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In this paper, we study a reaction-diffusion nutrient-phytoplankton model with nutrient recycling delay and toxin-producing
phytoplankton. For the delay-free case, we prove that the release rate of toxic chemicals by the toxin-producing phytoplankton can
destabilize the system and cause periodic oscillation. For the time-delayed case, we observe that nutrient recycling delay may bring
about stability switches and Hopf bifurcation. Moreover, we derive the formula for determining the direction and stability of the
bifurcating periodic solutions. Finally, we give some numerical simulations to support the theoretical analyses.

1. Introduction

Aquatic ecosystem has a significant effect on human’s living
environment. It not only plays an important role in
maintaining the global biological matter and water cycles but
also undertakes the functions of water source, power source,
transportation pollution purification place, and so on.
Obviously, it is of great importance to investigate the dy-
namic behaviors of planktonic ecosystem. In the last few
decades, lots of mathematical models have been constructed
in terms of differential equations to describe the dynamical
interactions between the dissolved nutrient and plankton
population, see [1–5] and references cited therein. +ese
models can deepen our knowledge of aquatic ecosystem
cycle. Some interesting dynamical behaviors have been in-
vestigated, such as uniform persistence, asymptotic stability,
Hopf bifurcation, Turing instability, and travelling waves.

In nature, the dead phytoplankton can be partly
transformed into the nutrient. By taking into account the

recycling factor, Chakraborty et al. [6] proposed the fol-
lowing nutrient-phytoplankton model:

dN

dt
� a − bNP − dN + βP,

dP

dt
� cNP − αP −

θP
2

H
2

+ P
2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where N and P denote the concentrations of nutrient and
phytoplankton population, respectively. All the coefficients
are positive constants, a is the constant nutrient input flow, b
is the nutrient uptake rate of phytoplankton, c is the nutrient
conversion rate of phytoplankton, d is the per capita-loss
rate of nutrient, α is the per capita-mortality rate of phy-
toplankton, β is the portion of the phytoplankton recycled
back to the nutrient concentration, θ is the release rate of
toxic chemicals by the toxin-producing phytoplankton
population, and H is the half-saturation constant. In view of
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the conversion efficiency in ecological system, we always
assume that α> β and b> c throughout the paper.

For system (1), the limit cycle behavior is obtained by
numerical simulations in [6]. It is found that inclusion of
nutrient recycling enhances the chances of recurring bloom
dynamics. After that, some expanded models were inves-
tigated by incorporating zooplankton population in [7–11].

As indicated in [12], no life is possible if spatial and
temporal processes do not interact. Actually, the individuals
can go anywhere in the spatial domain since a well-known
fact about Fickian diffusion leading to a Laplacian term. In

the lakes or oceans, dissolved nutrient and phytoplankton
population can move with the tide. +e spatial diffusion has
been considered in modelling the biological and ecological
systems, such as [13–15]. Reaction-diffusion equations are
widely used for modelling chemical reactions, biological
systems, population dynamics, and nuclear reactor physics.
+is kind of models can better describe the spatial and
temporal interactions. So, it is more realistic to use the
reaction-diffusion equations to model the aquatic system.
+en, we have the following model with spatial diffusion:

zN(x, t)

zt
� d1ΔN(x, t) + a − bN(x, t)P(x, t) − dN(x, t) + βP(x, t), x ∈ Ω, t> 0,

zP(x, t)

zt
� d2ΔP(x, t) + cN(x, t)P(x, t) − αP(x, t) −

θP
2
(x, t)

H
2

+ P
2
(x, t)

, x ∈ Ω, t> 0,

zN(x, t)

z]
�

zP(x, t)

z]
� 0, x ∈zΩ , t> 0,

N(x, 0) � N0(x)≥ 0, P(x, 0) � P0(x)≥ 0, x ∈Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where d1 and d2 are the diffusion coefficients of nutrient and
phytoplankton, respectively.+e initial functions N0(x) and
P0(x) are nonnegative and nonidentical to zero. +e ho-
mogeneous Neumann boundary conditions mean that the
nutrient and phytoplankton do not leave the living region.
For simplicity, we specify the spatial location as an interval
Ω � (0, π), where π denotes the depth of the water column
and can be changed into any depth through a suitable
transformation. Moreover, some other nutrient-plankton
models incorporating spatial effects are investigated in
[16–21].

