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0e spontaneous combustion of residual coals in the mined-out area tends to cause an explosion, which is one kind of severe
thermodynamic compound disaster of coal mines and leads to serious losses to people’s lives and production safety. 0e
prediction and early warning of coal mine thermodynamic disasters are mainly determined by the changes of the index gas
concentration pattern in coal mine mined-out areas collected continuously. 0e time series anomaly pattern detection method is
mainly used to reach the state change of gas concentration pattern. 0e change of gas concentration follows a certain rule as time
changes. A great change in the gas concentration indicates the possibility of coal spontaneous combustion and other disasters. To
emphasize the features of collected maker gas and overcome the low anomaly detection accuracy caused by the inadequate
learning of the normal mode, this paper adopted a method of anomaly detection for time series with difference rate sample
entropy and generative adversarial networks. Because the difference rate entropy feature of abnormal data was much larger than
that of normal mode, this paper improved the calculation method of the abnormal score by giving different weights to the
detection points to enhance the detection rate. To verify the effectiveness of the proposed method, this paper employed simulation
models of the mined-out area and adopted coal samples from Dafosi Coal Mine to carry out experiments. Preliminary testing was
performed using monitoring data from a coal mine.0e experiment compared the entropy results of different time series with the
detection results of generative adversarial networks and automatic encoders and showed that the method proposed in this paper
had relatively high detection accuracy.

1. Introduction

0e thermodynamic compound disaster of the coal mine
refers to the compound disaster of the explosion caused by
the spontaneous combustion of residual coal in a mined-out
area. As the main energy, coal plays an irreplaceable role in
China’s energy structure. 0e safe supply of coal is directly
related to the sustainable development of the national
economy and the energy security of the country. After coal
mining, the remaining area is the mined-out area, which has
poor ventilation and a lot of residual coal.0e residual coal is
oxidized continuously under the influence of air leakage,
which is likely to cause gas accumulation [1–3]. As a result, it

is easy to cause coal spontaneous combustion and other coal
thermodynamic disasters.0e thermal power disaster in coal
mines seriously affects the safety of coal mine production
and workers. 0erefore, it is necessary to know the factors
related to the occurrence of thermal power complex disasters
in coal mines and then analyze them through time series
mining technology to forecast the possible thermal power
disasters.

Coal mine thermal disaster prediction and early warning
are very important tasks in the coalfield. 0e early disaster
prediction methods mainly include oxygen measurement,
temperature measurement, and index gas analysis [4]. 0e
oxygen measurement method is mainly used to measure the
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oxygen content in the coal mine and determine whether it
reaches the threshold. 0e temperature measurement is to
monitor the temperature of some areas and then use the data
of measured temperature to infer the possible coal spon-
taneous combustion disasters in this area. Index gas analysis
is to observe whether single or multiple quantitative indexes
related to coal spontaneous combustion or gas explosion in
the mined-out areas exceed the critical value, mainly in-
cluding gas index, coal seam property index, or compre-
hensive index [5]. A large number of experimental studies
showed that gases like CO will be produced in the process of
coal spontaneous combustion.0e amount of gas generation
can change significantly with the increase of coal temper-
ature. According to the experimental results, the appropriate
gases are selected as the index gas, and the stage of the coal
oxidation process can be roughly judged by analyzing the
change of the formation status of the index gas [6]. With the
development of gas collection and analysis technology, index
gas analysis has been widely used in the early prediction of
spontaneous combustion [7]. In practice, many predictions
based on the gas indexes have been proposed. 0ere are
relatively simple single gas indexes, such as CO and C2H4.
0ere are also relatively complex forms of double or com-
pound gas indexes, such as CO/CO2 and hydrocarbon ratio.
0e prediction index and the critical value of the index are
based on the field experience and the statistical analysis of a
large number of experimental data. Due to the influence of
manual operation factors, uneven distribution of coal and
stress and the prediction show great limitations, and the
accuracy of prediction is difficult to improve [8].

With the development of information technology, more
and more time series data are produced and become more
complex. Anomaly detection for time series [9] has become a
research hotspot in recent years. Time series anomaly usually
refers to the data which is obviously different from other
data in a series of data sets. 0is anomaly is not caused by
random deviation but by differences due to different pat-
terns. 0e commonly used time series anomaly detection
research methods mainly contain statistical methods and
machine learning methods. Canizo et al. [10] proposed a
supervised multi-time series anomaly detection method
based on deep learning, which combined Convolution
Neural Network (CNN) and Recurrent Neural Network
(RNN) in different ways, and processed each sensor sepa-
rately to avoid the need for data preprocessing and greatly
improve the operation speed. Since the model uses a dataset
containing a fixed-length time series to verify the proposed
architecture, in some real use cases, they are not. 0erefore,
further research must be done to analyze the performance of
the proposed architecture at the time of processing time
series with different frequencies. Beggel et al. [11] proposed a
new unsupervised anomaly detection method based on
wavelet transform of time series, which could effectively
detect the abnormal time series in the test data without
retraining the model by repeatedly learning the feature
representation. However, further research is needed for
anomaly detection of multivariate time series. Malhotra et al.
[12] used a stackable LSTM network for anomaly/fault
detection in time series. 0e network was trained on

