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)e paper investigates the state estimation problem of general continuous-time linear systems with the consideration of time-
varying communication delay. A solution is proposed in terms of the networked distributed observer, which consists of multiple
local observers. Each local observer relies on only part of the system output and exchanges information with neighbors through
undirected links modeled by a prespecified communication graph. A simple approach for computing observer parameters is
presented by solving a parametric algebraic Riccati equation. Furthermore, by the Lyapunov–Krasovskii stability theorem, an
upper bound of the delay could be calculated explicitly and together with the conditions of joint observability and connectivity of
the communication graph; the resulting distributed observers work coordinately to achieve an asymptotic estimate of the full plant
state. An illustrative example is provided to confirm the analytical results.

1. Introduction

State estimation or reconstruction is one of the most essential
problems in control science and technology. In many control
strategies (e.g., state feedback control, process monitoring, and
fault detection), we need to have the state variables to construct
the controller. In practice, it would be hard to directly obtain
all states of an actual system because of technical limitations or
perhaps immense cost by using complex sensors [1, 2].
)erefore, there is an urgent necessity to achieve an accurate
estimation of the unmeasurable state variables. For deter-
ministic linear time-invariant multivariable systems, the well-
known Luenberger observer [3, 4] offers a comprehensive
solution to accurately reconstruct the state variables by using
the observability of the systems.

During the past decades, based on the Luenberger ob-
server, many observer design schemes were proposed for
various linear and nonlinear systems [5, 6], switched/hybrid
systems [7–9], and systems modeled by partial differential
equations or differential equations [10–14]. So far, most
works in the literature of the observer design consider the

scenario that the observer has access to the full output in-
formation of the system to be observed. However, when
estimating the states of a spatially deployed system, it is
difficult to obtain full information of its output signals in-
dividually [15]. )is requires us to find a strategy to guar-
antee an asymptotic estimate of the full plant states while
each observer receives only a portion of the measured
outputs [16–18]. One feasible strategy to consider this issue
is the so-called distributed observer consisting of networked
local observers. A key feature of networked distributed
observers is that each local observer rely on only its local
measured outputs and cooperates with its neighboring
observers to estimate the full plant states. )is feature can be
helpful in formational control of vehicles, autonomous
underwater vehicles (AUVs), and spacecrafts [19–21].

Inspired by the extension of Kalman filtering by the idea of
distributed control [22, 23], the design of the distributed ob-
server for time-invariant linear systems has recently attracted
lots of attention. For example, the authors in [24, 25] proposed
a network of augmented observers and achieved the right state
estimation of discrete-time linear time-invariant systems.
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However, the introduction of an augmented state in each local
observer results in the expanded dimensions of the augmented
observer, which could induce a heavy computational burden in
implementing their proposed schemes. For continuous-time
linear time-invariant systems, the networked Luenberger ob-
servers proposed in [26–29] provided a feasible solution. )e
particularity of their formulations is that the effectiveness of the
distributed observers can be verified by examining the ob-
servability of the system and connectivity of the communi-
cation network separately. Along with the idea in [26], different
algorithmic procedures to design gain parameters of each local
observer using local information of the plant dynamics and its
ownmeasurement output were presented in [30, 31]. However,
the distributed observer schemes proposed by the above-
mentioned works considered ideal interconnection networks
without communication time delay among local observers.

Inmany practical systems, time delays are inevitable, which
could degrade the performance of the system or even result
instability. Some research studies concerning the time-delay
systems have been reported, such as the time-delay state-space
systemwith disturbances [32] and systems with state and input
time delays [33]. In network communication systems, the
information exchange on the network is often affected by time
delay due to physical limitations in communication channels,
finite-time information processing, or time-response of actu-
ators [34–37]. As these communication delays may induce
instability or poor performance of the systems, they should be
taken into consideration to ensure performance of the pro-
posed distributed observer. In [38], an augmented observer,
which integrated robust estimation and compensation tech-
nique, was proposed for nonlinear systems subjected to un-
knownmeasurement delays. Up to now, there are fewworks on
networked distributed observer design for continuous-time
linear systems with the consideration communication delays.
In [39, 40], two kinds of distributed Luenberger observer,
tolerating arbitrarily large communication delays were pro-
posed, while their sufficient conditions in both papers required
all eigenvalues of the system matrix on the imaginary axis. In
addition, the communication delays needed to be constant and
their values to be known exactly in [39, 40], which is quite
restrictive as communication delay is often time varying.

)e lack of considering time-varying communication delay
and the restriction on the systemmatrix motivate us to develop
a novel distributed observer algorithm for general continuous-
time linear systems by assuming the following. (1) )e linear
plants have general poles, i.e., poles of the system matrix can
have zero, negative, or positive real parts. (2) )e communi-
cation delay in the communication network is time varying.
)erefore, the local observers in this paper are deployed to
estimate linear plants with general poles under time-varying
communication delay. )e ability of observing general linear
systems is critical for observers as they are generally used in the
feedback loops. By solving the parametric algebraic Riccati
equation, the gain matrix for local measurement output is
determined. Furthermore, by applying the Lyapunov–Kra-
sovskii theorem, we derive the process of computing coupling
gains for the information exchange among local observers and
the upper bound of the time-varying delay, under which
distributed observers achieve omniscience eventually.

