)∼(4).

3.4. Calculation of the Bounds of Statistics. To calculate the
bounds of statistics, there are two main steps. In the first
step, the interval variables are regarded as constant pa-
rameters, and the MAPC expansion can be rewritten as the
following form:

F xI
, xR

􏼐 􏼑 � 􏽘

NL1+1

iL1+1�0
. . . 􏽘

NL

iL�0
􏽘

N1

i1�0
. . . 􏽘

NL1

iL�0
fi1,...,iL

φi1,...,iL1
xI

􏼐 􏼑⎛⎝ ⎞⎠φiL1+1,...,iL
xR

􏼐 􏼑,

� 􏽘

NL1+1

iL1+1�0
. . . 􏽘

NL

iL�0
z

k
iL1+1,...,iL

φiL1+1,...,iL
xR

􏼐 􏼑,

(23)

where

z
k
iL1+1,...,iL

� 􏽘

N1

i1�0
. . . 􏽘

NL1

iL1�0
f

k
i1 ,...,iL

φi1 ,...,iL1
xI

􏼐 􏼑. (24)

Due to the orthogonality of the polynomial basis, the
expectation and variance of the response can be expressed in
terms of the expansion coefficient as follows:

μ � E 􏽘

NL1+1

iL1+1�0
. . . 􏽘

NL

iL�0
z

k
iL1+1,...,iL

φiL1+1,...,iL
xR

􏼐 􏼑
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ � z
k
0,...,0,

σ2 � E 􏽘

NL1+1

iL1+1�0
. . . 􏽘

NL

iL�0
z

k
iL1+1,...,iL

φiL1+1,...,iL
xR

􏼐 􏼑⎛⎜⎝ ⎞⎟⎠

2
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦ − μ2,

� 􏽘

NL1+1

iL1+1�0
. . . 􏽘

NL

iL�0
z

k
iL1+1,...,iL

􏼒 􏼓
2
hiL1+1

. . . hiL
− z

k
0,...,0􏼐 􏼑

2
.

(25)

Substituting equation (18) into (19) and (20), we can re-
write the expectation and variance of the response as follows:

μ � 􏽘

N1

i1�0
. . . 􏽘

NL1

iL1�0
f

k
i1 ,...,iL1 ,0,...,0

φi1 ,...,iL1
xI

􏼐 􏼑, (26)

σ2 � 􏽘

NL1+1

iL1+1�0
. . . 􏽘

NL

iL�0
􏽘

N1

i1�0
. . . 􏽘

NL1

iL�0
fi1 ,...,iL

φi1 ,...,iL1
xI

􏼐 􏼑⎛⎝ ⎞⎠

2

hiL1+1
. . . hiL

− 􏽘

N1

i1�0
. . . 􏽘

NL1

iL1�0
fi1 ,...,iL1 ,0...,0

φi1 ,...,iL1
xI

􏼐 􏼑⎛⎜⎝ ⎞⎟⎠

2

.

(27)
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In the second step, we can calculate the bounds of the
expectation and variance through the following process:

μ, μ􏽨 􏽩 � min
xI∈ x,x[ ]

μ xI
􏼐 􏼑􏽮 􏽯, max

xI∈ x,x[ ]
μ xI

􏼐 􏼑􏽮 􏽯⎡⎣ ⎤⎦,

σ
2
, σ2􏼔 􏼕 � min

xI∈ x,x[ ]
σ2 xI

􏼐 􏼑􏽮 􏽯, max
xI∈ x,x[ ]

σ2 xI
􏼐 􏼑􏽮 􏽯⎡⎣ ⎤⎦.

(28)

From the above procedure, we can find that the response
of interest with hybrid interval and random variables can be
approximated by SQ-IRMAPC in a unified form. In this
paper, the maximum value of the mean and variance of
response is calculated by using the genetic algorithm.

4. SQ-IRMAPC for Stiffness Analysis of Air
Spring with Hybrid Interval and
Random Variables

4.1. Finite Element (FE) Model of an Air Spring. Figure 3
shows the FE model of an air spring. *e Newton–Raphson
method is used for calculation, in which the air spring action
is divided into many load-increment steps [34]. At the end of
each loaded-increment step, the approximate equation is
established.*is analysis is completed by using ABAQUS. In
ABAQUS, the fluid element named FAX2 is used to simulate
the air, while the bellows are simulated with the rebar-
reinforced surface element and 4-node bilinear axisym-
metric solid element. *ere are 24183 CAX4R elements and

Table 1: Expression of different weight functions.