nonabnormal data and used as a predictor at multiple time
steps. 0e resulting prediction errors were modeled as
multivariate Gaussian distributions, which were used to
assess the likelihood of anomaly. Chauhan and Vig [13]
adopted a deep recurrent neural network architecture with
the help of Long Short Term Memory (LSTM) to develop
predictive models for healthy ECG signals. 0e probability
distribution of the prediction errors from these recurrent
models was utilized to indicate normal or abnormal be-
haviors. But using stacked networks or deep recursive
networks can reduce running speed to some extent. Raja-
gopalan and Ray [14] presented a wavelet-based partitioning
approach for symbol generation, instead of the currently
practiced method of phase-space partitioning. However, it is
necessary to extend the separation to multiple time series
and reduce the noise in the time series to achieve robust
anomaly detection. Izakian and Pedrycz [15] considered
fuzzy c-means (FCM) as a conceptual and algorithmic
setting to deal with the problems of anomaly detection.
Using a sliding window, the time series was divided into
several subsequences, and the available spatiotemporal
structure within each time window is discovered using the
FCM method. However, with this algorithm, the number of
iterations in the selection of the cluster center point is more
likely to cause the algorithm model to have weak scalability
and weak sensitivity and fall into a local minimum. 0e
prediction ability of the above method is limited and the
computational cost is large, which cannot be effectively
detected in large data sets with large data size and dimen-
sion. 0e detection method based on GAN can achieve the
purpose of anomaly detection without collecting a large
number of abnormal data and using normal data training.

In recent years, a generative adversarial network
framework [16] has been proposed to build a deep learning
model through adversarial training. Li et al. [17] proposed a
way of conducting multivariate anomaly detection on time
series data based on the generation of adversarial network
and used LSTM neural network as the basic model GAN
framework to capture time-related time series distribution.
An anomaly detection neural network, dual autoencoder
generative adversarial network (DAGAN), was developed by
Tang et al. [18] to solve the problem of sample imbalance.
With skip-connection and dual autoencoder architecture,
the proposed method exhibited excellent image recon-
struction ability and training stability. 0e detection of
abnormal patterns in gas timing data can provide a theo-
retical basis for coal spontaneous combustion or oxygena-
tion and gas explosion.

0e concentration change of combustible gas released
from floating coal follows certain patterns with time going
on. When the gas concentration changes greatly, it can be
considered to enter the abnormal mode, indicating that coal
spontaneous combustion and other disasters may occur.
0erefore, effective detection of the inflection points of
monitored data in different stages can assist in the judgment
of different oxidation stages and the occurrence of coal
spontaneous combustion. Different coal mines have dif-
ferent amounts of gas accumulation. If only the amount of
gas accumulation is taken as the criterion for the

2 Complexity



determination of disasters, great errors may occur when
applied to other coal mines. 0erefore, the detection of
abnormal patterns can improve the generalization of disaster
judgment and provide a new idea for the detection of coal
composite disasters.

0e main contributions of this paper are as follows. (1)
According to the trend characteristics of CO gas data, the
difference rate entropy feature is extracted to get the pro-
cessed feature sequence, in which the entropy feature value
of abnormal mode is higher and that of normal mode is
lower, to highlight the difference between abnormal mode
and normal mode. (2) 0e anomaly pattern of entropy
feature sequence is detected by using a generative coun-
termeasure network, and a new calculation method for the
anomaly score is proposed in the detection stage, which
considers both the weighted outlier score of the generated
samples and the outlier score of the discrimination results,
and judges whether the data segment of the one-dimensional
time series is determined by calculating the anomaly score of
the sample.

0e rest of this article is arranged as follows. Section 2
mainly introduces the basic concepts of difference rate
sample entropy, time series, and abnormal pattern analysis.
In Section 3, a one-dimension time series anomaly detection
algorithm based on different rate sample entropy and
generative adversarial networks is proposed. In Section 4,
the validity of the algorithm and its feasibility under this
background illustrated by experiments are presented. 0e
conclusion and the future suggestions are given in the last
section.

2. Related Work

2.1. Gas Abnormal Patterns Analysis. When the gas con-
centration increases in the early stage, the abnormal in-
formation is relatively weak and difficult to be detected in
time. When the gas concentration increases obviously and
reaches the threshold value, the detection will lose the
significance of disaster prediction. 0erefore, it is important
to detect the time when the anomaly occurs as early as
possible.

To detect data anomalies as early as possible, the present
study defines the process that the data changes greatly as the
abnormal pattern whose data changing rate is different from
the normal pattern. Different from the normal mode, in the
abnormal mode, the change rate of data is significantly
different from that before. Taking index gas as an example,
the whole process of concentration change is analyzed first,
as shown in Figure 1. 0e whole process can be roughly
divided into four stages:

In the first stage, the concentration increases at a lower
rate and lasts the longest
In the second stage, the gas concentration goes up
rapidly and the growth rate also increases
In the third stage, the gas concentration rises at a
relatively higher rate, and the growth rate remains
almost unchanged

In the fourth stage, the concentration begins to decline

Meanwhile, the general trend of the data in the first three
stages is increasing, and the fourth stage begins to decline.
0e constant increase of CO gas concentration means that
the coal spontaneous combustion oxidation process enters
into a different oxidation stage. When the growth rate of gas
concentration keeps increasing in the second stage, it means
that the gas concentration will increase rapidly. 0e de-
tection of this mode can make a judgment in advance for the
identification of the oxidation stage of coal spontaneous
combustion.0erefore, the stage when data starts to increase
rapidly is defined as an abnormal mode.