In models (1) and (2), it is assumed that the decom-
position process of dead phytoplankton is instantaneous.
However, it is not accurate enough. Usually, the interaction
between nutrient and phytoplankton is not instantaneous
and it does take time to transform dead phytoplankton into
nutrient. Time delay can also bring rich dynamical behav-
iors, especially the stability switches, and hence it cannot be
ignored [22–24]. +erefore, we further build the following
model with nutrient recycling delay motivated by [25, 26]:

zN(x, t)

zt
� d1ΔN(x, t) + a − bN(x, t)P(x, t) − dN(x, t) + βP(x, t − τ), x ∈ Ω, t> 0,

zP(x, t)

zt
� d2ΔP(x, t) + cN(x, t)P(x, t) − αP(x, t) −

θP
2
(x, t)

H
2

+ P
2
(x, t)

, x ∈ Ω, t> 0,

zN(x, t)

z]
�

zP(x, t)

z]
� 0, x ∈zΩ , t> 0,

N(x, t) � N1(x, t)≥ 0, P(x, t) � P1(x, t)≥ 0, x ∈Ω, t ∈ [−τ, 0],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)
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where the nutrient recycling delay τ > 0 is the decomposition
time of dead phytoplankton population, (N(x, t), P

(x, t)) ∈ C(Ω × [−τ,∞),R2
+). +e initial functions N1(x, t)

and P1(x, t) are nonnegative and nonidentical to zero. +e
aim of this paper is to investigate the joint effects of spatial
diffusion and time delay on the spatiotemporal dynamics of
the nutrient-phytoplankton system.

+e highlights of this paper mainly contain two aspects.
First, we synthetically consider the nutrient recycling delay
and spatial diffusion in modelling the interactions between
nutrient concentration and phytoplankton population, and
the model is more closer to the real world. Second, by re-
garding nutrient recycling delay as the bifurcation param-
eter, we find that time delay may induce stability switches
and sustained oscillations, which can help to understand the
cyclical burst of algae bloom.

+e rest of this paper is organized as follows. In Section
2, we establish the existence of nonnegative constant
equilibria. In Section 3, we analyze the stability of positive
equilibrium in the absence of time delay, the stability
switches, and Hopf bifurcation in the presence of time delay,
respectively. In Section 4, the algorithm for determining the
Hopf bifurcating periodic solutions is derived. In Section 5,
some numerical simulations are presented to verify the
theoretical results. Finally, a brief conclusion is given in
Section 6.

2. Existence of Equilibria

In this section, we give some preliminary results. For
convenience, we make the following assumptions:

(H1) bθ> ac − α d> 0.
(H2) T0 < 0, D0 > 0.
(H3) T0 � 0 and P∗ − H≠ 0.
(H4) d2(bP∗ + d) − d1θP∗(P∗2 − H2)/(H2 + P∗2)2 > 0.
(H5) d1θP∗ (P∗2 − H2)/(H2 + P∗2)2 − d2(bP∗ + d)>
2d1d2D0.
(H6) T4

n − 4AnT2
n + 4B2 > 0 and T2

n − 2An < 0 for some
n ∈ N0.

Spatial diffusion and time delay do not affect the number
and location of differential system, so systems (1)–(3) have
the same nonnegative constant equilibria and the equilibria
are the roots of the following algebraic equation:

a − bNP − dN + βP � 0,

cNP − αP −
θP

2

H
2

+ P
2 � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

Obviously, there is always the boundary equilibrium
E0(a/d, 0). Next, we establish the existence of positive
constant equilibrium. From the second equation of (4), we
have

N �
α
c

+
θP

c H
2

+ P
2

 
. (5)

Substituting it into the first equation of (4) leads to

a + βP � (d + bP)
α
c

+
θP

c H
2

+ P
2

 
⎡⎢⎣ ⎤⎥⎦, (6)

that is,

a3P
3

+ a2P
2

+ a1P + a0 � 0, (7)

where a3 � αb − βc> 0, a2 � α d + bθ − ac,
a1 � dθ + αbH2 − βcH2 > 0, a0 � H2(α d − ac). Based on
the Descartes’ rule of signs, equation (7) has one or three
positive roots and assumption (H1) can guarantee the ex-
istence of unique positive real root P∗ of equation (7).

