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)e hunter-and-gatherer approach copes with the problem of dynamic multirobot task allocation, where tasks are unknowingly
distributed over an environment. )is approach employs two complementary teams of agents: one agile in exploring (hunters)
and another dexterous in completing (gatherers) the tasks. Although this approach has been studied from the task planning point
of view in our previous works, the multirobot exploration and coordination aspects of the problem remain uninvestigated. )is
paper proposes a multirobot exploration algorithm for hunters based on innovative notions of “expected information gain” to
minimize the collective cost of task accomplishments in a distributed manner. Besides, we present a coordination solution
between hunters and gatherers by integrating the novel notion of profit margins into the concept of expected information gain.
Statistical analysis of extensive simulation results confirms the efficacy of the proposed algorithms compared in different en-
vironments with varying levels of obstacle complexities. We also demonstrate that the lack of effective coordination between
hunters and gatherers significantly distorts the total effectiveness of the planning, especially in environments containing dense
obstacles and confined corridors. Finally, it is statistically proven that the overall workload is distributed equally for each type of
agent which ensures that the proposed solution is not biased to a particular agent and all agents behave analogously under
similar characteristics.

1. Introduction

Multirobot systems are expected to complete tasks that are
infeasible, laborious, or inefficient for a single agent to ac-
complish [1]. Employing multirobot systems entails
addressing various problems on the subjects of task allo-
cation [2], exploration [3], coordination [4], learning [5],
swarm behavior [6, 7], and heterogeneity [8]. Among all of
these problems, the problem of multirobot task allocation
(MRTA), that is assigning a group of tasks to individual
robots, is the most deep-seated problem where its com-
plexity increases considerably in dynamic environments.
Since in dynamic problems tasks are unknowingly distrib-
uted over an environment, the MRTA problem needs to be
addressed from both task planning and multirobot explo-
ration perspectives. )e former has been addressed as the
hunter-and-gatherer approach in our previous works [9, 10]
by dividing each task into two sequential subtasks, where

each subtask can only be carried out by a certain type of
agent. )is novel approach poses an unexplored MRTA
problem whose exploration and coordination in comple-
mentary teams are the motivation of this work.

According to the taxonomy presented in [11], problems
with single-robot (ST) tasks, in which each task requires the
effort of a single robot to be completed, are the most
primitive cases of MRTA. For instance, the work in [12]
addresses MRTA to coordinate a group of autonomous
vehicles by proposing two distributed algorithms based on
auction and bundle methods. However, in real-world
problems, there are cases where each task requires efforts of
multiple robots to be completed. )is case taxonomically is
known as a multirobot (MT) task problem and is investi-
gated in [13, 14]. )e former proposes a distributed bees
algorithm (DBA) and applies the optimized DBA to dis-
tributed target allocation in swarms of robots. )e latter
presents a novel weighted synergy graph model and then
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introduces a learning algorithm for the presented model in
which the system learns agents’ interactions. In both cases,
the tasks have been assigned instantaneously, i.e., it is as-
sumed that the tasks are identifiable for robots before the
mission. Nonetheless, in a dynamic environment, in which
tasks are unknowingly distributed over the environment,
instantaneous assignment (IA) is infeasible and instead
time-extended assignment (TA) must be dragged in.

In the context of TA, there are mainly two paradigms of
works addressing the dynamic problems where tasks are
unknowingly distributed over an environment: (1) works
that address the problem purely from exploration per-
spective and (2) works that address the problem fromMRTA
point of view. Regarding the first paradigm, the authors of
[15, 16] present a very fundamental frontier-based algorithm
for a single autonomous robot and multi-robot exploration,
respectively. To enhance the efficacy of the frontier-based
exploration algorithm, Zlot et al. [17] further developed the
frontier-based exploration method by introducing a market-
based approach to maximize information gain while min-
imizing incurred costs. Utilizing the theory of information
gain in [17] opened the floor to integrate the concept of
entropy into the multirobot exploration algorithms. For
instance, Bhattacharya et al. [18, 19] are more focused on
information theory and cast the exploration problem as
minimization of map entropy by taking into account
communication among robots. In contrast to [16–19] that
consider the whole environment for exploration purposes,
Lopez-Perez et al. [20] proposed an algorithm for distributed
multirobot system to explore nearby zones to reduce the
traversed distance, while agents are efficiently using the
resources to communicate with each other. Although
[16–20] cope with the unknown nature of the dynamic
environments by introducing various multirobot explora-
tion methods, they all neglect integrating the MRTA solu-
tion into the proposed exploration algorithms.