Next, the mode of the time series is explained. 0e one-
dimensional time series of the original gas sample is given as
S � S1, S2, . . . , ST , Su � (xu, tu). It contains T time points,
and each time point corresponds to a concentration value.
0e representation of the time series pattern can be un-
derstood as the segmentation of time series in the time
dimension and the feature representation of each segment.
0e representation of the time series pattern can be un-
derstood as segmenting the time series on the time di-
mension, then, the feature representation of each sequence is
carried out, and then the abnormal points and abnormal
sequences can be detected by relevant algorithms.

Table 1 shows the original data sample of a monitoring
point, including symbolic gases and temperature values.
0ese gas sensors generate time-dependent multivariate
responses to different gases.

0rough the analysis of time series data, it can be seen
that only from the data size, the abnormal changes of data
are not obvious, which cannot contribute to the subsequent
abnormal detection work. 0erefore, according to the fea-
ture of time series data, difference rate calculation is cal-
culated first on time series data. 0en, a more
comprehensive feature extraction of time series is obtained
through sample entropy. 0e data of abnormal patterns are
often complex. To determine the abnormal patterns more
accurately, the Generate Adversarial Networks (GANs) are
adopted. 0e network can generate a sample similar to the
real data by the generator, and the generator and discrim-
inator can judge the input data through the abnormal score
after learning the real sample to achieve the recognition of
abnormal patterns.

2.2. Difference Rate Sample Entropy. First, a brief intro-
duction to differential rate calculation is given. Differential
rate calculation can extract the deterministic information in
the series utilizing autoregression, as shown in (1). When
linear trends are included in the series, the linear features can
be extracted by first-order difference. When the series
contains a nonlinear trend, the second or third-order dif-
ference can be used to extract the nonlinear trend.

∇e
xt � 

e

i�0
(−1)

i
C

i
ext−i. (1)

Among them, ∇ext is the eth order difference of the
series, and (−1)iCi

e is the numerical coefficient at the time of
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t − i; For example, Figures 2(a) and 2(b), respectively,
represent the characteristic diagram of CO concentration
and the second-order difference characteristic diagram,
where Figure 2(b) is obtained by second-order difference
operation of Figure 2(a).

In view of the idea of difference, the present study
proposed the concept of difference rate, which is to calculate
the change of difference sequence based on the nth order
difference. 0e definition is as follows.

Definition of (2) difference rate: for the time series
S � S1, S2, . . . , ST , each series point is Su � (xu, tu). ∇eS �

Se
1, Se

2, . . . , Se
T−e  is eth order difference series. 0en, the e+1

difference rate series of series S is
SΔ � ΔS1,ΔS2, . . . ,ΔST−e−1 . ΔSu is the element in the
difference rate series. 0e calculation is shown in

ΔSu �
x

e
u − x

e
u−1

x
e
u−1

, (2)

where xe
u is the eth order difference value at the time point of

U, and xe
u−1 is the eth order difference value at the time point

of u − 1.
Definition of (2) sample entropy: it is used to measure the

complexity and regularity of time series. 0e greater the sample

entropy of the series is, the greater the complexity of the
corresponding time series will be. For time series
X � x1, x2, . . . , xn , it is defined as shown in (3).0e length of
subseries Bm+1(r) is the length of m + 1 mean subseries sim-
ilarity probability and r is the similarity threshold [19, 20].

sample entropy � −ln
B

m+1
(r)

B
m

(r)
 . (3)

Take the series in Figure 2(a) as an instance; it is a
second-order difference rate sample entropy feature series as
shown in Figure 3. As it is shown in the figure, the sample
entropy of the segmented series fluctuates up and down and
tends to increase in the later stage, which corresponds to the
original sequence.

2.3. Generating Adversarial Networks. 0is paper focuses on
the research of anomaly detection for time series data. Due to
the complexity of industrial time series data, the traditional
anomaly detection methods cannot make timely predictions,
and the supervised machine learning method cannot be used
due to the lack of labeled data [21]. To solve this problem, this
paper proposes an unsupervised anomaly detection method
based on generative adversarial networks (GANs). Previous
studies have proved that a generative adversarial network is very
successful in image processing tasks, such as generating high-
quality images, image conversion, image repair, text generation,
video generation, and enhanced photos [22]. GANhas also been
proved to be effective in generating time series prediction and
detection according to previous studies [23]. Different from
traditional classification methods, the discriminator trained by
GAN detects false data from input data in an unsupervised way,
which makes it an attractive unsupervised machine learning
technology [24].0e network realizes the decision of input data
by learning generator and discriminator in turn and playing
games with each other. Figure 4 shows the GANnetworkmodel
diagram.
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Figure 1: 0e trend of gas concentration change.

Table 1: Sample of original data.

