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*is paper investigates the state feedback stabilization problem for a class of impulsive linear time-varying systems over specified
time intervals and piecewise quadratic domains (PQDs). First, concepts related to finite-time stability and PQDs are given.
Second, finite-time stability analysis over PQDs is implemented, and a variety of stability conditions involving differential linear
matrix inequalities are investigated. *en, computationally tractable stability conditions are established for the control design.
Finally, an illustrative example is presented to show the effectiveness of the designed state feedback control.

1. Introduction

Finite-time stability and stabilization are of importance in
the applied mathematics and control fields and become a
growing cross-disciplinary research area in the past decades.
*ey can be found useful in a variety of applications; for
example, when a rocket is launched, it should be controlled
to stay in a specified region after a given time interval. Other
practical applications include ATM networks [1], neural
networks [2], and car suspension systems [3].

In this paper, we are interested in the finite-time stability
and stabilization problems of impulsive linear systems in the
quantitative sense. *e system trajectory evolves in re-
strained regions during a specified interval of time. *e
concept of finite-time stability is different from that in the
qualitative sense [4, 5], which emphasizes that the asymp-
totically stable system is capable to reach the equilibrium at
the settling time. Lots of research results about Lyapunov
stability for dynamical systems with impulsive effects have
been developed (see, e.g., [6–9] and the references therein).
Impulsive synchronization and control problems have
attracted much research interest as well [10–16]. Further-
more, a variety of finite-time stability and stabilization
problems are investigated for linear time-varying systems

and impulsive linear systems [3, 17, 18]. *e initial domain
X0 and the trajectory domainsXt are usually in the form of
ellipsoids and polytopes [3, 19]. Recently, generalized
piecewise quadratic domains are proposed for the initial and
trajectory domains and stability conditions with less con-
servatism has been established in [20] and also reviewed in a
recent review paper [21]. However, it should be worth noting
that the existing stabilization and control methods such as
those in [2, 3, 17, 18] are only suitable to ellipsoidal initial
and trajectory domains and cannot be applied to the gen-
eralized piecewise quadratic domains, which motivates our
research of this paper.

*is paper investigates the state feedback finite-time
stabilization problem for an impulsive linear system. Several
sufficient conditions for finite-time stability are derived, and
a state feedback control is designed. Comparing with pre-
vious work in [18, 19, 22], this paper has the following main
contributions: (1) notions of piecewise quadratic functions
and piecewise quadratic domains have been extended to
impulsive linear time-varying systems; (2) computationally
tractable sufficient conditions for finite-time stability with
PQDs are established; and (3) efficient state feedback control
to stabilize impulsive linear systems with respect to PQDs is
designed.
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*e remainder of this paper is as follows. Section 2
presents the impulsive linear system model and preliminary
concepts. Section 3 develops sufficient conditions for finite-
time stability with PQDs. *ese stability results involve
several computational efficient conditions to design state
feedback control. In the next Section 4, a numerical example
is given to demonstrate the obtained results. Finally, a
conclusion is provided in Section 5.

1.1. Notations. Let R+ denote a set of nonnegative real
numbers and N+ a set of positive integers. Let Rn be the
n-dimensional Euclidean space, and Ω � [0, T], T> 0, be the
time interval. Let A⊤ denote the transpose of A and I the
identity matrix with an appropriate dimension. Let ∗ be the
symmetric component of a matrix. *e matrix A≥ 0 (A> 0)

is positive semidefinite (positive definite) if x⊤Ax≥ 0
(x⊤Ax> 0) for all x ∈ Rn. A≥B is equivalent to A − B≥ 0.
For a set Sp � x1, x2, . . . , xp ⊆Rn, let cone(Sp) denote its
conical hull, i.e., cone(Sp) � x|x � 

p
i�1 αixi, αi ≥ 0 . Let

Ner(S) denote the set of normalized extremal rays gener-
ating Sq, where Ner(S) � x1, . . . , xq  with ‖xi‖2 � 1,
i � 1, . . . , q≤p. For a piecewise continuous matrix-valued
(or vector-valued) function F(·) over Ω and a positive real
number ε, let us denote F− (t) � limε⟶0F(t − ε) and
F+(t) � limε⟶0F(t + ε).