Works that fall into the second paradigm undertake
environments comprising unknowingly distributed tasks,
while addressing the MRTA aspect of the problem. On this
subject, Prorok et al. [21] considered a TA problem where
a system of heterogeneous robots is modeled as a com-
munity of species and developed centralized as well as
decentralized methods to efficiently control the hetero-
geneous swarm of robots. In another effort, in [22], a
novel task allocation method is developed based on Gini
coefficient which increases the number of accomplished
tasks considering limited energy resources. Although
Prorok et al. and Wu et al. [21, 22] address a time-ex-
tended assignment problem, a solution for exploring the
environment to detect unknown tasks has not been
provided. Although a few works such as [23] have tried to
investigate the performance of task allocation algorithms
in a frontier-based multirobot exploration problem, most
studies have neglected the integration of multirobot ex-
ploration into dynamic MRTA problems such as ST-MR-
TA : SP or MT-MR-TA : SP [24]. Consequently, to the best
of the authors’ knowledge, there is a lack of critical at-
tention paid to addressing multirobot exploration and
task allocation simultaneously in TA problems, while this

problem is a pervasive problem in a wide variety of fields
such as urban search and rescue (USAR) [25], agricultural
field operations [26], and security patrols [27].

Aside from the two paradigms reviewed above, foraging
is another research trend in addressing multirobot task
allocation problem [28]. Although the foraging problem
taxonomically falls into the discussed categories in the lit-
erature review [11, 24], here we briefly compare the ap-
proaches in this paradigm with the hunter-and-gatherer
framework. Taken as a whole, foraging is more concerned
with collective and swarm behavior of a multiagent system,
spanning from ant or bee colony optimization algorithms
[29] to multiagent reinforcement approaches [30]. )e idea
of collective behavior emphasized in foraging research re-
quires identical decision-making mechanism for all agents
and results in a decision-making dependency among agents
[31]. For instance, it is theoretically challenging to employ an
explorer agent with unique search algorithm in the central
place foraging algorithm [32] since this exclusive search
behavior interferes the swarm behavior of agents and dis-
turbs the system’s equilibrium due to decision-making
dependency among agents. By way of contrast, solutions to
the hunter-and-gatherer framework [9] provide a generic
platform for dynamic multiagent task allocation that is more
focused on individual autonomy with no decision-making
dependency among agents.

Consider the USAR in a disaster site in which a number
of victims are stranded in unknown locations and need
immediate rescue operations. Each victim is a task that needs
to be detected first and then rescued by a rescue operation
that typically needs several dexterity actions. )is case ex-
emplifies problems where multirobot exploration and task
allocation aspects need to be addressed simultaneously.
Besides, a rescue robot needs to have a heavy-duty ma-
nipulator and dexterous gripper [33, 34], high-power ac-
tuators, tracked locomotion mechanism, high-capacity
batteries, and many sorts of sensors, cameras, and com-
munication devices to accomplish those tasks which make
the robot relatively heavy, ponderous, and incapable of agile
search operations. Under this circumstance, the “hunter-
and-gatherer approach” is decidedly justifiable, where each
task is comprised of two sequential subtasks: detection and
completion. Having said that, each subtask can only be
carried out by a certain type of agent, where two teams of
robots are employed: a team of agile robots that can quickly
explore an environment and detect tasks, called “hunters,”
and a team of dexterous robots who accomplish detected
tasks called “gatherers.” Practically speaking, hunters can be
a group of small UAVs which search the site to locate
victims, and gatherers can be a group of maxi-sized [35]
heavy-duty UGVs that rescue detected victims relying on
their dexterity capabilities.

)is paper motivated by the problem explained above,
which is taxonomically referred to as ST-MR-TA : SP or
MT-MR-TA : SP [24], addresses the dynamic MRTA
problem in unknown environments by proposing an
integrated multirobot task allocation and exploration
solution. According to the hunter-and-gatherer scheme,
we first present an innovative decision-making
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mechanism based on the novel notion of expected gain
(EG), which measures density of available information in
the surrounding of a potential job (task/frontier). )e EG
measurement has been integrated into the concept of
certainty and uncertainty profit margins by which the
levels of agent’s confidence and conservativeness are
modeled. )is innovative decision-making mechanism
shapes the background theory of both proposed multi-
robot exploration and task allocation algorithms. Besides,
this work introduces a coordination factor designated for
gatherers through which their behaviors range from
completely indifferent to highly coordinated to hunters’
locations in the environment. By the way of extensive
simulations, we demonstrate that the effectiveness of the
proposed algorithms is superior to the performance of the
benchmark work [9]. Moreover, statistical analysis of the
simulation results shows that the lack of an effective
coordination between hunters and gatherers significantly
hurts the total effectiveness of the planning. Finally, it is
statistically proven that the overall workload is distributed
equally for each type of agent which ensures that the
proposed solution is not biased to an agent and all agents
behave analogously under similar characteristics.

