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ASrank has been proposed as an improved version of the ant colony optimisation (ACO) model. However, ASrank includes
behaviours that do not exist in the actual biological system and fall into a local solution. To address this issue, we developedASmulti,
a new type of ASrank, in which each agent contributes to pheromone depositions by estimating its rank by interacting with the
encountered agents. In this paper, we attempt further improvements in the performance of ASmulti by allowing agents to consider
their position in a local hierarchy. Agents in the proposed model (AShierarchy) contribute to pheromone depositions by estimating
the consistency between a local hierarchy and global (system) hierarchy.We show that, by using several TSP datasets, the proposed
model can find a better solution than ASmulti.

1. Introduction

Ant colony optimisation (ACO) is a well-known strategy for
determining short tours in the travelling salesman problem
(TSP) [1]. Many ACO models have been developed by
extending the ant system (AS) proposed by Dorigo [2–6].
Rank-based ant system (ASrank) is one of the representative
models that extend the originalAS [7]. Using the pheromone
procedure update for exploring simulations, this model finds
a solution to the TSP. In ASrank, ant agents are ranked in the
order of shorter tour lengths at the end of each tour. Only the
top-ranking agents are allowed to deposit pheromones. (is
function improves the convergence of the system by adding
pheromones on only the edges toured by top-ranked agents.
(us, the system converges faster by concentrating phero-
mones on specific edges. However, because pheromones
tend to concentrate solely on specific edges, the system
frequently falls into local solutions. Furthermore, while
ASrank is inspired by the behaviour of real ants, the viewpoint
of a third party is introduced outside the system to classify
agents in a single hierarchy, i.e., to place agents in the order

of tour lengths. Agents that can complete tours in less time
are rewarded with higher positions in the hierarchy.

To eliminate the viewpoint of the third party from the
system, we recently proposed a new type of ASrank named
ASmulti in which an individual agent constructs a subjective
hierarchy based on the interaction with encounters [8]. In
ASmulti, agents decide whether to deposit pheromones based
on a unique hierarchy for each agent, i.e., deposit phero-
mones when they encounter other agents that have worse
solutions than theirs. Furthermore, if two agents meet one
other during a tour, a subjective/unique hierarchy is used to
rank them and other agents according to the tour lengths. To
this end, individuals have a unique list of ranked agents
based not on the viewpoint of the third party but on the first-
person view. We found that such a contrivance allows the
ASmulti system to find better solutions than ASrank. However,
agents in ASmulti sometimes fall into a local solution caused
by themismatch between their subjective hierarchies and the
system hierarchy, i.e., the actual single rank of the agents’
tours. (erefore, there is room for further improvement in
ASmulti.
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In this study, we propose an improved version of ASmulti.
We name this as AShierarchy. AShierarchy follows ASmulti;
however, agents in AShierarchy sometimes deposit phero-
mones even when they encounter other agents with better
solutions than themselves. (is occurs because agents
consider the mismatch between their local hierarchies and
the global (system) hierarchy as individual agents cannot
know the absolute rank in the system hierarchy. From the
viewpoint of a specific agent, the greater the number of
agents offering better solutions than the agent who en-
counters them, the fewer the opportunities for the agent to
get away from a local solution. (erefore, the agents are
allowed to deposit pheromones to some extent in cases
where they encounter other agents having better solutions.
(us, individual agents in living systems seem to adapt as
they consider the local information [9]. (rough numerical
simulations using several TSP datasets, we show that the
proposed model outperforms ASmulti.

Eliminating the viewpoint of the third party from the
system is related to the subpopulations. Several studies have
employed this approach for some optimisation problems
[10–13]. For example, Cai et al. used the cooperative co-
evolution strategy to improve the global search capability for
airport gate allocation optimisation [10]. Deng et al. used a
similar mechanism, i.e., the CC framework, to deal with
large-scale problems [11]. Multipopulations or population
diversity contribute toward finding the global optimal so-
lution. In our method, individual agents independently
modulate their pheromone depositions based on their ex-
periences during each tour.

2. Materials and Methods

2.1.Multirank-Based AS (ASmulti). We propose a multirank-
based ant system (ASmulti) [8] as an improved version of
ASrank [7]. In ASmulti, the probability of the next destination
selection determined in the same manner as in ASrank, but a
new approach is used for regulating agents who contribute to
pheromone deposition. (e new method of pheromone
update in ASmulti is explained here. First, we define the
parameters as follows:

s: step count in one tour
θstep: threshold for tour step in agent competition
ratio: the value calculated in agent competition
φratio: threshold for ratio in agent competition
Ck: the binary parameter indicating whether agent k
survived the competition
Nagent: the number of agents (equal toNcity: the number
of cities)
Ncity: the set of cities
cityx (s, t): city where the agent x is in at step s
cityy (s, t): city where the agent y is in at step s
ℓx (s, t): accumulated tour length of agent x at step s
ℓy (s, t): accumulated tour length of agent y at step s
Lk: tour length of the solution found by agent k