Type of weight function Expression of weight function
Chebyshev expansion 1/(π

�����
1 − x2

√
), − 1≤x≤ 1

Constant 1/2, − 1≤x≤ 1
Concave shape (Γ(α + β + 1))/(2α+β+1Γ(α + 1)Γ(β + 1))(1 − ξ)α(1 + ξ)β, α � β � 0.01, − 1≤x≤ 1
Convex shape Γ(α + β + 1)/(2α+β+1Γ(α + 1)Γ(β + 1))(1 − ξ)α(1 + ξ)β, α � β � 12, − 1≤x≤ 1

Chebyshev weight function
Constant weight function
Convex shape weight function
Concave shape weight function

10–4

10–3

10–2

10–1

100

101

Er
ro

r

2 3 4 5 61
Retained order (n)

Figure 2: ε∞ of moment-based arbitrary polynomial interval ex-
pansion with different weight functions.

Concave shape weight function
Convex shape weight function
Constant weight function

0

0.5

1

1.5

2

2.5

3

3.5

4

y

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1
x

Figure 1: *ree different types of weight functions.
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1512 SFMAX1 elements in the whole FE model. By using the
ABAQUS, the stiffness of the air spring can be obtained.
More details related to the calculation can be found in [1].

4.2. Stiffness of Air Spring with Interval and Random
Variables. *is paper will apply the proposed SQ-IRMAPC
method for hybrid interval and random analysis of the air
spring. For uncertain air spring system, the uncertain pa-
rameters whose random moments or PDFs are available can
be treated as random variables and denoted by xR, while
other uncertain parameters can be treated as interval vari-
ables and denoted by xI. Accordingly, the stiffness of the air
spring can be denoted as F(xR, xI). Based on the SQ-
IRMAPC expansion, the stiffness can be approximated as

􏽥F � 􏽘

N1

i1�0
. . . 􏽘

NL

iL�0
fi1 ,...,iL

φi1 ,...,iL1
xI

􏼐 􏼑φiL1+1,...,iL
xR

􏼐 􏼑, k � 1, 2, . . . , Ntot,

(29)

where

fi1 ,...,iL
≈

1
h1 × · · · × hL

􏽘

M1

j1�1
. . . 􏽘

ML

jL�1
F 􏽢x

I
, 􏽢x

R
􏼐 􏼑φi1 ,...,iL1

􏽢x
I

􏼐 􏼑φiL1+1,...,iL
􏽢x

R
􏼐 􏼑􏽢wi1 ,...,iL

.

(30)

In the above equation, F(􏽢xI, 􏽢xR) denotes the stiffness of
the air spring at the nodes of sparse quadrature. After the
polynomial basis and the expansion coefficient are deter-
mined, the bounds of expectation and variance of stiffness
can be obtained according to equations (26)∼(28).

*e main procedure of the SQ-IRMAPC method for
stiffness analysis of the air spring with hybrid interval and
random uncertainties can be summarized as

Step 1: determine the moment of the random variable
Step 2: determine μk of the interval variable according
to equation (22)
Step 3: compute the polynomial basis through equa-
tions (2)∼(4)
Step 4: produce the Gaussian nodes and weights
through equations (8)∼(9)

Step 5: calculate stiffness of the air spring at the nodes of
sparse quadrature
Step 6: obtain the expansion coefficient through
equation (30)
Step 7: compute the bounds of expectation and variance
of stiffness through equations (26)∼(28)

5. Numerical Example

5.1. Stiffness Analysis of the Air Spring with Interval
Uncertainties. In this section, the uncertain parameters of
the air spring are assumed as the interval variable. To obtain
the range of variation of the uncertain parameter, the ma-
terial properties of five air springs in different use stages have
been tested. Figure 4 shows the air spring which was used to
determine the uncertain range of the uncertain parameters.
Table 1 lists the range of variation of different parameters.

*e SQ-IRMAPC is used to predict the stiffness of the air
spring with interval uncertainties. To investigate the com-
putational efficiency and accuracy of SQ-IRMAPC, the
traditional IRAPC [31] is also introduced to calculate the
response of the air spring. Due to the tremendous com-
putational cost of the Monte Carlo method, the high-order
Legendre expansion method will be used as the reference
method in this numerical example [31]. *e stiffness of the
air spring calculated by using different methods is shown in
Figure 4. *e initial pressure of the air spring is
0.5∼0.68MPa. In SQ-IRMAPC and IRAPC, the retained
order is two.

It can be seen from Figure 5 that the upper bound of
stiffness is much larger than the lower bound of stiffness,
which means the stiffness is very sensitive to the uncertain
parameters. *us, it is necessary to consider the uncer-
tainties when to analyze the stiffness of the air spring.