)e remainder of this paper is organized as follows: the
problem statement is presented in Section 2. In Section 3, the
methodology and planning algorithms are discussed. Sim-
ulation results are presented in Section 4 followed by
conclusion remarks in Section 5.

2. Problem Statement

In this section, we present the problem formulation of the
hunter-and-gatherer scheme in the context of dynamic
MRTA. Assume that there are m tasks distributed randomly
over the environment, E. We consider a case that the number
and the locations of tasks are unknown for agents before the
execution of the planning algorithms called hunter-and-
gatherer mission planning (HGMP). )e set of tasks is
denoted asT � T1, . . . , Tm  in which each task is split into
hunting and gathering subtasks, i.e., Tk � th

k, t
g

k  with
1≤ k≤m, where th

k and t
g

k represent hunting and gathering
subtasks, respectively. In this case, the set of agents is defined
as A � Ah, Ag  that comprises of two teams of hunters
Ah � ah

i  and gatherers Ag � a
g

j , where 1≤ i≤ nh and
1≤ j≤ ng. )e cost associated with ah

i for accomplishment of
th
k is denoted as ch

k,i and c
g

k,j is the cost associated with a
g

j for
accomplishment of t

g

k .
Assumptions: throughout the paper, it is assumed that

(1) Tasks are stationary, i.e., they are fixed to their
locations.

(2) )e cost of accomplishment of each task is linearly
proportional to the distance that an agent moves to
do a task. An agent is considered done with a task
when it reaches to the task’s location.

(3) All agents of a same team are identical.
(4) All agents are rational, i.e., they intend to maximize

their expected utility.

(5) All agents are fully autonomous and have their own
utility functions, i.e., no global utility function there
exists.

(6) Agents from complementary teams can communi-
cate with each other using a stably connected
network.

(7) Each location of the grid map is large enough to host
multiple agents simultaneously.

(8) Agents autonomously avoid collisions while navi-
gating in a specific location of the grid map
simultaneously.

Now, the HGMP problem can be stated as follows.
Suppose that there exists a tuple for the mission such that
HGMP � (E, α, T). Π denotes the assignment function
which assigns m tasks to n � nh + ng agents such that
Π: T↦A. Under the assumptions 1–6, the global objective
Θ is to minimize the collective cost of Π:

Θ � min
xi

k
,y

j

k

ρh 

nh

i�1


m

k�1
c

h
k,ix

i
k + ρg 

ng

j�1


m

k�1
c

g

k,jy
j

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (1)

where xi
k and y

j

k are binary decision variables for th
k and t

g

k :

x
i
k ∈ 1, 0{ }, ∀i, k,

y
j

k ∈ 1, 0{ }, ∀j, k.
(2)

In (1), weighting parameters ρh and ρg are introduced to
sum relative collective costs of complementary teams, be-
cause of the physical differences of each type.

)is problem has a global objective Θ which can be
achieved by determining the binary decision variables op-
timally. However, finding the optimal solution in multirobot
path planning andmultirobot task planning problems is NP-
hard, as proven in [36–38], respectively. )at being said,
addressing such problems from agents’ point of view is an
admissible approach to find relatively better solutions, i.e.,
local optimal solutions. Since agents are rational, each
agent’s objective is to maximize its own expected utility in
distributed approaches. )erefore, the aim of this paper is to
design a distributed decision-making mechanism which
allows agents to maximize their own expected utility while
the individual efforts converge to a local optimal solution
from the society standpoint. In other words, the binary
decision variables in Θ need to be determined by the agents
throughout explorations and coordination in a distributed
manner. )is approach also necessitates a study on the
hyperparameters of the proposed algorithm to demonstrate
how local optimal solutions are achieved by adjusting those
parameters with respect to the practical admissible ranges of
parameters in each scenario.

Besides, in the proposed problem statement, the allo-
cation problem is considered dynamic for multiple reasons.
First, tasks are unknowingly distributed over the environ-
ment. )us, agents do not have any prior information re-
garding the tasks’ location and need to explore the
environment to identify them. Secondly, based on the
problem statement, there are always m tasks in the
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environment, i.e., when a task is accomplished by the agents,
another task will be distributed randomly over the envi-
ronment. Altogether, it is not feasible theoretically and
practically to accomplish the planning right after the start of
a mission. Instead, only dynamic planning algorithms can
cope with the unknown and dynamic nature of the
environment.

3. Methodology

3.1. Conceptual Frameworks. Hunters are assigned to explore
the unknown environment for detecting new tasks. According
to the hunter-and-gatherer scheme, the detected task can only
be completed by a gatherer’s effort. Since we aim to develop
the planning algorithms in a distributedmanner, there should
be stably connected communication between agents from
complementary teams. Considering that fact, hunters an-
nounce the location of any newly detected tasks so that
gatherers can decide about accomplishing them. Since there is
no peer-to-peer communication and all communications are
supposed to be broadcasted, we name the communication
platform an “online board” through which gatherers notice
the location of new detections.