)e remainder sections of this paper are organized in the
following way. Section 2 reviews some necessary prelimi-
naries and introduces the problem statement. In Section 3,
we present the detailed design of the distributed observers
for linear systems with time-varying communication delay.
Simulation results are reported in Section 4. Finally, con-
cluding remarks and further research directions are pre-
sented in Section 5.

Let R+, Rn, and Rn×m stand for the nonnegative real
number, n-dimensional Euclidean space, and the set of all n ×

m real matrices, respectively, On and In signify the zero matrix
and the identity matrix, 1n denotes the n-dimensional column
vector with all elements as 1, X> 0 (X< 0) means that
X ∈ Rn×n is a positive definite matrix (negative definite ma-
trix), ⊗ is the Kronecker product, and Diag(α1, α2, . . . , αn)

stands for a diagonal matrix with diagonal elements αi,
i � 1, 2, . . . , n, being real numbers (or a block diagonal matrix
with diagonal blocks αi, i � 1, 2, . . . , n, being matrices). All
matrices are assumed to be compatible in this paper.

2. Preliminaries and Problem Formulation

2.1. Graph .eory. Let G � (V,E) be an undirected graph
with the node setV � 1, . . . , N{ } and the edge setE⊆V × V.
An edge inE is denoted by an unordered pair of distinct nodes
(i, j), and (i, j) ∈ E if and only if (j, i) ∈ E. )e neighbor set
of node i is denoted by Ni � j ∈V: (i, j) ∈ E􏼈 􏼉.
G � [gij] ∈ RN×N represents the adjacency matrix associated
with G, where gij � gji > 0 if (i, j) ∈ E and gij � gji � 0
otherwise. Assuming that there is no self-cycle for each node,
i.e., gii � 0, correspondingly, the Laplacian matrix
L � [lij] ∈ RN×N is defined as lii � 􏽐k∈Ni

gik and lij � − gij, for
j≠ i. For an undirected graphG, both its adjacencymatrix and
Laplacian matrix are symmetric. A sequence of edges
(i1, i2), (i2, i3), . . . , (ik− 1, ik) is called a path from node i1 to
node ik. An undirected graph is called connected if, for any
node pair i, j ∈ V, there exists a path from i to j.

)e following lemma is a well-known result in algebraic
graph theory [41].

Lemma 1. For an undirected graph G � (V,E) with N

nodes, its Laplacian matrix L has N real eigenvalues which
can be arranged in an ascending order as
0 � λ1 ≤ λ2 ≤ · · · ≤ λN. Moreover, ifG is connected, λ1 � 0 is a
simple eigenvalue of L with corresponding eigenvector 1N.

2.2. ProblemFormulation. In this paper, the linear system to
be observed is

_x � Ax,

y � Cx �

C1

C2

⋮

CN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x �

y1

y2

⋮

yN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(1)

where x � [x1, . . . , xn]T ∈ Rn is the state, y ∈ Rq is the
measurement output, and the matrices A ∈ Rn×n and
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C ∈ Rq×n are system matrices. We have partitioned the
output y as y � [yT

1 , . . . , yT
N]T according to the partition of

the matrix C � [CT
1 , . . . , CT

N]T, where yi ∈ Rqi and
Ci ∈ Rqi×n.

For plant (1), with the given undirected communication
graphG � (V,E), our objective is to construct a group of N

networked observers, where each observer computes a state
estimate that asymptotically converges to the entire plant
state. )e following constraints are challenging in the dis-
tributed estimation problem: (i) each local observer can only
access the portion yi � Cix of the plant output y � Cx and
(ii) the information exchange among local observers is re-
stricted by a sparsity constraint described by the commu-
nication topology, where local observers are represented by
nodes and the edges in E which determine the information
links among local observers. In light of the structure of the
distributed observers in [1, 39], we propose a kind of dis-
tributed observer taking the following form:

_􏽢xi � A􏽢xi + Hi yi − Ci􏽢xi( 􏼁

+ k 􏽘
j∈Ni

gij 􏽢xj(t − d(t))􏼐 􏼑 − 􏽢xi(t − d(t))( 􏼁.
(2)

where 􏽢xi � [􏽢xi1, . . . , 􏽢xin]T ∈ Rn is an estimate of the state
generated by the ith local observer, gij shows the relation
between observer i and observer j, Ni is the set of neigh-
boring observers of observer i, Hi ∈ Rn×qi is the gain matrix
for local output measurements to be determined, and k> 0 is
the coupling strength for neighboring local observers to be
designed. d(t): R+⟶ R+ is a time-varying communica-
tion delay.)e delay is assumed to be bounded by a constant
D> 0 (i.e., 0≤d(t)≤D), which could be estimated by em-
pirical observations or testings. To make the distributed
observer (2) work under the delayed communication, we
additionally set the initial condition x(θ) � φ(θ) and
􏽢xi(θ) � φi(θ), for any θ ∈ [− D, 0], where φ(θ) and φi(θ) are
known continuous initial state-vector functions.