Tk: set of edges included in the solution found by agent k

If the following two conditions are satisfied, then a
competition occurs among agents:

(i) (e parameters satisfy the relationship s/Ncity > θstep
(ii) (ere are other agents in the same city

When one agent x encounters another agent y, i.e., cityx
(s, t)� cityy (s, t), the agents mutually compare the accu-
mulated tour lengths at tour step s of this tour to determine
whether there is enough difference between their accumu-
lated tour lengths. Using their accumulated tour lengths ℓx
(s, t) and ℓy (s, t), an evaluation value ratio is calculated. If the
ratio exceeds the threshold in agent competition φratio
(ratio>φratio), one long-length solution is defeated. In this
case, 0 is assigned to the parameter Ck of the defeated agent.
Here, the competition process is defined as follows:

ratio �
lx(s, t) − ly(s, t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

lx(s, t) + ly(s, t)
, (1)

Cx←0, if ratio≤φratio, ℓx(s, t)≥ ℓy(s, t), (2)

Cy←0, if ratio≤φratio, ℓx(s, t)≤ ℓy(s, t). (3)

(e following prerequisites should be noted as well:

(i) All parameters of Ck are initialised to 1 at the be-
ginning of a tour

(ii) If an agent x is defeated even once in the middle of a
tour, Cx remains 0 until the end of that tour

(iii) If three or more agents exist simultaneously in the
same city, comparison for agent k is performed in all
pairs until Ck is replaced with 0

Finally, some agents who have never been defeated after
completing a tour (Ck � 1) can perform pheromone depo-
sition. In this method, each agent decides about whether to
take part in pheromone deposition using the information
from contacted agents. As this method does not require the
viewpoint of the external third party for summarising the
agent’s information, such as ASrank, it is faithful to the actual
habits of ant swarms. After creating a tour, the pheromone
update process is executed as follows:

τij(t + 1) � ρτij(t) +

􏽘
k

1
Lk

, if (i, j) ∈ Tk(t), Ck � 1,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

Agents in ASmulti cannot perform pheromone deposition
when they encounter other agents with better information.
To this end, agents determine whether they are in a good/bad
position in the global (system) hierarchy by using the
subjective local hierarchy to confirm whether they have
better/worse information than the agents encountered.
However, identifying the local hierarchy as a subhierarchy of
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the global hierarchy does not enable convergence to specific
solutions. To solve this problem, we proposed AShierarchy.

2.2. Hierarchical Rank-Based AS (AShierarchy). Here, we de-
scribe the hierarchical rank-based ant system (AShierarchy)
proposed in this study. Agents in AShierarchy sometimes
deposit pheromones even if they have worse solutions. From
the viewpoint of a specific agent, the greater the number of
encountered agents offering better solutions, the fewer the
opportunities to get away from a local solution. To this end,
agents in the proposed AShierarchy sometimes deposit
pheromones even when they have inferior information than
the agents encountered to prevent the system from falling
into a local solution.

Here, we define the parameters as follows

memk (t): lost-competition counter
ωmem: threshold for weak pheromone deposition
weak: pheromone value for weak pheromone
deposition

In AShierarchy, equations (2) and (3) are modified as
follows:

if ratio≤φratio, ℓx(s, t)≥ ℓy(s, t),

thenmemx←memx + 1, Cx←0,

if ratio≤φratio, ℓy(s, t)≥ ℓx(s, t),

thenmemy←memy + 1, Cy←0.

(5)

Equation (4) is also modified as follows:

τij(t + 1) � ρτij(t) +

􏽘
k

1
Lk

, if (i, j) ∈ Tk(t), Ck � 1,

􏽘
k

weak
Lk

, if (i, j) ∈ Tk(t), Ck � 0, memk ≥ωmem,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where memk is reset to 0 at the beginning of each iteration t.
Figure 1 shows the algorithm flowchart. (e computational
complexity of AShierarchy can be almost similar with that of
ASrank because agents in AShierarchy need not be sorted
according to tour lengths before pheromone updates; in-
stead, the encounter between agents is considered.

3. Results

We conducted a tour exploration experiment on TSP
benchmark datasets and compared the AShierarchy simulation
results with that of ASmulti as we have already compared the
performance of ASmulti with ASrank [8]. We found that
AShierarchy yielded better solutions than ASrank. We used four
TSP datasets: Eil51.tsp (Ncity � 51), Berlin52.tsp (Ncity � 52),
Lin105.tsp (Ncity � 105), and Pr124.tsp (Ncity � 124). Some of
these datasets have often been used for benchmark tests
[14, 15]. (e TSP datasets used here are classified as sym-
metric travelling salesman problem wherein the edge length
between two cities in the opposite directions is the same. We
focused on the TSP datasets adopting 2EUD. As shown in
Table 1, the same values were adopted for the parameters
common to ASmulti and AShierarchy [8]. AShierarchy also has
characteristic parameters ωmem and weak; these parameter
values were selected after a series of preliminary experiments
comprising 10 attempts for each dataset. (e parameters
common to ASmulti and AShierarchy were set according to the
previous study where we found that ASmulti outperformed
ASrank [8].