+us, we can establish the existence of positive
equilibrium.

Lemma 1. If (H1) holds, then systems (1)–(3) have the
unique positive equilibrium E∗(N∗, P∗).

Remark 1. From Lemma 1, if the nutrient uptake rate of
phytoplankton and release rate of toxic chemicals by toxin-
producing phytoplankton population are appropriately
large, and the net growth rates of nutrient and phyto-
plankton are appropriately small, then the unique positive
equilibrium of system may exist.

3. Stability Analysis and Occurrence of
Hopf Bifurcation

In the following, we analyze the stability of E∗. Linearizing
system (1) at E∗, we have

zN(x, t)

zt

zP(x, t)

zt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� D
ΔN(x, t)

ΔP(x, t)

⎛⎝ ⎞⎠ + L1

N(x, t)

P(x, t)

⎛⎝ ⎞⎠ + L2

N(x, t − τ)

P(x, t − τ)

⎛⎝ ⎞⎠, (8)

where
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D �

d1 0

0 d2

⎛⎝ ⎞⎠,

L1 �

−bP
∗

− d −bN
∗

cP
∗ θP

∗
P
∗2

− H
2

 

H
2

+ P
∗2

 
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

L2 �

0 β

0 0
⎛⎝ ⎞⎠.

(9)

+en, the characteristic equation of (8) is

det λI − Mn − L1 − L2e
− λτ

  � 0, (10)

where I � diag 1, 1{ }, Mn � −n2diag 1, 1{ }, n ∈ N0. Equation
(10) can be turned into

λ2 − Tnλ + An + Be
− λτ

� 0, (11)

where

Tn � − d1 + d2( n
2

+
θP
∗

P
∗2

− H
2

 

H
2

+ P
∗2

 
2 − bP

∗
− d,

An � d1d2n
4

+ d2 bP
∗

+ d(  − d1
θP
∗

P
∗2

− H
2

 

H
2

+ P
∗2

 
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦n
2

+ bcN
∗
P
∗

−
θP
∗

P
∗2

− H
2

  bP
∗

+ d( 

H
2

+ P
∗2

 
2 ,

B � −βcN
∗
.

(12)

3.1.3e Case of τ � 0. If τ � 0 and n � 0, then characteristic
equation (11) can be simplified to

λ2 − T0λ + D0 � 0, (13)

which corresponds to ordinary differential system (1) and
D0 � A0 + B. By Routh–Hurwitz criterion, the positive
equilibrium E∗ of (1) is asymptotically stable if the condition
(H2) is satisfied.

Next, we explore the influence of parameter θ on the
stability of E∗. Let T0 � 0, then
θ∗ � (bP∗ + d)(H2 + P∗2)2/P∗(P∗2 − H2) is the potential
Hopf bifurcation value. In addition, we have

dReλ(θ)

dθ
|θ�θ∗ �

P
∗

P
∗2

− H
2

 

2 H
2

+ P
∗2

 
2 . (14)

From above, we can conclude the stability results of
system (1).

Theorem 1

(i) If (H1) and (H2) are satisfied, then the positive
equilibrium E∗ of (1) is asymptotically stable.

(ii) If (H1) and (H3) are satisfied, then the positive
equilibrium E∗ of (1) is asymptotically stable when
θ< θ∗ and unstable when θ> θ∗ for P∗ >H. Con-
versely, E∗ of (1) is asymptotically stable when θ > θ∗

and unstable when θ< θ∗ for P∗ <H. Moreover, θ∗ is
the Hopf bifurcation value.

Remark 2. From +eorem 1, if the equilibrium state of
phytoplankton P∗ is smaller than the half-saturation con-
stant, then condition (H2) can easily be satisfied and the
nutrient and phytoplankton can achieve a balanced coex-
istence in the absence of diffusion. Otherwise, the release
rate of toxic chemicals may induce the periodic variations of
nutrient and phytoplankton.