Remark 1. In the designed distributed observer (2), the term
􏽢xj(t − d(t)) − 􏽢xi(t − d(t)) represents the relative state be-
tween observer i and observer j, which is subject to com-
munication time delay d(t). )erefore, the exactly data of
d(t) is not required in the distributed observer. In other
words, we intend to measure (􏽢xj(t) − 􏽢xi(t)), but the in-
formation that we obtain is delayed by the communication
network. )e time delay d(t) exists inevitably in the com-
munication channel, and we use d(t) to imitate the time
delay. )us, we want to design a kind of distributed observer
that considers the delay in order to depress the degradation
caused by the delay.

Assumption 1. )e undirected graph G is connected.

Assumption 2. )e pair (A, C) is observable.

Remark 2. According to dynamics (2), each local observer
recuperates the full plant state x from its local measurements
yi and relative delayed information 􏽢xji(t − d(t))(j ∈ Ni) of
its neighbors. For the special case that there is one Ci such

that (A, Ci) is detectable, then other observers are unnec-
essary and the distributed structure becomes trivial.
)erefore, we assume the pair (A, C) is detectable but each
separated pair (A, Ci) is not; then, exchanging the estimates
among neighboring observers is obligatory.

Let ηi � 􏽢xi − x be the estimation error of the ith observer.
)en, the dynamics of observer error ηi can be obtained
from (1) and (2) as follows:

_ηi � A − HiCi( 􏼁ηi − k 􏽘
j∈Ni

lijηj(t − d(t)), (3)

where lij is the element of the Laplacian matrix L ofG. Stack
the local observer errors ηi(t) to get the joint vector of the
observer error η � (ηT

1 , ηT
2 , . . . , ηT

N)T and denote
ϕ(t) � t − d(t). )en, the observer error dynamics governed
by (3) can be rewritten as

_η(t)

� IN ⊗A − HC( 􏼁η(t) − k L⊗ In( 􏼁η(ϕ(t))

� IN ⊗A − HC − k L⊗ In( 􏼁( 􏼁η(t)

+ k L⊗ In( 􏼁(η(t) − η(ϕ(t)))

� IN ⊗A − HC − k L⊗ In( 􏼁( 􏼁η(t) + k L⊗ In( 􏼁ρ(t),

(4)

where

ρ(t) � η(t) − η(ϕ(t)),

H � Diag H1, H2, . . . , HN􏼈 􏼉,

C � Diag C1, C2, . . . , CN􏼈 􏼉.

(5)

Before proceeding further, we first introduce the concept
of asymptotic omniscience as stated in [25].

Definition 1. For plant (1), the distributed observer (2) is
said to achieve asymptotic omniscience if
limt⟶+∞‖ηi(t)‖ � limt⟶+∞‖􏽢xi(t) − x(t)‖ � 0, i.e., each
observer state 􏽢xi(t) converges to x(t) asymptotically.

Remark 3. From the multiagent point of view, each local
observer in (2) is in the situation of a follower and system
(1) to be observed is analogous to the leader. )us, the
dynamical structure of (1) and (2) is in fact a special case of
the leader-following multiagent system. A difference lies in
that each follower often receives full state vector of the
leader, while each local observer in (2) has access to only
partial information of the output [39]. To the best of the
authors’ knowledge, rare result on the consensus problem
of such a type of multiagent systems was reported by re-
searchers. )erefore, the problem of designing an observer
is still an open problem for the general form (2), especially
with the consideration of time-varying communication
delay.

In what follows, we will focus on computing the coupling
strength k and the observer gain Hi such that the designed
distributed observer (2) with time-varying communication
delay d(t) achieves omniscience asymptotically.
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3. Distributed Observer for General
Linear Systems

In this section, we are going to design distributed observers
for general linear system (1), where the matrix A is general,
i.e., may have eigenvalues with zero, negative, or positive real
parts. Two kinds of distributed observer algorithms, with
communication delay and without communication delay,
are designed with rigorous proofs.

Before providing the distributed observer design
method, some key technical lemmas for the design and proof
of the distributed observer are introduced.