In this section, we develop reasoning mechanisms for
both types of agents to properly achieve the global objective
of this work mentioned in Section 2. We first illustrate the
concept of certainty and uncertainty profit margins, which
are the building blocks of the reasoning mechanism of both
types of agents. Secondly, we propose a multirobot explo-
ration algorithm for hunters in a distributed manner by
introducing the notion of EG incorporated into the concept
of profit margins. Subsequently, the way that gatherers
accomplish detected tasks is delineated based on the same
theoretical frameworks. In fact, we elucidate how the same
theories of profit margins and EG can be generalized to
develop the multirobot task planning and coordination al-
gorithm of gatherers.

3.2. Notion of Profit Margins. )e rationale behind the idea
of profit margins is to classify potential jobs (tasks/frontiers)
in an environment into profitable, weakly-profitable, and
nonprofitable types. When a job is profitable, the agent is
confident about taking actions to accomplish it. On the other
hand, the agent is conservative about potential jobs that are
weakly-profitable and ignores nonprofitable jobs. )e effort
needed to accomplish a job is the factor that determines
whether a job is profitable, weakly-profitable, or non-
profitable. According to the second assumption, the effort
made by an agent to accomplish a job corresponds to the
distance that it travels to reach the job. For example, the
effort that a gatherer makes to accomplish a job is the
distance that it travels to reach and accomplish a task.
Similarly, the effort that a hunter makes to accomplish its job
is the distance that it travels to explore the environment by
reaching the frontiers.

Now, we define the certainty and uncertainty profit
margins (CPM and UPM) more specifically for both types of
agents with respect to the accomplishment cost of a job.

CPM is a margin to which the travel distance is less than Rc

from agent’s perspective. UPM is a margin to which the
travel distance is less that Ru and greater than Rc from
agent’s point of view. Figure 1 shows the CPM and UPM
conceptually as two concentric circles with the agent at the
center. In the case of this figure, Job 1 is included in agent’s
CPM, so it is considered as a profitable job and the agent is
confident to accomplish it. Further, the agent is conservative
about completing Job 2 since it falls in its UPM and is a
weakly-profitable job. Finally, Job 3 is located beyond the
agent’s UPM, so it is not profitable, and the agent ignores it.

Since agents of both type function in an environment in
the presence of obstacles, we explain the concept of CMP
andUMP for an agent functioning in an occupancy gridmap
[39]. Figure 2 illustrates an occupancy grid map with an
agent located at the center. In this figure, the concept of
profit margins has been applied to the probabilistic road
maps (PRM) generated for agent’s path planning. In other
words, Figure 2 explains how an agent practically classifies
jobs as profitable, weakly profitable, and nonportable in a
map relying on the PRMs.

εf
c,z �

λc
z

d
f
c,z 

λc
z

p�1 α
c
p

. (3)

According to the hunter-and gatherer scheme, a hunter
agent relies to its profit margins to explore the environment
and a gatherer agent considers its profit margins to ac-
complish detected tasks. Regarding the definition of UPM
and CPM and the way that it can be applied to PRMs, we
focus on developing the reasoning mechanisms for both
types of hunter-and-gatherer agents in the subsequent
sections.

3.3. Reasoning Mechanism: Hunters. In this section, we aim
to develop a reasoning mechanism based on the definition of
profit margins so that hunters explore the environment. In
this regard, we utilize the frontier-based exploration concept
to develop a CPM and UPM-based multirobot exploration
algorithm. )e basic idea in a frontier-based exploration
algorithm is that the explorer agent selects a frontier point
first and then moves towards the selected frontier to explore
unknown areas iteratively. Although we develop the rea-
soning mechanism for hunters in a distributed manner, we
need to utilize an online shared map in which certain in-
formation of the map and frontiers are accessible for all
agents. Hence, before developing the reasoning mechanism,
we define a platform in which agents share their gained
information.

We define an online board which contains the collective
gained information about the environment’s map. At the
beginning of each mission, all cells of the occupancy grid
map are marked as unknown. While hunters explore the
map, each explored cell can be marked as obstacle (cells with
probability greater than 0.5 in the occupancy grid map), free,
or task cell. Moreover, the unknown cells neighboring a
known cell will be marked as a frontier cell. By analyzing the
data embedded in the online board, each hunter decides
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which frontier to select and explore in a distributed manner
relying its reasoning mechanism. )e reasoning mechanism
splits into two steps: (1) the map updating process, i.e., the
hunter updates some additional information on each
frontier cell collectively, and (2) the decision process, i.e., the
process by which the hunter chooses a frontier cell to
explore.