Here, we mainly investigate the Turing instability in-
duced by spatial diffusion. +e linearization of system (2) at
the positive equilibrium E∗ is

zN

zt
� d1ΔN − bP

∗
+ d( N + β − bN

∗
( P,

zP

zt
� d2ΔP + cP

∗
N +

θP
∗

P
∗2

− H
2

 

H
2

+ P
∗2

 
2 P,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(15)

and the corresponding characteristic equation is

λ2 − Tnλ + Dn � 0, (16)

where
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Tn � − d1 + d2( n
2

+
θP
∗

P
∗2

− H
2

 

H
2

+ P
∗2

 
2 − bP

∗
− d,

Dn � d1d2n
4

+ d2 bP
∗

+ d(  − d1
θP
∗

P
∗2

− H
2

 

H
2

+ P
∗2

 
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦n
2

+ cP
∗

bN
∗

− β(  −
θP
∗

P
∗2

− H
2

  bP
∗

+ d( 

H
2

+ P
∗2

 
2 .

(17)

It is obvious that Tn < 0 when T0 < 0. +en, the positive
equilibrium E∗ of diffusive system (2) is stable if Dn > 0 for
any n and unstable if Dn < 0 for some n> 0. It is not difficult
to determine the sign of Dn by using the properties of
parabola.

Following Turing’s idea in [27], different diffusion rates
of two chemical reactants could sometimes destabilize an
otherwise stable equilibrium of the reaction-diffusion system
and lead to nonuniform spatial patterns. +is kind of dif-
fusion-driven instability is usually called Turing instability.

Theorem 2. Suppose (H1) and (H2) hold, we have the
following statements:

(i) If (H4) is satisfied, then the positive equilibrium E∗ of
(2) is locally asymptotically stable.

(ii) If (H5) is satisfied, then the positive equilibrium E∗ of
(2) is unstable. It implies that Turing instability
occurs.

Remark 3. From +eorem 2, the diffusion coefficients have
significant effect on the stability of positive equilibrium in
the presence of spatial diffusion. If the diffusion rate of
phytoplankton is larger, then the aquatic system is stable. On
the contrary, the system may be unstable.

3.2.3eCase of τ > 0. For τ > 0, let λ � iω(ω> 0) be a root of
(11). We have

−ω2
− iωTn + An + B(cos ωτ − i sin ωτ) � 0. (18)

Separating the real and imaginary parts can lead to

B cos ωτ � ω2
− An,

B sin ωτ � −ωTn.

⎧⎨

⎩ (19)

Squaring both sides of the above equations, we get

ω4
+ T

2
n − 2An ω2

+ A
2
n − B

2
� 0. (20)

From Dn � An + B and B< 0, it can be found that Dn > 0
implies An − B> 0. Moreover, equation (20) has two positive
real roots under the assumption (H6). +us, characteristic
equation (11) has two pairs of purely imaginary roots
λ � ± iω ±n , where

ω ±n �

����������������������������

2An − T
2
n  ±

���������������

T
4
n − 4AnT

2
n + 4B

2


2




, n ∈ N0,

τ ±nj �
1

ω ±n
2π − arccos

ω ±2n − An

B
+ 2jπ , j � 0, 1, 2, . . . .

(21)

By direct computation, we have ω−
n <ω+

n and
ω−2

n − An/B>ω+2
n − An/B> 0. +us, τ−

nj > τ+
nj.

In what follows, we shall verify the transversality
condition.

Lemma 2. Re(dλ/dτ)−1
τ�τ+

nj
> 0 and Re(dλ/dτ)−1

τ�τ−
nj
< 0.

Proof. Differentiating both sides of equation (11) with re-
spect to τ yields

dλ
dτ

 

− 1

�
2λ − Tn

Bλe
−λτ −

τ
λ

�
2λ − Tn( e

λτ

Bλ
−
τ
λ
. (22)

+en,

Re
dλ
dτ

 

−1

τ�τ ±
nj

� Re
2iω ±n − Tn(  cos ω ±n τ ±nj + i sin ω ±n τ ±nj 

iBω ±n

�
2ω ±n cos ω ±n τ ±nj − Tn sin ω ±n τ ±nj

Bω ±n

�
2ω ±n ω ± 2n − An  + T

2
nω
±

n

B
2ω ±n

�
2 ω ± 2n − An  + T

2
n

B
2

�
±

���������������

T
4
n − 4AnT

2
n + 4B

2


B
2 .