Lemma 2 (see [42]). For (A, C) satisfying Assumption 2, let

ϵ> − 2min Re(λ(A)){ }, (6)

where Re(λ(A)) is the real parts of λ(A) which are eigen-
values of A. .en, a unique positive definite solution of the
following ARE,

PA
T

+ AP − PC
T
CP � − ϵP, (7)

is given by P(ϵ) � W− 1(ϵ), where W(ϵ) can be obtained by
solving the following Lyapunov equation:

W A +
ϵ
2
In􏼒 􏼓 + A +

ϵ
2
In􏼒 􏼓

T

W � C
T
C. (8)

Moreover, (dP(ϵ)/d(ϵ)) > 0 and P(ϵ) has the following
properties:

(i) tr(CP(ϵ)CT) � 2tr(A) + nϵ
(ii) P(ϵ)CTCP(ϵ)≤ (2tr(A) + nϵ)P(ϵ)

Lemma 3. Let (A, C) satisfy Assumption 2 and P(ϵ)> 0 be
the solution to (7). .en, we have

A
T
P

− 1
A≤ ζ(ϵ)P− 1

, (9)

where

ζ(ϵ) �
1
2
(2tr(A) + nϵ)2 −

1
2
ϵ(2tr(A) + nϵ))

− ϵtr(A) − tr A
2

􏼐 􏼑.

(10)

Proof. From the fact tr(XY) � tr(YX), we have

A
T

P
− 1

A � P
− 1

PA
T
P

− 1
APP

− 1

� P
− (1/2)

P
− (1/2)

PA
T
P

− 1
APP

− (1/2)
􏼐 􏼑P

− (1/2)

≤ tr P
− (1/2)

PA
T
P

− 1
APP

− (1/2)
􏼐 􏼑P

− 1

� tr PA
T
P

− 1
A􏼐 􏼑P

− 1
.

(11)

Postmultiplying the two sides of ARE (7) with P− 1A

gives

PA
T
P

− 1
A + A

2
− PC

T
CA � − ϵA, (12)

which leads to

tr PA
T

P
− 1

A􏼐 􏼑 � tr PC
T
CA􏼐 􏼑 − εtr(A) − tr A

2
􏼐 􏼑. (13)

Using ARE (7) again, we obtain

tr PC
T
CA􏼐 􏼑

� tr C
T
CAP􏼐 􏼑 � tr C

T
C PC

T
CP − PA

T
− ϵP􏼐 􏼑􏼐 􏼑

� tr CPC
T

􏼐 􏼑
2

􏼒 􏼓 − tr PC
T

CA􏼐 􏼑 − ϵtr CPC
T

􏼐 􏼑.

(14)

Notice that tr(XY)≤ tr(X)tr(Y) for X≥ 0 and Y≥ 0.
)en, it follows from (14) and Lemma 2 that

tr PC
T
CA􏼐 􏼑 �

1
2
tr CPC

T
􏼐 􏼑

2
􏼒 􏼓 −

1
2
ϵtr CPC

T
􏼐 􏼑

≤
1
2
tr CPC

T
􏼐 􏼑􏼐 􏼑

2
−
1
2
ϵtr CPC

T
􏼐 􏼑

�
1
2
(2tr(A) + nϵ)2 −

1
2
ϵ(2tr(A) +nϵ)).

(15)

Substituting (15) into (13) gives
tr PA

T
P

− 1
A􏼐 􏼑 � tr PC

T
CA􏼐 􏼑 − ϵtr(A) − tr A

2
􏼐 􏼑

≤
1
2
(2tr(A) + nϵ)2 −

1
2
ϵ(2tr(A) +nϵ))

− ϵtr(A) − tr A
2

􏼐 􏼑.

(16)
Consequently, inequality (9) follows from (11) and (16).

)is completes the proof. □

Lemma 4 (Schur complement [43]). For a given symmetric

matrix S �
S11 S12

S
T
12

S22
􏼢 􏼣 with S11 � ST

11 and S22 � ST
22, S< 0 is

equivalent to S11 < 0, S22 − ST
12S

− 1
11S12 < 0.

Lemma 5 (Jensen’s inequality [44]). Let t1 and t2 be scalars
with t2 ≥ t1, and a vector-valued function η(t): [t1,

t2]⟶ Rn so that the related integrals are well defined. .en,
for any positive definite matrix P ∈ Rn×n, we have the fol-
lowing inequality:

􏽚
t2

t1

η(t)dt􏼠 􏼡

T

P 􏽚
t2

t1

η(t)dt􏼠 􏼡≤ t2 − t1( 􏼁 􏽚
t2

t1

ηT
(t)Pη(t)dt.

(17)

Based on the above preparations, we are ready to propose
the following theorem.

Theorem 1. Consider the linear system (1) under Assump-
tions 1 and 2. Let 0 � λ1 < λ2 ≤ · · · ≤ λN denote N real ei-
genvalues of L and design feedback gain Hi and coupling
strength k in the distributed observer (2) as

Hi �
N

2
P(ϵ)CT

i , k>
ρ1(ϵ)
λ2

, (18)

where P(ϵ)> 0 is the solution to (7) and
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ρ1(ϵ) � (4N − 3)(2tr(A) + nϵ) + 1.5ϵ

+
2
ϵ
(1 + N)

2
(2tr(A) + nϵ)2.