Regarding the first step, the hunter agent classifies all
frontiers into three categories according to the definition of
CPM and UPM, as illustrated in Figure 3. )en, the hunter
updates the location of detected frontiers on the online
board and the hunter agent indicates that if the new
frontiers fall within its CPM or UPM. To elaborate, each
frontier cell keeps two factors called certainty and un-
certainty factors (CF and UF). CF of a frontier indicates the

number of hunters that the frontier cell is included in their
CPM. Similarly, UF of a frontier cell indicates the number
of hunters that the frontier cell is within their UPM. Ac-
cordingly, the hunter updates CF and UF of all frontiers
within its CPM andUPM. In each iteration, the hunter does
the map updating process first and then relies on the CF
and UF information of frontiers to proceed the decision
process.

As elaborated above, we need to develop a decision
process by which a hunter decides which frontier to choose
for exploring relying on the information updated on the
online board. Here, we propose a method which considers
the EG available by exploring a certain frontier and chooses a
frontier with maximum value of EG. )is method has three
main features: (1) the algorithmic method is developed in a
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Figure 2: Frontiers in the agent’s occupancy grid map: (a) the updated map from an agent’s point of view with presence of obstacles and
detected frontiers, and (b) categorization of frontiers according to the definition of CPM and UPM.
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Figure 1: CPM and UPM of an agent: Job 1 and Job 2 are in the agent’s CPM and UPM, respectively. Job 3 is beyond the agent’s uncertainty
boundary.
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distributed manner, so we propose the decision process for
an instance hunter agent, (2) the relative position of other
hunters is being considered in the decision process (using
CFs and UFs) which predictably prevents hunters from
rushing towards closely similar regions, and (3) the CFs and
UFs of all neighbor frontiers are reflected in defining EG for
a candidate frontier to guarantee the previous property. As a
matter of fact, the neighborhood of a frontier corresponds to
the CPM of that frontier.

As explained for the map updating process, the hunter
classifies all frontiers into 3 classes regarding its CPM and
UPM. In this step, we clarify how EG is defined for
frontiers within agent’s CPM. Afterwards, we will develop
the EG definition for frontiers within hunter’s UPM.
Needless to mention, frontiers beyond hunter’s UPM
are ignored by the agent due to the definition of profit
margins.

Suppose that there are λc frontiers within the hunter’s
CPM where λc ≥ 1. )en, the set of frontiers within its CPM
is defined as Fc � fc

z , where 1≤ z≤ λc.)e hunter, denoted
as ah

i , needs to calculate EG for all members of Fc and then
choose a frontier with the highest value of EG. A primary
factor which effects EG of a frontier is the distance between
the hunter and the frontier such that EG∝ distance−1. )is
proportionality needs to be completed by considering other
conditions of the frontier to have a more accurate definition
of EG. Letfc

z denotes the candidate frontier which ah
i aims to

analyze and calculate its EG ah
i needs to know if it visits fc

z,
then the agent determines how many other frontiers are
available within the CPM (neighborhood) and what is the
collective CF of those frontiers. Figure 4(a) illustrates an
example in which a hunter agent has already classified all
frontiers available on the online board. Initially, the hunter
chooses fc

z as a candidate frontier among all frontiers which
are within the hunter’s CPM. In addition, Figure 4(b) ex-
plains how the hunter determines the frontiers within the
CPM of the candidate frontier fc

z. Let λ
c
z denote the number

of frontiers within CPM of fc
z. Accordingly, the set of ex-

pected frontiers with respect tofc
z is defined as f∗cz � fc

z,p ,
where 1≤p≤ λc

z. Next, ah
i calculates the collective CF of all

members in f∗cz . Now, EG∝ distance− 1 gets completed by
adding a coefficient which is the ratio of λc

z and the collective
CFs of f∗cz . )e reason that we consider only CF is that the
candidate frontier itself is within agent’s CPM.)e set of EG
for all frontiers within agent’s CPM is denoted as εf

c � εf
c,z ,

where 1≤ z≤ λc, and εf
c,z denotes the EG of a candidate

frontier, i.e., fc
z. Further, CF of a member of f∗cz is denoted

as αc
p. Finally, ε

f
c,z for a candidate frontier within agent’s

CPM is defined as follows:
To put it simply, we have EG ∝ distance−1 for each

frontier. )en, distance−1 is multiplied by a coefficient
(λc

z/
λc

z

p�1 αc
p) in which its numerator is the total number of

frontiers available in the candidate frontier’s neighborhood and
its denominator is the collective CFs of those frontiers. In other
words, higher values of the numerator indicate that there are
other frontiers in the candidate frontier’s neighborhood which
can be accessible for the agent to explore easily when it visits it.
However, the denominator reflects the presence of other
hunters within the candidate frontier’s neighborhood.