2. Problem Statement

Consider the following impulsive linear system with time-
dependent impulses:

_x(t) � A(t)x(t) + B(t)u(t), x t0(  � x0, t ∉ l � t1, t2, . . .  ⊂ Ω,

x t
+

(  � C(t)x(t), t ∈ l, k � 1, 2, . . . ,


(1)
where t ∈ R+ is the time, x(t) ∈ Rn is the state satisfying
x(t− ) � limt⟶0−x(t) � x(t), and u(t) ∈ Rm is the control.
Moreover, A(t), B(t), and C(t) are given matrix-valued
functions with appropriate dimensions. Without loss of
generally, we assume that there exists a unique solution of
equation (1).

Let U0
i (i � 1, 2, . . . , v) and Uj (j � 1, 2, . . . , u) be the

collections of cones satisfying the following conditions: (1)
the dimensions of U0

i and Uj are equal to n; (2) both the
union of U0

i , i � 1, . . . , v, and the union of Uj, j � 1, . . . , u,
can cover the state space Rn, i.e., ∪ v

i�1U
0
i � ∪ u

j�1Uj � Rn;
and (3) In U0

p ∩ In U0
q  � ∅ and In Up ∩ In Uq  � ∅ for

all p≠ q, where In ·{ } is the interior operator. We denote by
Θ(Up, Uq) the cone’s intersection Up ∩Uq and Ner(S) �

x1, . . . , xq  normalized extremal rays generating S where
xi2 � 1, i � 1, . . . , q. First, we need the following concepts on
piecewise quadratic domains and finite-time stability over
PQDs, which have been defined in [3, 20].

Definition 1 (piecewise quadratic functions (PQFs)). A
time-varying positive definite quadratic function

PP(x, t) � x
⊤

Pi(t)x, ∀x ∈ Ui with i � 1, . . . , v, (2)

is said to be a piecewise quadratic function over a conical
partition P � U1, U2, . . . , Uv  of Rn, where Pi ∈ Rn×n, i � 1,

. . . , v, are symmetric positive definite matrices in the cone
Ui.

Definition 2 (piecewise quadratic domains (PQDs)). A
compact domain whose boundary is the unitary level curve
of the piecewise quadratic function PP(t, x) is said to be a
piecewise quadratic domain (PQD) over a conical partition
P � U1, U2, . . . , Uv  of Rn, i.e.,

XPP
(t) ≔ x: PP(t, x)≤ 1 ,

� x: x
⊤

Pi(t)x≤ 1, x ∈ Ui, i � 1, 2, . . . , v .
(3)

Remark 1. Traditionally, both the initial domain and the
trajectory domain are given in the form of the standard
weighted quadratic norm (i.e., they are in ellipsoidal shapes).
*ese restrictions will be much convenient to introduce
quadratic Lyapunov functions to investigate the finite-time
stability and stabilization problems. However, the obtained
results are not suitable for polytopic domain cases. Piecewise
quadratic domains not only are expressed as the class of
ellipsoids but also are regarded as the generalization of
polytopic domains. *ey can be applied to model initial and
trajectory domains of different forms in many practical
applications, such as those in mass-spring-friction systems
and electrical circuits [3, 20].

Definition 3 (finite-time stability with PQDs). Given two
sets X0 andX(t), 0 ∈ X0, the system equation (1) is said to
be finite-time stable with respect to (Ω,X0,X(t)) if

x0 ∈ X0 impliesx(t) ∈ X(t) for t ∈ Ω, (4)

where the initial and trajectory domains are described asX0 �

x ∈ Rn|x⊤0 Rix0 ≤ 1, x0 ∈ U0
i , i � 1, 2, . . . , u ⊆X(t0) and Xt

� x⊤Qj(t)x≤ 1, x ∈ Uj, j � 1, 2, . . . , v  over conical parti-
tions P0 � U0

1, U0
2, . . . , U0

u  and P � U1, U2, . . . , Uv}.
*is paper aims to design a feedback controller u(t) �

Fx(t), F ∈ Rm×n such that the controlled impulsive linear
system equation (1) ensures the finite-time stability with
PQDs. Now, we need to introduce the following lemma.

Lemma 1 (see [20, 22]). For a piecewise quadratic function
PP(t, x) over the given conical partition P, we denote by vP �

x1, x2, . . . , xq  the set of generating rays. 5e piecewise
quadratic function PP(x, t) is continuous if and only if

x
⊤
h Pi(t)xh � x

⊤
h Pj(t)xh,

x
⊤
h Pi(t)xl � x

⊤
h Pj(t)xl,

(5)

for all xh, xl ∈ Ner Θ(Ui, Uj) , where Θ(Ui, Uj) � Ui ∩Uj.