(19)

)en, the distributed observer (2) achieves asymptotic
omniscience if the upper bound D of the time-varying delay
d(t) satisfies

D<
�����������������

ϵ
3ϵk2λ2N + 2kλNρ2(ϵ)

,

􏽳

(20)

where

ρ2(ϵ) � 3 + 1.5N
2

􏼐 􏼑(2tr(A) + nϵ)2 + 3k
2λ2N

− 3ϵ(2tr(A) + nϵ) − 6ϵtr(A) − 6tr A
2

􏼐 􏼑.
(21)

Proof. It can be seen that the distributed observer (2)
achieves asymptotic omniscience if and only if the observer
error system (4) is asymptotically stable.)us, we choose the
following Lyapunov functional candidate to prove the
convergence of the global observer error system (4):

V(t) � V1(t) + V2(t), (22)

where

V1(t) � ηT
(t)Pη(t),

V2(t) � σ 􏽚
0

− D
􏽚

t

t+θ
_ηT

(s)P _η(s)dsdθ,
(23)

and P � IN ⊗P− 1, and σ > 0 is a scalar to be designed.
Along the solutions of (4) with Hi in (19), computing the

derivative of V1(t) yields
_V1(t)

� ηT
(t) IN ⊗ A

T
P

− 1
+ P

− 1
A􏼐 􏼑􏼐 􏼑η(t) − NηT

(t)C
T
Cη(t)

− 2kηT
(t) L⊗P

− 1
􏼐 􏼑η(t) + 2kηT

(t) L⊗P
− 1

􏼐 􏼑ρ(t)

≤ ηT
(t) IN ⊗ A

T
P

− 1
+ P

− 1
A􏼐 􏼑􏼐 􏼑η(t) − NηT

(t)C
T
Cη(t)

− kηT
(t) L⊗P

− 1
􏼐 􏼑η(t) + kρT

(t) L⊗P
− 1

􏼐 􏼑ρ(t)

� ηT
(t)Π(k)η(t) + kρT

(t) L⊗P
− 1

􏼐 􏼑ρ(t),

(24)

where

Π(k) � IN ⊗ A
T
P

− 1
+ P

− 1
A􏼐 􏼑 − NC

T
C − kL⊗P

− 1

� Diag Υ1,Υ2, . . . ,ΥN􏼈 􏼉 − kL⊗P
− 1

,
(25)

withΥi � ATP− 1 + P− 1A − NCT
i Ci.)en, according to (7), we

have 􏽐
N
i�1 Υi � N(ATP− 1 + P− 1A − 􏽐

N
i�1 CT

i Ci) � − ϵNP− 1.
To analyze Π(k), we first show that, for any scalar ϵ> 0,

there is a k> 0 such that

Π(k)< −
1
2
ϵP. (26)

By Assumption 1 and Lemma 1, we know that
(1/

��
N

√
)1N is the right eigenvector of L associated with the

zero eigenvalue. Let U � [(1/
��
N

√
)1N, U1] be the orthogonal

matrix such that

U
T
LU � Diag 0, 􏽢L􏽮 􏽯, U

− 1
� U

T
, (27)

where 􏽢L � Diag λ2, . . . , λN􏼈 􏼉. By premultiplying both sides
of (26) with UT ⊗ In and postmultiplying with U⊗ In, we
have

U
T ⊗ In􏼐 􏼑Π(k) U⊗ In( 􏼁< −

1
2
ϵP, (28)

which can be rewritten as in (29)

−
1
2
ϵP− 1 1

��
N

√ 1T
N ⊗ In􏼐 􏼑Υ U1 ⊗ In( 􏼁

∗ U
T
1 ⊗ In􏼐 􏼑Υ U1 ⊗ In( 􏼁 +

1
2
ϵIN− 1 − k􏽢L􏼒 􏼓⊗P

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0.

(29)

By the Schur complement in Lemma 4, (29) is equivalent
to

U
T
1 ⊗ In􏼐 􏼑Υ U1 ⊗ In( 􏼁 +

1
2
ϵIN− 1 − k􏽢L􏼒 􏼓⊗P

− 1

+
2
ϵN

U
T
1 ⊗ In􏼐 􏼑Υ 1N1

T
N ⊗P􏼐 􏼑Υ U1 ⊗ In( 􏼁< 0,

(30)