Altogether, ah
i calculates εf

c,z for all frontiers within its
CPM and then chooses a frontier with themaximum value of
expected information gain, denoted as fc

ζ , such that

ζf
� argsmax εf

c . (4)

Similarly, EG can be defined for a candidate frontier
within hunter’s UPM with a slight difference. In this case,
both collective CFs and UFs will be considered to define EG
for a candidate frontier. To explain, suppose there are λu

frontiers within the hunter’s UPM where λu ≥ 1 and λc � 0.
)en, the set of frontiers within a candidate frontier’s UPM
is defined as Fu � fu

z  where 1≤ z≤ λu. ah
i needs to calculate

EG for all members of Fu and chooses a frontier with the
highest value of EG. Let fu

z denote the candidate frontier in
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Figure 3: )is figure explains CPM and UPM in an occupancy grid map with presence of obstacles, where the agent is located at the center.
In the generated PRM, gray nodes represent nodes that are beyond agent’s profit margins, while green and red nodes represent nodes which
are within the agent’s CPM and UPM, respectively. CPM and UPM have been calculated for different values of Rcand Ru: (a) Rc Ł 4 mand
Ru Ł 10m, (b) Rc Ł 8m and Ru Ł 16m, and (c) Rc Ł 14 mand Ru Ł 25m
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which ah
i aims to analyze and calculate its EG. )e hunter ah

i

needs to know that when it visits fu
z , then how many

frontiers are available within its CPM, and what are the
collective CF and UF of those frontiers. Let λu

z denote the
number of frontiers within CPM offu

z . Accordingly, the set
of expected frontiers with respect to fu

z is defined as
f∗uz � fu

z,p , where 1≤p≤ λu
z . Next, ah

i calculates the col-
lective CF and UF for all members of f∗uz by considering the
online board. Since fu

z is located within UPM of ah
i , then it

considers both CF and UF to calculate EIG.)e set of EG for
all frontiers within agent’s UPM is denoted as εf

u � εf
u,z ,

where 1≤ z≤ λu, and εf
u,z denotes the EG of a candidate

frontier, i.e,fu
z . Further, CF and UF of a member of f∗uz are

denoted as αu
p and βu

p, respectively. Finally, ε
f
u,z for a can-

didate frontier within agent’s UPM is defined as

εf
u,z �

λu
z

d
f
u,z 

λu
z

p�1 α
u
p + 

λu
z

p�1 β
u
p 

, (5)

where ah
i calculates εf

u,z for all frontiers within its UPM and
then chooses a frontier with the maximum value of EG,
denoted as fu

ζ , such that

ζf
� argsmax εf

u . (6)

)e above procedures for selecting a frontier have been
considered to develop a frontier selection function. Algo-
rithm 1 illustrates the procedure in which a hunter selects a
frontier within its CPM or UPM. In line 3, the hunter uses
the definition of profit margins, i.e., Rc and Ru, to categorize
all frontiers and updates the CF and UF of frontiers on the
online board. In lines 5 and 9, the agent utilizes (3) and (5)
respectively to calculate EGs. Further, the hunter uses (4)

and (6) to choose a frontier with highest value of EG in lines
7 and 9, respectively.

)e frontier selection function explained is Algorithm 1
needs to be invoked in the hunter’s main algorithm. To that
end, Algorithm 2 illustrates the main decision procedure for
a hunter agent. In line 1, τmax denotes the maximum number
of iterations at which the main procedure is executed. In line
2, the hunter checks to know whether its frontier buffer is
empty to invoke the frontier selection function. In line 4, the
agent updates the status of the selected frontier on the online
board. In fact, since the online board stores the location of all
agents and also the frontier map of the environment, the CF
and UF of each frontier are calculated in a centralized
manner and are available on it. When the selected frontier is
located within agent’s CPM, then after updating, the frontier
is not selectable for other agents. Otherwise, the agent only
updates the status of the selected frontier to pending which
still allows other agents, i.e., agents that the selected frontier
is within their CPM, to select the frontier. In other words,
when the selected frontier is within agent’s UPM, then there
are still chances for other closer agents to select the frontier.
)is is a reassignment process which results in improving
the assignment iteratively regarding the dynamics of the
environment. However, when the agent gets close enough to
the selected frontier so that the frontier becomes included in
its CPM, the agent can update the status of the selected
frontier such that no reassignment be allowed anymore. In
line 7, the agent checks the condition to make sure whether
the selected frontier is still available. Obviously, when the
agent selects a frontier within its CPM, then this condition is
always true. When a frontier is selected and is still available,
then the hunter iteratively moves towards the selected
frontier. In line 9, relying on the sensor data, the hunter
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Figure 4: An example illustrating the way a hunter calculates the number and collective CF of frontiers within a candidate frontier’s CPM:
(a) categorization of frontiers and selecting a candidate frontier, and (b) the frontiers available within the candidate frontier’s CMP are in
purple. In other words, if the hunter visits the candidate frontier, then all purple frontiers will be accessible within its CPM (neighborhood).
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checks whether a new task is detected while moving towards
the selected frontier. In line 16, the hunter updates the new
detected frontiers on the online board according to the
updated captured data, while moving towards the selected
frontier. To clarify, when a selected frontier is within the
agent’s CPM, then the agent is responsible for exploring the
corresponding area of the selected frontier, which makes it
impossible for other agents to select that frontier.