Time O2 CO CO2 CH4 C2H4 C3H6 C2H2 T
1 9.83 0 49.08 12.85 0 0 0 23
2 9.51 0 42.16 12.69 0 0 0 36
3 9.62 0 53.17 12.41 0 0 0 49
4 9.78 1.91 62.9 12.86 0 0 0 60
5 9.5 3.96 72.16 12.3 0 0 0 72
6 9.48 31.25 482.39 18.95 0.18 0 0 152
7 9.38 73.28 629.5 21.03 0.47 0.19 0 174
8 9.04 159.7 936.26 25.38 1.93 0.84 0 202
9 8.75 401.28 1836.27 57.8 13.91 5.26 0.53 238
10 4.30 883.26 4719.39 392.17 103.85 62.71 0.79 296
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In the model of Generating Adversarial Networks, the
main structures are generator G and discriminator D, which
are functions that can fit the corresponding generation and
discrimination. In the process of network training, the
generator transforms a random noise vector from a potential
space to a generated sample. With the optimization of the
network, the sample generated by the generator becomes
more and more similar to the real samples. 0e discrimi-
nator accepts the generated samples from real data or
generator to determine whether the input data is a real
sample or a generated sample. 0e output of the discrimi-
nator is used to optimize the parameters of the discriminator
and the generator. In this way, the generator generates more

realistic generated samples, and the discriminator can better
distinguish the real samples from the generated samples.

0e generative adversarial network can generate samples
that are very similar to the real samples. In time series
prediction, the network can be used to learn the historical
data of the series and learn the pattern of the time series to
generate the predicted value of the future moment.

3. Materials and Methods

In this section, we discuss the overall structure of our proposed
model and its key elements which are presented in Figure 5.0e
anomaly detection framework is divided into three stages:
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abnormal pattern feature extraction, model training, and
anomaly judgment. In the stage of abnormal pattern feature
extraction, the original data are extracted more thoroughly. In
the model training stage, the feature series is preprocessed, and
the training of the generative adversarial network model is
completed. In the anomaly detection stage, the trained network
model and the exponentially weighted error are used to de-
termine the anomaly pattern.

3.1. Entropy Feature Extraction of Difference Rate Sample.
0e steps of extracting series features by using difference rate
sample entropy are as follows:

Step 1: to maintain the dependence of the original time
series data on the timing series, the original one-di-
mensional input time series data S � x1, x2, . . . , xT  is
segmented by sliding window size w and step size d.
0e ith time series fragment is
si � [x1+(i−1)d, x2+(i−1)d, . . . , x1+(i−1)d+w].
Step 2: carry out (2) on the series segment si to obtain
the second-order difference rate series
G � g1, g2, . . . , gw′  and its standard deviation std.
Step 3: take m time series data points as a subsegment;
the second-order differential rate sequence with w′ data
points is divided into w′ − m + 1 subsegments, denoted
as K2i � q1, q2, . . . , qw′−m+1 .
Step 4: calculate the distance D[qa, qb] between any two
subseries segments qa and qb, which is determined by

the maximum difference value of the corresponding
position element in the two subseries segments.
Step 5: calculate the probability of similarity between
the subseries qa and other subseries, as shown in (4),
which means the proportion of subseries whose dis-
tance between subseries is less than the threshold. r is
the threshold of similarity, D[qa, qb] is the distance
between any two subsequence fragments qa and qb, m is
m time series data, and w′ is the second-order dif-
ference rate sequence with w′ data points. 0e average
probability of similarity of the second-order difference
rate series is shown in (5).

B
m
a (r) �

num D qa, qb( < r 

w′ − m
, (4)

B
m

(r) �


w′−m+1
a�1 B

m
a (r)

w′ − m + 1
. (5)

Step 6: according to Steps 4∼6, the mean similarity
probability Bm+1(r) is recalculated with m + 1 as the
length of the subseries.0en, the entropy features of the
second-order difference rate sample are shown in

SE � −ln
B

m+1
(r)

B
m

(r)
 . (6)

Step 7: return to Step 1 to calculate the entropy features
of the second-order difference rate sample of the next
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Figure 5: Overall flowchart of anomaly detection.
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series segment si+1. Finally, a complete second-order
difference rate sample entropy series is obtained.

3.2. DRSe-GAN Anomaly Detection Model. 0e anomaly
detection framework in DRSe-GAN mainly includes input
data, generator, discriminator, and anomaly detection. 0e
input data is the feature sequence extracted by the differ-
ential rate sample entropy. 0e generator is used to capture
the distribution of the data and generate new samples closer
to the real data through learning. 0e discriminator is used
to distinguish normal data from abnormal data. In the it-
eration process, the data generated by the generator and the
real training data are used as the input of the discriminator.
0e parameters of the generator and discriminator are
updated by the discriminated results to finally obtain better
parameters. In the stage of anomaly detection, a new cal-
culation method for anomaly scores is designed according to
the features of time series data to improve the detection
accuracy. If the series reconstructed by the trained generator
has higher anomaly scores than the normal samples, then the
current time series can be determined as an anomaly.
Compared with other methods, the detection method based
on DRSe-GAN can achieve the purpose of anomaly de-
tection without collecting large amounts of abnormal data
and using normal data training. 0e model can identify
abnormal data that does not conform to the distribution of
training data and improve the ability of the model by im-
proving the loss function and the judgment score.