where Υ � Diag Υ1,Υ2, . . . ,ΥN􏼈 􏼉.
From Lemma 2, we can get tr(CiPCT

i )≤ tr (CPCT) �

2tr(A) + nϵ and CT
i Ci ≤CTC≤ (2tr(A) + nϵ)P− 1, and then,

CT
i CiPCT

i Ci ≤CT
i tr(CiPCT

i )Ci ≤ (2tr(A) + nϵ)CT
i Ci ≤ (2tr

(A) + nϵ)2P− 1. Hence, it can be verified that

Υi � − ϵP− 1
+ C

T
C − NC

T
i Ci

≤ − ϵP− 1
+ C

T
C≤ (2tr(A) + nϵ − ϵ)P− 1

ΥiPΥi � ϵ2P− 1
− 2ϵCT

C + 2ϵNC
T
i Ci + C

T
CPC

T
C

− NC
T
CPC

T
i Ci − NC

T
i CiPC

T
C + N

2
C

T
i CiPC

T
i Ci

≤ ϵ2P− 1
+ 2ϵ(N − 1)C

T
C +(N + 1)C

T
CPC

T
C

+ N
2

+ N􏼐 􏼑C
T
i CiPC

T
i Ci

≤ ϵ2 + 2ϵ(N − 1)(2tr(A) + nϵ)􏽨

+(1 + N)
2
(2tr(A) + nϵ)2􏽩P

− 1
,

(31)

which implies that

U
T
1 ⊗ In􏼐 􏼑Υ U1 ⊗ In( 􏼁≤ (2tr(A) + nϵ − ϵ) IN− 1 ⊗P

− 1
􏼐 􏼑,

(32)

and
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U
T
1 ⊗ In􏼐 􏼑Υ 1N1

T
N ⊗P􏼐 􏼑Υ U1 ⊗ In( 􏼁

≤N U
T
1 ⊗ In􏼐 􏼑Υ IN ⊗P( 􏼁Υ U1 ⊗ In( 􏼁

≤N ϵ2 + 2ϵ(N − 1)(2tr(A) + nϵ)􏽨

+(1 + N)
2
(2tr(A) + nϵ)2􏽩 IN− 1 ⊗P

− 1
􏼐 􏼑,

(33)

where UT
1 U1 � IN− 1 has been used.

Combining (32) and (33), the left-hand side of inequality
(27) satisfies

U
T
1 ⊗ In􏼐 􏼑Υ U1 ⊗ In( 􏼁 +

1
2
ϵIN− 1 − k􏽢L􏼒 􏼓⊗P

− 1

+
2
ϵN

U
T
1 ⊗ In􏼐 􏼑Υ 1N1

T
N ⊗P􏼐 􏼑Υ U1 ⊗ In( 􏼁

≤ − kλ2 − ρ1(ϵ)( 􏼁 IN− 1 ⊗P
− 1

􏼐 􏼑,

(34)

with ρ1(ϵ) as defined in (19). By choosing the coupling
strength k as in (18), the inequality (26) is thus proved.

We now simplify the term kρT(t)(L⊗P− 1)ρ(t) in (24).
By Jensen’s inequality in Lemma 5, one obtains

kρT
(t) L⊗P

− 1
􏼐 􏼑ρ(t)

� k 􏽚
t

ϕ(t)
_η(s)ds􏼠 􏼡

T

L⊗P
− 1

􏼐 􏼑 􏽚
t

ϕ(t)
_η(s)ds􏼠 􏼡

≤ k(t − ϕ(t)) 􏽚
t

ϕ(t)
_ηT

(s) L⊗P
− 1

􏼐 􏼑 _η(s)ds

≤ kλND 􏽚
t

t− D
_ηT

(s)P _η(s)ds,

(35)

where we use the knowledge that d(t) is bounded.
Substituting inequalities (26) and (35) into (24) gives

_V1(t)≤ −
1
2
ϵηT

(t)Pη(t) + kλND 􏽚
t

t− D
_ηT

(s)P _η(s)ds.

(36)

Next, the derivative of V2(t) along (4) with Hi in (18) is

_V2(t) � σ 􏽚
0

− D
_ηT

(t)P _η(t) − _ηT
(t + θ)P _η(t + θ)􏼐 􏼑dθ

� σD _ηT
(t)P _η(t) − σ 􏽚

t

t− D
_ηT

(s)P _η(s)ds.

(37)

By Lemma 3 and Young’s inequality, the first term in
(37) becomes

σD _ηT
(t)P _η(t)

� σDηT
IN ⊗A − HC( 􏼁

T
P IN ⊗A − HC( 􏼁η − 2σDkηT

L
T ⊗P

− 1
􏼐 􏼑 IN ⊗A − HC( 􏼁η + σDk

2ηT
L

T
L⊗P

− 1
􏼐 􏼑η

+ 2σDkηT
IN ⊗A − HC( 􏼁

T
L⊗P

− 1
􏼐 􏼑ρ

− 2σDk
2ηT

L
T
L⊗P

− 1
􏼐 􏼑ρ + σDk

2ρT
L

T
L⊗P

− 1
􏼐 􏼑ρ

≤ 3σDηT
(t) IN ⊗A − HC( 􏼁

T
P

IN ⊗A − HC( 􏼁η(t) + 3σDk
2λ2Nη

T
(t)Pη(t)