For each model, Table 2 shows the averaged best solu-
tions obtained from 100 trials. In these benchmark datasets,

AShierarchy outperformed ASmulti for averaged best solutions.
(e p value in Table 2 shows that there is significant dif-
ference between the averaged best solutions of both models
in the U test. In addition, the term “(optimal)” denotes the
tour length of the optimal solution in each benchmark
dataset. From the results in Table 2, it is seen that AShierarchy,
which allows agents who became a loser several times to
update small quantities of pheromone, performs better than
ASmulti.

Figure 2 shows the step interval of usual/weak phero-
mone depositions. We calculated the step interval of one
agent using Eil51. According to Figure 2, the agent deposits
weak pheromones more often than usual pheromones,
satisfying equation (6). Such behaviours might inhibit rapid
pheromone evaporation and result in the system getting
away from local solutions.

Finally, we examined the parameter effect using Eil51.
Here, we used the parameter value of ωmem as 10 (instead
of 5). Table 3 shows the results. Again, AShierarchy per-
formed better than ASmulti even after the parameter
replacement.

4. Discussion

In this paper, we investigated whether AShierarchy outper-
forms ASmulti. ASmulti is the basis for the proposed model.
However, AShierarchy allows agents who become a loser
several times to update small quantities of pheromone. By
contrast, agents in ASmulti are never allowed to deposit any
pheromones if they encounter other agents with better
solutions. Weak pheromone depositions frequently occur in

Complexity 3



YES

YES

s = s + 1 a�er the calcultion of all agents

Select a city based on
pheromone and

heuristic information

Cx = 0
memx = memx + 1

an agent x is defeated ?
(ratio ≤ φratio AND)

lx(s,t) ≥ ly(s,t))

for an agent x,
is a tour almost finished?

another agent (y)
in the same city?

> θstep) AND( s
cityN

(a)

YES

YES

for an agent x,
Cx = 1 ??

Pheromone updates
using 1—Lx

memx ≥ ωmem??

Pheromone updates
using weak

Lx

a�er the calculation of all agents,
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then, start a new tour

(b)

Figure 1: Flowcharts of AShierarchy. (a) A tour iteration. (b) (e pheromone update after each iteration. Note that ratio can be
ratio � |lx(s, t) − ly(s, t)|/lx(s, t) + ly(s, t), where lx (s, t) and ly (s, t) means accumulated tour length of agent x and y at step s. Lxmeans tour
length of solution the agent x found.

Table 1: Parameter settings.

ACO model AShierarchy ASmulti

(α, β) (1, 1) (1, 1)
Ρ 0.5 0.5
Loop tour per 1 trial 1000 1000
Simulation trial 100 100
θstep 0.9 0.9
φratio 0.001 0.001
ωmem 5 —
Weak 0.01 —

Table 2: Mean best solutions.

TSP AShierarchy ASmulti p value (optimal)
Eil51 434.31 436.44 0.021 (426)
Berlin52 7557.45 7589.5 0.047 (7552)
Lin105 14630.34 14709.19 <1.0e− 06 (14379)
Pr124 60334.46 60586.77 0.0067 (59030)
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Figure 2: Step interval of pheromone addition (Eil51). (a) (e step interval of the usual pheromone addition. (b) (e step interval of weak
pheromone addition.
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AShierarchy, which might improve the performance of
AShierarchy. (e important point in the proposed model is
that a group that has relatively better information than a
specific agent does not always exhibit better information
because agents are allowed to use only limited information
via interaction with local other agents.

ACO does not guarantee convergence to the optimal
solution [16, 17]. Usual/weak pheromone depositions can
serve as a key to achieve the balance between convergence and
divergence to overcome this problem [18]. In this paper, we
focused only on the proposed model’s performance in terms
of finding solutions; we did not consider other aspects such as
the time required to find a correct solution or comparing our
model with metaheuristics other than ACO.We would like to
emphasise the importance of separation between third-party
viewpoints and the first-person point of individual agents in
multiagent systems. Researchers often introduce third-party
viewpoints on metaheuristic systems derived from living
systems that may not represent the original meaning of living/
natural systems to find better solutions. (e strength of our
findings is that individual agents decide to deposit phero-
mones based only on their experiences, which does not re-
quire seeing the system from a higher viewpoint. To do so, a
system comprising many agents solves complex tasks flexibly
without falling into a certain solution [19].

In future studies, we will investigate whether a stable
solution can be obtained in other TSP datasets and find
methods for parameter selection and for improving the
algorithm’s efficiency by considering the program execution
steps.
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