(23)
□

+rough the above analysis and motivated by Corollary
2.4 of Ruan andWei in [28], we can establish the distribution
of roots of characteristic equation (11) in the case of n � 0.

Lemma 3. If (H1), (H2), (H4), and (H6) are satisfied, then
we have the following:
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(i) If τ+
01 < τ−

00, then all roots of (11) have negative real
parts for τ ∈ [0, τ+

00); equation (11) has a pair of
purely imaginary roots and other roots have negative
real parts for τ � τ+

00; equation (11) has at least a root
with positive real part for τ > τ+

00.
(ii) If τ+

01 > τ−
00, then there exists a positive integer k such

that all roots of (11) have negative real parts for
τ ∈ [0, τ+

00)∪ (τ−
00, τ+

01)∪ · · · ∪ (τ−
0,k−1, τ

+
0k), and

equation (11) has at least one root with positive real
part for τ ∈ (τ+

00, τ−
00)∪ (τ+

01, τ−
01)∪ · · · ∪ (τ+

0,k−1,

τ−
0,k−1)∪ (τ+

0k, +∞).

As time delay changes, the stability of the equilibrium
solution may also change. +e stability may transit from
stable to unstable at some critical value and may also transit
from unstable to stable at some other critical value. Such
phenomena are often referred to as stability switches, i.e., the
state can be switched from stable to unstable and back to
stable and so on just by progressive increase of the time
delay. +en, we can obtain the stability switches and exis-
tence of Hopf bifurcation for E∗ in (3).

Theorem 3. If (H1), (H2), (H4), and (H6) are satisfied, then
the following conclusions are true:

(i) If τ+
01 < τ−

00, then positive equilibrium E∗ of (3) is
asymptotically stable for τ ∈ [0, τ+

00) and is unstable
for τ > τ+

00. System (3) undergoes Hopf bifurcations
near E∗ when τ � τ+

00.

(ii) If τ+
01 > τ−

00, then there exists a positive integer k such
that E∗ switches k times from stability to instability to
stability and so on such that E∗ is asymptotically
stable for τ ∈ [0, τ+

00)∪ (τ−
00, τ

+
01)∪ · · · ∪ (τ−

0,k−1, τ
+
0k)

and is unstable for τ ∈ (τ+
00, τ−

00)∪ (τ+
01, τ−

01)∪ · · · ∪
(τ+

0,k−1, τ
−
0,k−1)∪ (τ+

0k, +∞). System (3) undergoes
Hopf bifurcation around E∗ for every τ � τ ±0j .

4. Properties of Hopf Bifurcation

Here, we derive the Hopf bifurcation properties by using the
center manifold theorem and normal form theory for partial
functional differential equations in [29, 30]. For simplicity,
we denote the Hopf bifurcation value by τ∗ and the cor-
responding simply purely imaginary characteristic roots by
±iω∗, respectively.

Let X � N, P ∈W2,2

(Ω): zN(x, t)/zx � zP(x, t)/zx � 0, x � 0, π},
N(·, t) � N(·, τt), P(·, t) � P(·, τt), U(t) � ( N(·, t), P(·, t)),
and τ � τ∗ + μwith μ ∈ R, then μ � 0 is the Hopf bifurcation
value of system (3). For simplicity, we drop the tilde and
rewrite system (3) in the form

dU(t)

dt
� τ DΔ U(t) + L(μ) Ut(  + f Ut, μ( , (24)

where D � diag d1, d2 , φ � (φ1,φ2)
T ∈ C � C([−1, 0], X),

and L(μ)(·): C⟶ X, f: C × R⟶ X are given by

L(μ)(φ) � τ∗ + μ( 

−bP
∗

− d( φ1(0) − bN
∗φ2(0) + βφ2(−1)

cP
∗φ1(0) +

θP
∗

P
∗2

− H
2

 

H
2

+ P
∗2

 
2 φ2(0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

f(φ, μ) � τ∗ + μ( 


i+j+l≥ 2

1
i!j!l!