+ 3σk
2λ2ND

2
􏽚

t

t− D
_ηT

(s)P _η(s)ds

� 3σDηTDiag Ψ1,Ψ2, . . . ,ΨN􏼈 􏼉η(t) + 3σDk
2λ2Nη

T
(t)

Pη(t) + 3σk
2λ2ND

2
􏽚

t

t− D
_ηT

(s)P _η(s)ds,

(38)

where

Ψi � A
T
P

− 1
A −

N

2
A

T
C

T
i Ci −

N

2
C

T
i CiA

+
N

2

4
C

T
i CiPC

T
i Ci

≤ 2A
T
P

− 1
A +

N
2

2
C

T
i CiPC

T
i Ci

≤ 2ζ(ϵ)P− 1
+

N
2

2
(2tr(A) + nϵ)2P− 1

,

(39)

with ζ(ϵ) as defined in (10). With ρ2(ϵ) in (21), we obtain

σD _ηT
(t)P _η(t)

≤ σD 6ζ(ϵ) +
3
2
N

2
(2tr(A) + nϵ)2 + 3k

2λ2N􏼒 􏼓ηT
(t)

Pη(t) + 3σk
2λ2ND

2
􏽚

t

t− D
_ηT

(s)P _η(s)ds

≤ σDρ2(ϵ)η
T
(t)Pη(t) + 3σk

2λ2ND
2

􏽚
t

t− D
_ηT

(s)P _η(s)ds.

(40)

)en, substitution of (36) and (37) with (40) into the
derivative of V(t) in (22) results in

_V(t) � _V1(t) + _V2(t)

≤ −
1
2
ϵηT

(t)Pη(t) + kλND 􏽚
t

t− D
_ηT

(s)P _η(s)ds

+ σD _ηT
(t)P _η(t) − σ 􏽚

t

t− D
_ηT

(s)P _η(s)ds

≤ −
1
2
ϵ − σDρ2(ϵ)􏼒 􏼓ηT

(t)Pη(t)

+ 3σk
2λ2ND

2
+ kλND − σ􏼐 􏼑 􏽚

t

t− D
_ηT

(s)P _η(s)ds.

(41)

)erefore, by taking

σ �
kλND

1 − 3k
2λ2ND

2, (42)
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which is positive based on the delay bound condition (20),
we have

_V(t)≤ −
1
2
ϵ − σ Dρ2(ϵ)􏼒 􏼓ηT

(t)Pη(t)

≤ −
1
2
ϵ −

kλND
2ρ2(ϵ)

1 − 3k
2λ2ND

2􏼠 􏼡ηT
(t)Pη(t).

(43)

Note that the delay bound condition (20) implies
1/2ϵ> kλND2ρ2(ϵ)/1 − 3k2λ2ND2, and thus, _V(t)< 0. By the
Lyapunov–Krasovskii stability theorem [45], asymptotic
omniscience of the distributed observer (2) has been
achieved under the gain parameter choice satisfying
(18)–(21). □

Remark 4. According to the sufficient condition (18)–(21)
for the distributed observer in )eorem 1, the parameter ϵ
needs to be chosen before we can construct the observers.
Firstly, ϵ is a parameter in ARE (7), and (d/dϵ)P(ϵ)> 0.
)erefore, ϵ is usually a small parameter to keep Hi as a small
feedback gain. Secondly, there is a low bound for ϵ according
to (6) in Lemma 2. Moreover, note that ϵ affects the upper
bound of the time-varying delay d(t) according to (20) and
affects the convergence rate of the distributed observers
according to (43). )ese tradeoffs need to be considered
when selecting a proper ϵ.

Remark 5. A similar setting of state estimation problem was
discussed in [39], where the time delay was assumed to be
constant and known. However, the above proof demon-
strates that the stability analysis of the observer error system
(4) involves only the information on the bound D of the
time-varying delay d(t), without requiring its exact
knowledge. )erefore, our proposed distributed observer
scheme is applicable to more general cases (e.g., fast-varying
communication delay) and is also robust to the uncertainty
in the communication time delay.

For the special case with no communication time delays,
the distributed observer (2) becomes

_􏽢xi � A􏽢xi + Hi yi − Ci􏽢xi( 􏼁 + k 􏽘
j∈Ni

gij 􏽢xj(t) − 􏽢xi(t)􏼐 􏼑.

(44)

Regarding this circumstance, a sufficient condition for
the distributed observer (44) to achieve asymptotic omni-
science is described by the following corollary.

Corollary 1. Consider the linear system (1) under As-
sumptions 1 and 2. .en, the distributed observer (44)
achieves asymptotic omniscience with the feedback gain Hi �

(N/2)P(ϵ)CT
i if

k>
ρ1(ϵ)
2λ2

, (45)

where P(ϵ) is the solution to (7), λ2 > 0 is the second smallest
eigenvalue of L, and ρ1(ϵ) is as in (19).