0e training data set
STtrain

� x1, x2, . . . , xu, . . . , xTtrain
 

1×Ttrain is given to train
network parameters, where su is the uth data point in the
data set, and all data in the training data are normal. A
verified dataset STval

� x1, x2, . . . , xTval
 

1×Tval determines the

threshold of anomaly scores. A testing dataset

S
Ttest

� x1, x2, . . . , x
Ttest

 
1×Ttest

is used for anomaly detection,

validation, and verification and tests abnormal and normal
data contained in the data set.

In the process of model training, both generator and
discriminator use Long Short Term Memory (LSTM) to
extract time information between time series data. LSTM is
evolved from RNN. It adds input gate, forgetting gate, and
output gate to neuron cells, which enables the network to use
a longer history state than RNN to predict.

Different from the traditional neuron node, the basic
unit of the hidden layer of LSTM is a special cell structure,
which contains a self-connected memory cell and three gate
units controlling information flow. Among them, the input
gate and output gate control the flow of information into and
out of neurons, respectively, and the forgetting gate controls
the degree of memory cells’ state before memory.

In the training process, it is necessary to customize
appropriate loss functions to guide the training according to
the requirements of tasks. 0e loss functions in this paper
include two parts, discriminator loss Gloss and generator loss
Dloss. loss � Dloss + Gloss means the two losses influence the
change of network parameters jointly. In other words, the
two parts of losses jointly affect the changes of network
parameters. 0e generator is used to generate data similar to
the real data, and the formula of the loss function is shown in
(7), where z is the random input data and pz is the dis-
tribution of the random input data. 0e output of the
discriminator represents the probability that the output of
the generated data is true. 0e loss function of unsupervised
learning can be expressed as (8).

Gloss � Ez∼pz(z)[log(1 − D(G(z)))], (7)

Dloss � −EX∼pdata(X)[log D(X)] − Ez∼pz(z)[log(1 − D(G(z)))]. (8)

0e model parameters are updated according to the
loss function to get the trained generator and discrimi-
nator. 0e following are the detailed steps of the training
stage:

Step 1: Z � zi, i � 1, 2, . . . , n  is the random sampling
of noise data, where n corresponds to the number of
samples. 0e generator model is a few LSTM memory
units. 0e number of memory units is set. Z is input
into the generator model G to generate reconstructed
sample series data G(Z).
Step 2: real sample data series X (normal mode data)
and the noise generated by the sample data are input
into the built discriminant model D. 0e generator
model is a few LSTM memory units as well. 0e
model outputs the probability that the input data is of
real data, and the loss function was calculated

according to the output of the generator and the
discriminator.
Step 3: update the model parameters using the gradient
descent algorithm according to the value of the loss
function. Update the parameters of the generator
according to the noise data after the parameters of the
discriminator are updated.
Step 4: save the model parameters, return to step 1 for
cyclic iteration, and finally get the trained generator
model G∗ and discriminator model D∗.

3.3. Anomaly Pattern Determination. 0is paper utilizes the
difference between the test samples and the reconstructed
samples of the generator and the results of the discriminator
to establish a new method to calculate the abnormal scores
and detect the abnormal patterns. In this paper, the anomaly
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pattern of the different rates of sample entropy is relatively
larger, and the normal pattern of the sample entropy
difference rate is smaller, so we consider using the relative
difference between the maximum values of the recon-
structed sample and the real sample to construct the ab-
normal scores and give different weights to the data points
in the data segment to be detected. Finally, when the
anomaly score of the data segment is beyond the threshold
value, the sample is determined as an anomaly. 0e specific
steps are as follows:

Step 1: first, the maximum mean difference loss
function between the generated samples of random
noise feature Z and the real samples is used to obtain
the optimal Z∗. 0e maximum mean difference loss
function is used to measure the distance between two
different but related distributions.
Step 2: the trained discriminator D∗ is used to output
the probability P that the sample belongs to the real
sample, and the discriminated anomaly score Dscore is
calculated as 1 − p.
Step 3: the trained generator G∗ is used to generate
reconstructed samples based on random noise Z∗. On
account of the continuous adjustment of the param-
eters of the generator, it can produce samples quite
similar to real samples. At the same time, only samples
of normal mode are included in the training samples.
As a result, the distribution of the reconstructed
samples is similar to the samples of normal mode.
When there are anomaly pattern samples in the test
sample set, the distribution of the generated sample and
the real sample at the abnormal series point will pro-
duce greater errors. 0e generation error is used to
calculate the anomaly fraction scores Dscore.
Step 4: the anomaly fraction score Dscore and sample
generated anomaly fraction Rscore are used to calculate
anomaly fraction score S, as shown in

S � WD × Dscore + WG × Rscore, (9)

where WD and WG are the weights for the discrimi-
nated anomaly fraction and the sample generated
anomaly fraction, respectively. 0e final anomaly score
can be obtained by combining the two. 0e calculation
of determining anomaly score and sample generated
anomaly score is as follows.

3.3.1. Determining Anomaly Fraction Dscore. Given a test
sample set X � (X1, y1), (X2, y2), . . . , (Xn, yn) , the test
sample uses the trained discriminator D∗ to output the
probability P that the sample is a real sample. For the sample
of the normal pattern, the P value is larger when it is more
consistent with the data distribution of the training set. For
anomaly pattern samples, the distribution of abnormal
samples is significantly different from that of normal
samples because the abnormal data far deviate from the
normal data, and the P value is relatively small. As a result,
the discriminated anomaly score Dscore is 1− P.