By comparing the results calculated by using different
methods, it can be found that both IRAPC and SQ-IRMAPC
can achieve high accuracy.*e relative error of SQ-IRMAPC
is slightly higher than that of IRAPC; the main reason is that
larger number of polynomial basis is retained in IRAPC.
However, increasing the number of polynomial basis will
lead to larger computational burden. *e computational
time of the SQ-IRMAPC and IRAPC is 1.31 × 106 s and
1.07 × 105 s. *erefore, compared with the traditional
IRAPC, the proposed SQ-IRMAPC can greatly improve the
computational efficiency.

5.2. Stiffness Analysis of the Air Spring with Hybrid Interval
and Random Uncertainties. In this numerical example,
Young’s modulus and the cross section of cord is assumed as
the random variable, while the other parameters are as-
sumed as the interval variable shown in Table 2. In par-
ticular, only the raw statistical data of the random variable is
available. *e raw statistical data of Young’s modulus and
cross section of cord is shown in Figures 6 and 7.

Both the proposed SQ-IRMAPC and IRAPCM are used
to calculate the stiffness of the air spring. In SQ-IRMAPC
and IRAPCM, the retained order is set as 2. Table 3 shows the
relative error of the bounds of expectation and variance

Y
X

Z

Figure 3: FE model of the air spring.
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yielded by the traditional IRAPCM and the SQ-IRMAPC.
*e reference results are obtained by using the high-order
Legendre expansion. In addition, the execution time of
different methods is also shown in Table 3.

From Table 3, the relative error yielded by the proposed
SQ-IRMAPC and the traditional IRAPC is less than 3%. It
indicates that the proposed SQ-IRMAPC can achieve high
accuracy for stiffness analysis of the air spring with hybrid

interval and random uncertainties. However, it can be
found from Table 3 that the execution time of the proposed
SQ-IRMAPC is much less than that of the traditional
IRAPC. *erefore, from the application of the proposed
SQ-IRMAPC for hybrid uncertainty analysis of the air
spring, we can also conclude that the proposed SQ-
IRMAPC can achieve higher efficiency than the traditional
IRAPC.

Table 2: Range of variation of interval variables for the air spring system.

Parameters E (MPa) Cord angle Cross section of cord C01 of rubber C10 of rubber *ickness of rubber
Range of variation [1657, 1996] [40.8, 49.1] [5.4, 6.5] [0.3, 0.9] [0.03, 0.09] [6, 8] mm

(a) (b)

Figure 4: An air spring.
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180

kN
 (m

m
)

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.680.5
Initial Pressure (Pa)

Reference solution (lower bound)
Reference solution (upper bound)
IRAPC (lower bound)
IRAPC (upper bound)
SQ-IRMAPC (lower bound)
SQ-IRMAPC (upper bound)

Figure 5: Stiffness of the air spring with different initial pressure.
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6. Conclusion

In this paper, the interval and random model is introduced
to deal with the uncertainties in the air spring. To efficiently
calculate stiffness of the air spring system with interval and
random variables, a new interval and random polynomial
chaos method named as Sparse Quadrature-based Interval
and Random Moment Arbitrary Polynomial Chaos (SQ-
IRMAPC) is proposed. In SQ-IRMAPC, the moment-based
arbitrary polynomial chaos is used to approximate the re-
sponse of interest. In particular, the optimal choice of the
moment-based polynomial for interval analysis has been

investigated. *e expansion coefficient is calculated by using
the sparse quadrature. *e SQ-IRMAPC has been applied
for stiffness of the air spring with uncertainties, and main
conclusions include the following:

(1) *e optimal choice of the moment-based polynomial
can improve the accuracy of the moment-based
polynomial chaos expansion for interval analysis

(2) *e stiffness of the air spring is very sensitive to
uncertain parameters; thus, the uncertainties should
be considered in the stiffness analysis of the air
spring

Table 3: Relative error and execution time of different methods.

Initial pressure (MPa)
IRAPC (traditional) SQ-IRMAPC (proposed)

Lower bound Upper bound Execution time (s) Lower bound Upper bound Execution time (s)
0.50 0.7% 1.2%

5.74 × 107 s
1.1% 1.9%

4.21 × 106 s0.60 0.6% 1.3% 1.0% 1.4%
0.68 1.7% 2.1% 1.4% 2.7%

0

2000

4000

6000

8000

10000

12000

14000

1700 1750 1800 1850 1900 1950 20001650

Figure 6: *e statistical data of Young’s modulus.
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10000

15000
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Figure 7: *e statistical data of cross section of cord.
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(3) Compared to the traditional interval and random
arbitrary polynomial chaos method which is based
on the Gaussian quadrature, the sparse quadrature-
based interval and random arbitrary polynomial
chaos method can greatly improve the computa-
tional efficiency
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