3. Main Results

In this section, we establish several sufficient conditions of
finite-time stability with PQDs for the impulsive linear
system equation (1). For simplicity, we consider the initial
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setX0 and the time-varying setXt to be piecewise quadratic
domains over the conical partition P � Ui , i � 1, 2, . . . , u.
*en, when the control u(t) � 0, we have the following
sufficient conditions for finite-time stability with PQDs.

Theorem 1. 5e system equation (1) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the given
PQDs, if there exist a positive monotone increasing function
ρ(·) and a piecewise Lyapunov-like function V(t, x) such that

zV(t, x)

zt
+

zV(t, x)

zx
A(t)x(t)< 0, t ∉ l, (6)

V t
+
, x( <V(t, x), t ∈ l, (7)

ρ x
⊤

Qi(t)x( ≤V(t, x),

V t0, x0( < ρ x
⊤
0 Rix0( ,

(8)

for t ∈ Ω and x ∈ Ui with i � 1, . . . , v.

Proof. We choose x0 satisfying x⊤0 Rix0 ≤ 1 and denote by
x(t, x0) the solution of the system equation (1). Next, we
consider the case t ∈ (tk, tk+1]. Based on the condition
equation (8), we have

x
⊤

Qi(t)x≤ ρ−1
(V(t, x)). (9)

Moreover, the condition equation (6) ensures that
V(t, x) will decrease along the solution of the system
equation (1), and hence we have V(t, x)≤V(t+

k , x(t+
k )), for

t ∈ (tk, tk+1]. In view of equation (7), we say
V(t, x)≤V(tk, x(tk)) will be satisfied. Repeatedly using
equations (6) and (7), we get

V(t, x)<V t0, x0( . (10)

Hence, it follows from equations (9) and (10) and the fact
that ρ(·) is positive monotone increasing that

x
⊤

Qi(t)x< ρ−1
V t0, x0( ( . (11)

Finally, using equation (8) and the fact x⊤0 Rix0 ≤ 1, we
obtain x⊤Qi(t)x< 1. It completes the proof.

We choose a positive definite monotone increasing
function ρ(η) � η where η ∈ R+ and a piecewise quadratic
Lyapunov-like function over the above conical partition P as

VX(t, x) � x
⊤

Pi(t)x, ∀x ∈ Ui,with i � 1, . . . , v, (12)

where Pi ∈ Rn×n, i � 1, . . . , v, are symmetric matrices. *en,
a sufficient condition for the finite-time stability of impulsive
linear system equation (1) can be given as follows.

Theorem 2. 5e system equation (1) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the given
PQDs, if there exist piecewise continuously differentiable
matrix-valued functions Pi(t) ∈ Rn×n such that

x
⊤ _Pi(t) + A(t)

⊤
Pi(t) + Pi(t)A(t) x< 0, t ∉ l, (13)

x
⊤

C
⊤

(t)P
+
i (t)C(t)x< x

⊤
Pi(t)x, t ∈ l, (14)

x
⊤

Qi(t) − Pi( x≤ 0, x
⊤
0 P t0(  − Ri( x0 < 0, (15)

for t ∈ Ω and x ∈ Ui with i � 1, . . . , v.

Proof. By choosing VX(t, x) � x⊤Pi(t)x, it is straightfor-
wardly derived that equations (11)–(13) can be guaranteed
by equations (6)–(8).*en, by*eorem 1, we ensure that the
system equation (1) is finite-time stable with respect to
(Ω,X0,Xt).

Sufficient conditions equations (11)–(13) in *eorem 2
are only theoretically useful because of the existence of the
infinite number of differential linear matrix inequalities.
Applying S-Procedure arguments and using the state
feedback control u(t) � Fx(t), we can derive the following
computationally tractable sufficient conditions.