3.3.2. Generating Anomaly Fraction Rscore. Assuming that
the sample length is n, the generator is used to generate a
sample G(Z∗) � x1, x2, . . . , xn  based on random noise
Z∗ while the real sample is Xi � x1, x2, . . . , xn . For
calculating the absolute error at each time during
anomaly generation, different weights are given to ab-
solute error e considering that the biggest difference
between normal and anomaly pattern is the deviation of
the data from the average score in the abnormal pattern
that does not exist in the normal pattern. 0e different
weights constitute weighted absolute error. 0e weighted
series is set as Wi � w1, w2, . . . , wn 

T and the weights
exhibit exponential changes. 0e values of the weighted
influence change exponentially as data that nearest to the
maximum has the largest weighted influence. 0e
anomaly score of the sample is Rscore � e · Wi. 0e setting
of the weight series is as follows:

Step 1: sort the elements in e with an absolute error
length of n from the smallest to the largest to obtain the
absolute error Ei

′ � e1′, e2′, . . . , en
′ . 0e sizes of the el-

ement do not change but the positions of the elements
change.
Step 2: calculate the average value M of the absolute
error Ei

′ � e1′, e2′, . . . , en
′  after sorting. If there is ab-

normal data in the sample, the value ofM will increase.
Assume that the data element ek

′, ek+1′, . . . , en
′  in Ei
′ is

greater than the average value M with the size of
n − k + 1. Initialize the weight series
Wi
′ � w1′, w2′, . . . , wn

′ 
T
, w1 ∼ n−2′ � 0, and set xn

′ the
corresponding weight wn

′ as λ. 0e corresponding
weight wn−1′ of xn−1′ is 1 − λ.
Step 3: update the size of the element in the weight
series Wi

′. 0e updating of wj
′ is shown in

wj
′ �

0, j< k,

λ(1 − λ)
n− j

, j≥ k.
 (10)

In formula (15), only the error of data elements that
are greater than the mean M is calculated to reduce
the number of parameters and consider the main
errors between the normal pattern and the anomaly
pattern. 0at is, the weight of data elements less than
the mean M is set as 0. When j≥ k, wj

′ increases with
the increase of j. 0e larger λ is, the greater the
weight of the maximum value will be. When j � n,
wj
′ � λ.

Step 4: use the updated weight series Wi
′ and the sorted

sample Xi
′ to calculate the generated anomaly score

Rscore of the test sample, as shown in

Rscore � Ei
′ · Wi
′. (11)

0e higher the anomaly score is, the higher the prob-
ability of anomaly is. To better distinguish between normal
samples and abnormal samples, the threshold value of
anomaly scores is determined by verifying the sample set
STval

� x1, x2, . . . , xTval
 

1×Tval . 0at is, the maximum and
minimum anomaly scores in the results of the verification
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sample set are taken as the maximum and minimum
boundaries and they are divided equally. 0e anomaly score
of the qth verification is shown in

sorceq � minval +
maxval − minval

l
× q, (12)

where l is the set division quantity. minval is the minimum
boundary, and maxval is the maximum boundary. Since F1
includes both the precision and the recall of the model [25],
the anomaly score corresponding to the maximum F1 score
is selected as the threshold value. 0e calculation of F1 is
shown as follows:

F1 � 2 ×
Per × Rec
Per + Rec

, (13)

where

Per �
TP

TP + FP
,

Rec �
TP

TP + FN
.

(14)

In (14), TP is the positive sample predicted to be positive
by the model, FP is the negative sample predicted to be
positive by the model, and FN is a positive sample predicted
to be negative by the model. After determining the
threshold, the testing set STtest

is used to test the performance
of the network.

4. Experiment and Analysis

4.1. Experimental Data. 0e data used in this experiment is
the experimental data of the mined-out area model and the
real data of Dafosi Coal Mines. 0e prototype of the model
experimental platform is Dafosi 40118 fully mechanized
caving face. 0e thickness of residual coal in two lanes of
Dafosi working face is 12 meters, and the thickness of re-
sidual coal in the middle of the mined-out area is 0.92
meters. 0e size of the mined-out area model is
1.2×1.2× 0.6 (m), the geometric similarity ratio is 150 :1, the
thickness of residual coal in two lanes of the mined-out area
model is 8 cm, and the thickness of residual coal in the
central mined-out area is 0.6 cm. 0e model is divided into
three layers: upper, middle, and lower. Each layer is divided
into nine square areas. Each area has four monitoring po-
sitions, and each location has gas sensors, temperature
sensors, and pressure sensors. 0erefore, there are 108
monitoring points. 0e experimental configuration of the
platform is shown in Table 2.