3.4. Reasoning Mechanism: Gatherers. In this section, we
aim to develop a reasoning mechanism based on profit
margins so that gatherers accomplish the detected tasks
efficiently. On this subject, we develop a task-selection
algorithm like the frontier selection algorithm in the
previous section, but we also consider the coordination
between gatherers and hunters to develop the algorithm.
To this end, the EG for a task is a function of locations of

tasks and frontiers. In fact, the locations of tasks play the
main role to calculate the EG, but the locations of frontiers
are also considered to involve the coordination factor
between a gatherer and the other hunters. )is effectively
enables a gatherer agent to prioritize tasks surrounded by
more frontiers because any region with higher density of
frontiers is more susceptible for the presence of hunters.
)is reasoning rationally performs a coordination be-
tween gatherers, which are accomplishing detected tasks,
and hunters, which are exploring the environment by
visiting the frontiers.

)e reasoning mechanism for a gatherer agent splits into
two steps: (1) the map updating process, i.e., the gatherer
updates some additional information on each task-marked
cell, and (2) the decision process, i.e., the process by which
the gatherer chooses a task to accomplish. To do the map
updating process, the gatherer agent classifies all detected
tasks into three categories according to the definition of

1: function ChooseFrontier (Rc, Ru, online board)
2: for all detected frontiers in online board do
3: F � Fc, Fu{ } ← categorize frontiers
4: end for
5: if Fc ≠∅, then
6: εf

c ← Calculate EG set
7: fc

ζ← choose the frontier with the highest EG
8: return fc

ζ
9: else if Fc � ∅ and Fu ≠∅, then
10: εf

u ← Calculate EG set
11: fu

ζ ← choose the frontier with the highest EG
12: return fu

ζ
13: else
14: return ∅
15: end if
16: end function

ALGORITHM 1: Frontier selection function.

1: for τ � 1: τmax, do
2: if frontierBuffer � ∅, then
3: frontierBuffer←ChooseFrontier (Rc, Ru, OB)
4: end if
5: Update the status of the selected frontier on OB
6: if frontierBuffer≠∅, then
7: if the selected frontier is still available, then
8: move towards the selected frontier
9: if a new task is detected, then
10: update OB
11: end if
12: else
13: frontierBuffer←∅
14: end if
15: end if
16: Update newly detected frontiers on OB
17: end for

ALGORITHM 2: A hunter agent’s iterative main loop.
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CPM and UPM. )en, the gatherer updates CF and UF
factors of each task-marked cell. )e CF of a task indicates
the number of gatherers that the task is included within their
CPM. )e UF of a task-marked cell indicates the number of
gatherers that the task is within their UPM. Accordingly, the
gatherer updates CF and UF of all detected tasks within its
CPM and UPM. In each iteration, the gatherer does the map
updating process first and then relies on the CF and UF
information of detected tasks to proceed the decision pro-
cess. To develop the decision process for a gatherer agent, we
first clarify how EG is defined for tasks within agent’s CPM
and then we develop the EG definition for tasks within
gatherer’s UPM.

Suppose that there are κc tasks within the gatherer’s CPM
where κc ≥ 1. )en, the set of tasks within its CPM is defined
as Tc � tc

z  where 1≤ z≤ κc. )e gatherer, denoted as a
g
j ,

needs to calculate EG for all members of Tc and then choose
a task with the highest value of EG. A primary factor which
effects EG of a task is the distance between the gatherer and
the task such that EG ∝ distance−1. )is proportionality
needs to be completed by considering other conditions of the
task to have a more accurate definition of EG. Let tc

z denote
the candidate task that a

g
j aims to analyze and calculate its

EG. a
g
j needs to know if it visits tc

z, then how many other
tasks will be available within its CPM, and what is the
collective CF of those tasks. Let κc

z denote the number of
tasks within CPM of tc

z. Accordingly, the set of expected
tasks with respect to tc

z is defined as t∗cz � tc
z,p  where

1≤p≤ κc
z. Next, a

g
j calculates the collective CF of all

members int∗cz . Now, EG∝ distance− 1 gets completed by
adding a coefficient which is the ratio of κc

z and the collective
CFs of t∗cz . )e set of EG for all tasks within agent’s CPM is
denoted as εt

c � εt
c,z  where 1≤ z≤ κc and εt

c,z denotes the
EG of a candidate task, i.e., tc

z. Further, CF of a member of
t∗cz is denoted as σc

p. )erefore, for εt
c,z of a candidate task

within agent’s CPM, we have

εt
c,z∝

κc
z

d
t
c,z 

κc
z

p�1 σ
c
p

. (7)