Fijlφ
i
1(0)φj

2(0)φl
2(−1)


i+j≥ 2

1
i!j!

Gijφ
i
1(0)φj

2(0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(25)

and

F(u, v, w) � a − buv − du + βw,

G(u, v) � cuv − αv −
θv

2

H
2

+ v
2,

Fijl �
z

i+j+l
F

zu
i
zv

j
zw

l
N
∗
, P
∗
, P
∗

( ,

Gij �
z

i+j
G

zu
i
zv

j
N
∗
, P
∗

( .

(26)
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From the previous section, we know that ±iω∗τ∗ is a pair
of simple purely imaginary eigenvalues of the following
linear differential equation:

_U(t) � τ DΔ U(t) + L(μ) Ut( . (27)

Due to the Riesz representation theorem, there exists a
2 × 2 matrix function η(ϑ, μ)(−1≤ ϑ≤ 0), whose elements
are of bounded variation functions such that

−τ∗Dn
2φ(0) + L(μ)(φ) � 

0

−1
dη ϑ, τ∗( φ(θ) forφ ∈ C [−1, 0],R

2
 , (28)

where

η ϑ, τ∗(  �

τ∗

−bP
∗

− d − d1n
2

−bN
∗

cP
∗ θP

∗
P
∗2

− H
2

 

H
2

+ P
∗2

 
2 − d2n

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ϑ � 0,

0, ϑ ∈ (−1, 0),

−τ∗
0 β

0 0

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠, ϑ � −1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

For Φ ∈ C1([−1, 0],R2), Ψ ∈ C1([0, 1],R2), we define

A1(Φ(ϑ)) �

dΦ(ϑ)

dϑ
, ϑ ∈ [−1, 0),


0

−1
dη ϑ, τ∗( Φ(ϑ), ϑ � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A
∗
1(Ψ(s)) �

−
dΨ(s)

ds
, s ∈ (0, 1],


0

−1
dηT ϑ, τ∗( Ψ(−ϑ), s � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

+en, A∗1 and A1 are adjoint operators under the bilinear
form

(Ψ,Φ)0 � Ψ(0)Φ(0) − 
0

−1

ϑ

0
Ψ(ζ − ϑ)dη(ϑ, 0)Φ(ζ)dζ

� Ψ(0)Φ(0) + τ∗ 
0

−1
Ψ(ζ + 1)

0 0

r −r
 Φ(ζ)dζ.

(31)

It is calculated that q(ϑ) � (1, q1)
Teiω
∗τ∗ϑ(ϑ ∈ [−1, 0])

and q∗(s) � M(q2, 1)Teiω
∗τ∗s(s ∈ [[0, 1]) are eigenvectors of

A1 and A∗1 corresponding to iω∗τ∗ and −iω∗τ∗, respectively,
where

q1 �
iω∗ + d1n

2
+ bP
∗

+ d

bN
∗

− βe
−iω∗τ∗ ,

q2 �
cP
∗

−iω∗ + d1n
2

+ bP
∗

+ d
,

M � η + ξ + βηξτ∗e− iω∗τ∗
 

− 1
.

(32)

+en, Q � span q(ϑ), q(ϑ)  is the center subspace of
system (3), and Q∗ � span q∗(s), q∗(s)  is the adjoint
subspace.

Let h · fn � h1β
1
n + h2β

2
n, fn � (β1n, β2n), and

β1n � (cos nx, 0)T, β2n � (0, cos nx)T. +e complex-valued
L2 inner product on Hilbert space XC is

〈U1, U2〉 �
1
π


π

0
u1v1 + u2v2( dx, (33)
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for U1 � (u1, u2), U2 � (v1, v2) ∈ XC, and 〈βi
0, β

i
0〉 � 1,

〈βi
n, βi

n〉 � 1/2, i � 1, 2, n � 1, 2, . . .,

〈Φ, fn〉 � 〈Φ, β1n〉, 〈Φ, β2n〉 , (34)

where Φ ∈ C([−1, 0], X). +en, the center subspace of
system (27) at μ � 0 is

PCNL � (q(ϑ)z + q(ϑ)z) · fn, z ∈ C . (35)

If μ � 0, then we can obtain

W(z, z, θ) � W20
z
2

2
+ W11zz + W02

z
2

2
+ · · · . (36)