In the experiment, the series values of CO gas variation
with time in the oxidation process of residual coal were
collected, including the variation of CO gas concentration in
different oxidation stages. Training data is
STtrain

� x1, x2, . . . , xTtrain
 . Validation data is

STval
� x1, x2, . . . , xTval

 . Testing data is

S
Ttest

� x1, x2, · · · , x
Ttest

 .
First, the difference rate entropy feature series of the

original data is extracted, and then, the feature series is

normalized, as shown in formula (15). min(S) is the min-
imum value in the series, and max(S) is the maximum value
in the series.

xi �
xi − min(S)

max(S) − min(S)
. (15)

Secondly, the normalized series is segmented and av-
eraged in the way described in formula (5) to obtain the real
input data of the network model. Experimental data de-
scription is shown in Table 3. 0e experimental object is
Dafosi Coal, and the dimension of the time series is one-
dimensional, that is, one-dimensional series. 0e data size is
as follows: training data STtrain

� x1, x2, . . . , x8360 , valida-
tion data STval

� x1, x2, . . . , x5248 , and testing data
S

Ttest
� x1, x2, . . . , x3574 . 0ere are only normal samples in

the training data and normal and abnormal samples in the
validation set.

Finally, the sliding window is used to segment the data in
order to effectively extract the data patterns contained in
different stages of coal spontaneous combustion. In this way,
the data in the window can be detected and analyzed in time.
Set the window size as w and step size as b; then, each
window data segment is a sample, corresponding to a label
label ∈ (0, 1). 0 means normal and 1 means abnormal and
the total number of samples is n � (Ttrain − w)/(b). When
the window size and step size are different, the number of
samples will be different, and the experimental results will be
different.

4.2. Experimental Results. Figure 6(a) shows the original
series segment containing the normal pattern and the
anomaly patterns that the 100∼250 data segments are the
abnormal pattern data segment with the concentration of gas
changing greatly. Figure 6(b) shows the differential rate
series curve of the original series segment in response. 0e
window size of the series segment is set as 10 and the step
size is 1. It can be seen that the maximum value of the
difference rate corresponding to the data segment of ab-
normal mode is 0.6, and the data change is negative. 0e
feature series of sample entropy is shown in Figure 6(c), the
length of subseries is 2, and the threshold of similarity
comparison is the standard deviation ×2. 0e larger part of
the eigenvalue corresponds to the anomaly pattern of the
original series. 0e characteristic value of the normal model
fluctuates roughly between 0.25 and 0.75, while the fluc-
tuation range of the abnormal model fluctuates far beyond
the range of other parts, reaching 1.79 at the highest. 0e
series after series aggregation averaging process segment by

Table 2: Experimental configuration.

Category Type of gas mixture
Coal sample selection Dafosi Coal
Gas type O2, CO2, CO, C2H4, C3H6, C2H2, CH4
Temperature range 30°C–530°C
Gas flow 50ml/min
Coal particle size 10–20, 20–40, 40–80 mesh
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segment is shown in Figure 6(d). It can be seen that the data
is smoother. It can reduce the fluctuation of normal mode
data and bring large errors for abnormal mode detection
without changing the eigenvalue difference between ab-
normal mode and normal mode.

Figure 7 shows the characteristics of different entropy
series of the same difference rate sequence in which
Figures 7(a)–7(c) are, respectively, Shannon entropy, sample
entropy, and permutation entropy. 0ese entropies measure
the complexity of time series on a single scale. 0e corre-
sponding statistical features are shown in Table 3, including
the minimum value, maximum value, and average value of
data segments of normal mode and abnormal mode, as well
as the threshold in the abnormal mode. Table 4 shows the
percentage difference between the statistical features of the
anomaly pattern and that of the normal patterns.

As can be seen from Table 4, the minimum, maximum,
and average values of the anomaly pattern are lower than
those of the normal pattern for Shannon entropy and
permutation entropy, while the sample entropy is the op-
posite. In addition, before the occurrence of the anomaly
pattern, the entropy series has found the state where the
anomaly pattern begins to appear in advance, that is, the
threshold where the anomaly pattern appears, which helps
with prediction and warning.0eminimum threshold of the
sample entropy is 62, and the maximum threshold of the
Shannon entropy is 111, indicating that the sample entropy
can manifest the anomaly pattern first. As can be seen from
Table 5, as for the percentage error of the statistical char-
acteristics of each entropy series of the anomaly pattern, the
sample entropy has obtained large results, which indicates
that, in the sample entropy series, the anomaly pattern is
significantly different from the normal pattern. It is more
conducive to distinguishing the two patterns.

0e data processed by the differential rate entropy
feature is preprocessed as the input signal for generative
adversarial networks to train the network. 0e number of

network training iterations is 1000, the learning rate is 0.1,
and the number of generator and discriminator training is
set as 100. Under this setting, the variation curves of dis-
criminator loss and generator loss function are shown in
Figure 8.

It can be seen from Figure 8 that the generator and
discriminator have trained alternately in turn during the
training process and the corresponding generator loss
function and discriminator loss function change in opposite
trends. 0e generator loss first decreases, then increases,
then decreases, and then increases, while the discriminator
loss first increases, then decreases, then increases, and then
decreases. 0e final discriminator loss function converges to
about 0.1311, and the generator loss function converges to
about 13.99.

Figure 9 is the schematic diagram of the generated
sample graph and the real sample at different iteration
numbers. Figure 9(a) is the comparison diagram of the
generated sample and the real sample at the fifth generation.
It can be seen that the generated sample cannot learn the
curve pattern of the real data well. At this time, Dloss is
0.1825, and Gloss is 5.701. Figure 9(b) shows the comparison
between the generated samples and the real samples in the
78th generation. It can be seen that the generated samples
can better learn the curve pattern of the real data. At this
time, Dloss is 4.4680 and Gloss is 0.0509.