Corollary 1. 5e system equation (1) is finite-time stabi-
lizable with respect to (Ω,X0,Xt) under the feedback control
law u(t) � Fx(t), where the sets X0 and Xt are the given
PQDs if there exist positive numbers bi,l, positive real-valued
functions ci,l(t), zi,l(t), and matrices Hi,l, satisfying
x⊤Hi,lx≤ 0,∀x ∈ Si, i � 1, . . . , v, l � 1, . . . , s such that there
exist positive piecewise continuously differentiable matrix-
valued functions Pi(t) ∈ Rn×n, such that the following con-
ditions containing differential linear matrix inequalities are
satisfied:

_Pi(t) +(A(t) + B(t)F]
⊤

Pi(t) + Pi(t)(A(t) + B(t)F)

− 
s

l�1
ci,l(t)Qi,l < 0, t ∉ l,

(16)

C
⊤

(t)P
+
i (t)C(t)<Pi(t), t ∈ l, (17)

Pi(t) − Qi(t) + 
s

l�1
zi,l(t)Hi,l ≥ 0, (18)

Pi(0) − Ri − 

s

l�1
bi,lHi,l < 0, (19)

x
⊤
l Pi(t)xl � x

⊤
l Pj(t)xl, ∀xl ∈ Ner Ui ∩Uj , (20)

x
⊤
h Pi(t)xl � x

⊤
h Pj(t)xl, ∀xh, xl ∈ Ner Ui ∩Uj . (21)

Proof. Using S-Procedure and *eorem 5 of [20], we obtain
that the conditions equations (13)–(15) are derived if the
conditions equations (16) and (19) are satisfied. Moreover, it
follows from Lemma 1 and equations (20) and (21) that the
piecewise quadratic Lyapunov function VX(t, x) � x⊤Pi(t)x

is continuous. *us, by *eorem 2, the conclusion of this
theorem is obtained.
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Remark 2. In Corollary 1, solving differential linear matrix
inequalities and deciding the conical partitions are two main
steps to influence the computational complexity. In the
former step, more accurate approximation will increase the
computational complexity, and in the later step, a greater
number of the conical partitions will cause the computa-
tional burden as well.

4. An Illustrative Example

In this section, we give an example to demonstrate the ef-
fectiveness of the proposed conditions. Let us consider the
following impulsive linear control system:

_x(t) �
−3t 1

1.5 t
 x(t) +

1.5 2

1.6 1
 u(t), t ∉ l � 0.1, . . . , 0.1k, . . .{ },

x t
+

(  �
1.1 0

0 1.2
 x t

−
( ), t ∈ l, k ∈ N+

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)
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Figure 1: State trajectories x1(t) and x2(t) of the uncontrolled impulsive linear system equation (22) with 0.1 s equidistant impulsive
intervals.
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Figure 2: Phase portrait of the uncontrolled impulsive linear system equation (22) with 0.1 s equidistant impulsive intervals.
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with t ∈ Ω � [0, 2] and the initial and trajectory domains

X0 � x: x
⊤

x< 4 , andXt � x: x
⊤

x< 9 . (23)

When the state feedback control u(t) is not imple-
mented, the state trajectories and phase portrait of the
impulsive linear system equation (10) with 0.1 s equidistant
impulsive intervals are seen in Figures 1 and 2. From them,
we can see that the state has been outside the setXt at T � 2,
and hence the impulsive linear system equation (22) is not
finite-time stable with respect to (Ω,X0,Xt). Since in this
example both initial and trajectory domains are ellipsoidal,
the piecewise quadratic Lyapunov function will be contin-
uous everywhere. Hence, equations (20) and (21) will be
guaranteed straightforwardly. By using conditions equations
(16)–(19), we can obtain a feasible solution for the state
feedback matrix:

F �
3.1765 −0.9412

−3.8824 0.9059
 . (24)

*en, applying u(t) � Fx(t) to equation (22), we sim-
ulate the state trajectories and phase portrait of the impulsive
linear system equation (10) with 0.1 s equidistant impulsive
interval in Figures 3 and 4, which show that the impulsive
linear control system equation (22) is finite-time stable with
respect to the given (Ω,X0,Xt). So, the designed state
feedback finite-time stabilizing controller is effective.

5. Conclusion

*is paper has investigated the feedback finite-time stabi-
lizing control problem for impulsive linear systems with
respect to PQDs. First, the concepts of piecewise quadratic
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Figure 3: State trajectories x1(t) and x2(t) of the impulsive linear control system equation (22) with 0.1 s equidistant impulsive intervals.
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Figure 4: Phase portrait of the impulsive linear control system equation (22) with 0.1 s equidistant impulsive intervals.
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functions and piecewise quadratic domains are provided.
Finite-time stability in the quantitative sense is investigated.
*en, sufficient conditions of finite-time stability with PQDs
for impulsive linear systems are established. Based on these
stability criteria, computationally tractable conditions to
design state feedback control for the impulsive linear sys-
tems are derived. A numerical example is finally given to
demonstrate the usefulness of the designed state feedback
control.
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