+e flow of system (24) on the center manifold can be
written as

Ut � (q(θ)z(t) + q(θ)z(t)) · fn + W(z(t), z(t), θ). (37)

Moreover, for Ut ∈ C0 of (24) at τ � τ∗, we have
_z � iω∗τ∗z + g(z, z), where

g(z, z) � q
∗
(0)〈f Ut, 0( , fn〉 � g20

z
2

2
+ g11zz + g02

z
2

2
+ g21

z
2
z

2
+ · · · . (38)

Following the calculation procedures in [29, 30], we can
get

g20 � τ∗M −2bξη + 2cξ + G22ξ
2

  ,

g11 � τ∗M −2bRe ξ{ }η + 2cRe ξ{ } + G22|ξ|
2
 ,

g02 � g20,

g21 � −
Mτ∗

π

π

0
bηcos2 nx · W

(2)
20 (0) + ξW

(1)
20 (0) + 2ξW

(1)
11 (0) + 2W

(2)
11 (0) dx

+
Mτ∗

π

π

0
c cos2 nx · W

(2)
20 (0) + ξW

(1)
20 (0) + 2ξW

(1)
11 (0) + 2W

(2)
11 (0)  + G22cos

2
nx · ξW

(2)
20 (0) + 2ξW

(2)
11 (0)  dx,

(39)

where

W20(ϑ) �
ig20

ω∗τ∗
q(ϑ) +

ig02

3ω∗τ∗
q(ϑ)  · fn + E1e

2iω∗τ∗ϑ
,

W11(ϑ) � −
ig11

ω∗τ∗
q(ϑ) +

ig11q(ϑ)

ω∗τ∗
  · fn + E2,

E1 � E1′ ×
−2bξη

2cξ + G22ξ
2

⎛⎝ ⎞⎠cos2 nx,

E1′ �

2iω∗ + d1n
2 + bP∗ + d bN∗ − βe− 2iω∗τ∗

−cP∗ 2iω∗ + d2n
2 −

θP∗ P∗2 − H2( 

H2 + P∗2( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

,

E2 � E2′ ×
−2bRe ξ{ }

2cRe ξ{ } + G22|ξ|
2

⎛⎝ ⎞⎠cos2 nx,

E2′ �

d1n
2 + bP∗ + d bN∗ − β

−cP∗ d2n
2 −

θP∗ P∗2 − H2( 

H2 + P∗2( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

.

(40)
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+us, we can compute

c1(0) �
i

2ω∗τ∗
g20g11 − 2 g11



2

−
1
3

g02



2

  +
g21

2
,

ℓ2 � −
Re c1(0)( 

Re λ′ τ∗( ( 
,

ι2 � 2Re c1(0)( ,

〉2 � −
1

ω∗τ∗
Im c1(0)(  + ℓ2Im λ′ τ∗( ( ( .

(41)

+en, by the Hopf bifurcation theory in [29, 30], we have
the following conclusions about the properties of the Hopf
bifurcation.

Theorem 4. For system (3),

(i) ℓ2 determines the direction of Hopf bifurcation: if
ℓ2 > 0, then the supercritical bifurcation bifurcates
stable limit cycles; if ℓ2 < 0, then the subcritical bi-
furcation bifurcates unstable limit cycles.

(ii) ι2 determines the stability of bifurcating periodic
solutions: the periodic solutions are orbitally as-
ymptotically stable if ι2 < 0 and are unstable if ι2 > 0.

(iii) ϱ2 determines the period of the bifurcating periodic
solutions: the period is monotonically increasing at
the time delay τ when ϱ2 > 0 and is monotonically
decreasing at the time delay τ when ϱ2 < 0.

5. Numerical Simulations

In this section, we mainly verify the theoretical results
obtained in the previous sections by some numerical ex-
amples. For system (3), we set Ω � (0, π), d1 � d2 � 1,
a � 0.03, b � 1.5, c � 1, d � 0.003, k � 0.05, H � 0.035,
α � 0.1, and β � 0.05.