0e series segment length of the sample can affect de-
tected results to a certain extent. It can be either too short to
include whole pattern distribution or too long to handle the
difficulty of network learning, which results in a higher error
rate. 0erefore, it is necessary to find proper sample series
segment length to optimize detection precision. Table 6
shows detection results for different sample lengths.

As shown in Table 5, for all sample lengths, the precision
is lower than the recall, indicating that some normal samples
are detected as abnormal samples, while abnormal samples
are almost detected. When the series segment is 40, the F1

Table 3: Description of experimental data.

Categories Value Number of periods Anomaly pattern determination Anomaly rate (%)
Select coal sample Dafosi Coal — — —
Variable dimension 1 — — —
Training set 8360 16 Normal 0
Validation set 5248 10 Abnormal 20.84
Testing set 3574 7 Abnormal 19.23
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Figure 6: Series difference result figure.
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score reaches the maximum value of 0.8916, the corre-
sponding precision is 83.87%, and the recall is 96.3%. When
the series segment is larger than 40, the detection ability
significantly decreases and the precision is relatively low. It
indicates that when the series length is too long, many
normal patterns will also be determined as abnormal pat-
terns. When the series segment is less than 40, the detection
rate also decreases. It indicates that the distribution of the

normal pattern has not been well learned, which affects the
determination of the anomaly pattern. Table 7 shows the
comparison of the proposed method, some common un-
supervised methods, and results without being processed by
difference rate sample entropy.

As shown in Table 6, the test results of the DRSe-GAN
model are the best, and the prediction results of the KNN
networkmodel are the worst.0e prediction results of the GAN
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Figure 7: Comparison of entropy of different time series.

Table 4: Statistical characteristics of different entropy series.

Entropy category
Normal pattern Anomaly pattern

Max Min Mean Min Max Mean 0reshold
Shannon entropy 2.5792 3.3219 3.0829 1.1934 2.6592 2.0399 111
Sample entropy 0.0206 0.7082 0.4911 0.7255 1.7987 1.1750 62
Permutation entropy 1.5551 2.4905 2.1563 1.3868 2.3655 1.8601 80

Table 5: Percentage difference.

Entropy category Min (%) Max (%) Mean (%)
Shannon entropy −53.72 −19.94 −33.83
Sample entropy 3421 153.9 139.2
Permutation entropy −10.8 −5.02 −13.73
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Figure 8: Variation curves of generator loss and discriminator loss functions.
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network are similar to those of AutoEncoder and are even better
than them. Compared with the general unsupervised network,
the GAN network can learn the distribution of the normal
mode better and is relativelymore sensitive to anomaly patterns.
At the same time, carrying out difference rate sample entropy
feature processing can highlight the differences between ab-
normal and normal samples to improve the detection precision
of the model. At the same time, the running time of the DRSe-
GANmodel is slightly longer compared with other models due
to the adding of the different rate entropy sample processing of
the data. Nevertheless, the running time is shorter than the
collection interval of gas sensor data. To sum up, time series
anomaly detection based on difference rate entropy feature and
the generative adversarial network is more suitable for pro-
cessing the coal mine index gas concentration data used in the
present study, with the highest detection accuracy and relatively
appropriate running time.

5. Conclusion

Based on the features of mined-out area coal compound
disasters, this paper analyzes the data of the index gas CO

that can manifest the process of the disaster and propose a
method utilizing time series entropy feature and generative
adversarial network to detect the anomaly. 0e method
detects whether the series contains abnormal patterns to
provide references for the judgment of the occurrence of
thermodynamic disasters in coal mines.

0is method has the following characteristics:

(1) 0e method consists of two modules: anomaly
pattern extraction module and anomaly pattern
detection module. 0e anomaly pattern extraction
module processes the original data and finally pro-
duces the original difference rate sample entropy
series as the input of the detection network.

(2) In the abnormal pattern detectionmodule, according
to its data characteristics, a new calculation method
of anomaly score is proposed.0e difference between
the generated sample and the real sample is added
based on the discriminant output produced by the
generative adversarial network. Different weights are
given to the errors at different time points to improve
the detection rate.
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Figure 9: Schematic diagram of generating samples with different iteration numbers.

Table 6: Detection results for different sample length.

Sample length Precision (%) Recall (%) F1 score
20 75.01 93.75 0.8284
30 83.03 92.6 0.8753
40 83.87 96.3 0.8916
50 54.84 94.44 0.6893
60 36.67 91.67 0.5198

Table 7: Test results of different methods.

Methods F1 score Computation time (s)
KNN 0.4214 208.6
AutoEncoder 0.6039 230.5
GAN 0.6348 346.2
DRSe-GAN 0.8916 457.8
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(3) 0e experiment compared the detection accuracy of
this method with other methods, which proved the
effectiveness of the proposed method and the highest
detection accuracy.

0is method is aimed at the iconic gas data in a specific
mined-out area. Although the change rule of this type of data
is similar, for different coal mines, the boundary of the data
and the types of the iconic gas will be different. 0erefore, in
future research, we hope to further study the idea of data
feature extraction, further improve the model algorithm,
increase the generalization of the model, and strive to apply
the model to more coal mines.
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