Proof. Without the communication delay, the error system
between (1) and (44) reduces to

_η(t) � IN ⊗A − HC − k L⊗ In( 􏼁( 􏼁η(t), (46)

where H and C are as defined in (4). To prove the omni-
science of this distributed observer, a Lyapunov function for
(46) can be defined as follows:

V(t) � ηT
(t)Pη(t), (47)

where P � IN ⊗P− 1.
For the feedback gain, Hi � (N/2)P(ϵ)CT

i , and the
coupling strength k in (45), the fact that the error system (46)
is asymptotically stable is shown similar with the corre-
sponding proof in )eorem 1. □

Remark 6. Both observers (2) and (44) can be implemented in
a distributed manner, since they compute the state estimates of
the local observer by the information exchanged with neigh-
bors. However, the choice of the coupling gain k in (19) and
(45) needs some global information (e.g., λ2) of the commu-
nication graph G, whose design is not a decentralized one.
Without the global knowledge of the communication graph,
one can take k sufficiently large to make inequality (19) or (45)
hold. Another feasible method to select the coupling strength k

in (2) and (44) is the adaptive regulation law [46, 47].

4. Numerical Example

Consider the following system matrices for system (1):

A �

− 0.04 0 2 0

0 0.02 0 − 1

0 0 0 − 1

0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

C1

C2

C3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(48)

where C1 � [2, 0, 0, 0], C2 � [0, 2, 0, 0], and C3 � [0, 0, 0, 2].
)e open-loop dynamics of this system is exponentially
unstable, since system matrix A has eigenvalues
σ(A) � − 0.04, 0.02, ± i{ }.

By direct calculation, we have (A, C) is detectable,
tr(A) � − 0.02, and tr(A2) � − 2.0. It can be easily verified
that none of (A, Ci) is detectable. Hence, we construct a
network of N � 3 local observers, and observer i can obtain
yi � Cix instead of y � Cx. )e relationship among these
observers is given in Figure 1. For simplicity, here, we
suppose that all the weights are set as 2. )e corresponding
Laplacian matrix is given by

L � 2

1 − 1 0

− 1 2 − 1

0 − 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (49)

whose eigenvalues are λ1(L) � 0, λ2(L) � 2, and λ3(L) � 6.
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By selecting the parameter ϵ � 0.18, the solution of ARE
(7) is calculated as

P �

0.0852 0.0001 0.0060 0.0299

0.0001 0.0696 0.0148 − 0.0020

0.0060 0.0148 0.0156 0.0009

0.0299 − 0.0020 0.0009 0.0151

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

In the delayed case, by calculating (18) and (19), we have
the coupling strength k> 44.40. Let k � 44.5, the corre-
sponding delay bound can be calculated by (20). Figures 2 and

3 show the trajectories and the observer errors of the dis-
tributed observers with a time-varying communication delay
d(t) � 0.1 sin (t)2. According to the results, we can find that
all observers follow the states of the linear plant with very
small errors. For the delay-free case, by (41), we have k> 22.2,
and other parameters are the samewith the delayed case.With
k � 22.3, Figures 4 and 5 show the trajectories and the ob-
server errors of the distributed observers without commu-
nication delay. )e delay-free case allows a smaller coupling
strength with satisfied estimation results. )e results of the
simulations verify the effectiveness of the distributed ob-
servers with/without communication delay.

Communication graph

Leader

Follower 1

Follower 2

Follower 3

1 2

3

Figure 1: Framework of the networked distributed observer consisting of N � 3 local observers.
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Figure 2: Observer states 􏽢xi(t)(i � 1, 2, 3) and the plant state x(t) for time-varying communication delay.
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Figure 3: Observer errors ηi(t) � 􏽢xi(t) − x(t)(i � 1, 2, 3) for time-varying communication delay.
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Figure 4: Observer states 􏽢xi(t)(i � 1, 2, 3) and the plant state x(t) for the delay-free case.
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5. Conclusion

In this paper, we have dealt with the state estimation problem
of general continuous-time linear systems, which is solved by
the distributed Luenberger observer technique. )e structure
of the proposed distributed observers comprises networked
local observers, in which observers are constructed locally
based on its own output measurement and its neighbors
according to a given connected communication graph. Re-
markably, a network-induced time-varying communication
delay has been considered. Two gain parameters, i.e., the gain
matrix for local output measurement and the coupling gain
for information exchange, have been designed. )e local
observer gain has been derived by solving a parametric al-
gebraic Riccati equation, while the coupling strength has been
determined based on the Lyapunov–Krasovskii stability
theorem. Moreover, a bound on the time-varying delay has
been also given under which each local observer in the
network asymptotically resolves the entire state of the plant.

It should be noted that we focused on linear systems in
this paper, and it should be promising to consider some
practical issues such as nonlinear plant dynamics, hetero-
geneous communication delays, transmission errors, and
directed communication channels.
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