Example 1. If θ � 0.04 and τ � 0 with the initial conditions
N1(x, t) � 0.5 + 0.2 sin(x + t) and
P1(x, t) � 0.05 + 0.05 sin(x + t), then the positive constant
equilibrium E∗(0.6636, 0.0296) of system (2) is asymptoti-
cally stable, as shown in Figure 1.
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Figure 1: +e positive equilibrium E∗ of (2) is asymptotically stable when θ � 0.02.

4
3

2Distance x Time t1
0 0

100
200

300
4

3
2Distance x

Time t1
0 0

100
200

300

P 
(x

,t)
0.8

0.6

0.4

0.2

0

N
 (x

,t)

0.4

0.3

0.2

0.1

0

Figure 2: +e positive equilibrium E∗ of (2) is unstable when θ � 0.02.
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Example 2. If θ � 0.02 and τ � 0 with the initial conditions
N1(x, t) � 0.5 + 0.2 sin(x + t) and P1(x, t) � 0.05 +0.02 sin
(x + t), then the positive constant equilibrium
E∗(0.6636, 0.0296) of system (2) is unstable and Hopf bi-
furcation occurs, see Figure 2.

For τ > 0, we fix θ � 0.029. +en, system (3) has the
unique positive equilibrium solution E∗(0.5110, 0.0397).
Moreover, equation (20) has two positive roots ω+

0 ≈ 0.2294
and ω−

0 � 0.0408, τ+
00 ≈ 14< τ−

00 ≈ 41< τ+
01 ≈ 69< τ−

01 ≈ 96<
· · ·. According to +eorem 3, if time delay τ varies, then the
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Figure 4: +e positive equilibrium E∗ of (3) is unstable when τ � 30.
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Figure 3: +e positive equilibrium E∗ of (3) is stable when τ � 10.
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Figure 5: +e positive equilibrium E∗ of (3) is stable when τ � 50.
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stability of positive equilibrium E∗(0.5110, 0.0397) of sys-
tem (3) would change.

Example 3. For τ+
00 ≈ 14, we can compute

c1(0) ≈ − 2.3543 − 1.2902i, then ℓ2 > 0 and ι2 < 0. From
+eorem 4, we can know that the Hopf bifurcation is su-
percritical and the spatially homogeneous periodic solutions
are stable. +e numerical solutions with initial conditions
N1(x, t) � 0.51 and P1(x, t) � 0.035 are presented in Fig-
ures 3 and 4.

Example 4. For τ+
01 ≈ 69, we can compute

c1(0) ≈ − 3.8745 − 1.6482i, then ℓ2 > 0 and ι2 < 0. +e Hopf
bifurcation is supercritical and the spatially homogeneous
periodic solutions are stable. +e numerical solutions with
initial conditions N1(x, t) � 0.51 and P1(x, t) � 0.035 are
presented in Figures 5 and 6.

It can be found that nutrient recycling delay can bring
about the stability switches in the nutrient-phytoplankton
system.

6. Conclusion

In this paper, we have expanded the model proposed in [6]
and investigated a novel reaction-diffusion nutrient-phy-
toplankton ecological model incorporating nutrient recy-
cling delay. We proved that the release rate of toxic
chemicals by the toxin-producing phytoplankton population
θ can destabilize the positive constant equilibrium and may
generate time-periodic solutions. We also revealed the effect
of nutrient recycling delay on our model. By taking time
delay as the bifurcation parameter, multiple stability
switches of the positive constant equilibrium and Hopf
bifurcation phenomena can be observed under some con-
ditions, which contrast sharply with the case in the absence
of time delay.+e results can help to understand the periodic
outbreak of algae.

It is observed that the model is more comprehensive by
taking account of the zooplankton population, and rich
dynamical behaviors have been presented in [3, 8, 10, 26],
such as uniform persistence, Turing bifurcation, and global
Hopf bifurcation. However, these models do not investigate

the joint effect of spatial diffusion and time delay. In ad-
dition, in a reaction-diffusion system, when the Hopf bi-
furcation curve and Turing bifurcation curve intersect, the
Turing-Hopf bifurcation will occur and generate spatio-
temporal patterns, see [31–33]. We will do further research
on spatiotemporal patters via Turing-Hopf bifurcation in the
delayed reaction-diffusion model incorporating three
components in the future following the aforementioned
references.
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