To complete (7), we also need to consider the coordi-
nation between the gatherer and other hunters by caring
about the availability of frontiers within CPM of the can-
didate task. To that end, we will multiply the right side of (7)
by a coordination term which is (1 + μλc

z), where λc
z and μ

denote the number of frontiers within CPM of tc
z and the

coordination coefficient, respectively. )us, εt
c,z of a candi-

date task within agent’s CPM is defined as follows:

εt
c,z �

κc
z

d
t
c,z 

κc
z

p�1 σ
c
p

1 + μλc
z( . (8)

Similarly, a
g
j calculates εt

c,z for all tasks within its CPM
and then chooses a task with the maximum value of EG such
that ζ � argsmax(εf

c ) where tc
ζ denote the chosen task. )e

admissible values for the coordination coefficient are defined
as μ≥ 0. However, the optimal value of it depends on the
dimension and floor map of the environment and also
depends on the number of hunter agents.

By the same token, EG can be defined for a candidate
task within a gatherer’s UPM with a slight difference. In this
case, both collective CFs and UFs will be considered to define
EG for a candidate task. To illustrate, suppose that there are
κu tasks within the gatherer’s UPM where κu ≥ 1 andκc � 0.
)en, the set of tasks within its UPM is defined as Tu � tu

z 

where 1≤ z≤ κu. )e gatherer, denoted as a
g
j , needs to

calculate EG for all members of Tu and then choose a task
with the highest value of EG. Let tu

z denote the candidate task
in which a

g

j aims to analyze and calculate its EG. a
g

jneeds to
know if it visits tu

z , then how many tasks will be available
within its CPM, and what are the collective CF and UF of
those tasks. Let κu

z denote the number of tasks within CPM of
tu
z . Accordingly, the set of expected tasks with respect to tu

z is
defined as t∗uz � tu

z,p  where 1≤p≤ κu
z . Next, a

g
j calculates

the collective CF and UF of all members int∗uz . )e set of EG
for all tasks within agent’s UPM is denoted as εt

u � εt
u,z 

where 1≤ z≤ κu and εt
u,z denotes the EG of a candidate task,

i.e., tu
z . Further, CF andUF of amember of t∗uz are denoted as

σu
p and ωu

p, respectively. Additionally, κc
z denotes the number

of frontiers within CPM of tu
z . )erefore, for εt

u,z of a
candidate task within agent’s UPM, we have

εt
u,z �

κu
z

d
t
u,z 

κu
z

p�1 σ
u
p + 

κu
z

p�1 ω
u
p 

1 + μλu
z( . (9)

Similarly, a
g

j calculates εt
u,z for all tasks within its UPM

and then chooses a task with the maximum value of EG such
that ζ � argsmax(εf

u ) where tu
ζ denotes the chosen task.

)e task-selection procedure is almost like the procedure
illustrated in Algorithms 1 and 2. )e main difference is the
way that a gatherer calculates EG for all detected tasks which
has been illustrated by (8) and (9).

4. Simulation Results

In this section, we put the exploration and coordination
algorithms in the hunter-and-gatherer scenario into test by
running extensive simulations and investigating the per-
formance of the proposed method statistically from multiple
aspects. First, we aim to validate the fairness of the proposed
task allocation algorithm. )is validation, which is carried
out by comparing agents’ effectiveness in a set of experi-
ments and analyzing the results by paired T-test and
ANOVA [40] methods, ensures that the overall workload of
a mission is distributed equally among agents of both type.
)ereafter, we study the effect of profit margins on the total
effectiveness of the proposed methods by accomplishing
parameter studies on RC and RU. After that, we need to study
the efficacy of the introduced coordination factor for
gatherers by investigating its effect on the planning’s total
effectiveness. As the final steps, the functionality of the
proposed method is tried out by drawing comparisons. To
that end, we first compare the performance of the proposed
method with the benchmark hunter-and-gatherer approach
introduced by the authors’ previous work in multiple en-
vironments, and then the functionality of the exploration
and coordination algorithms in the context of the hunter-
and-gatherer scheme is verified by a comparison of its
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performance and a basic alternative method in which each
agent does both hunting and gathering tasks itself.)ese two
comparisons ensure that the newly proposed method out-
performs the benchmark method while it is superior to the
nonhunter-and-gatherer approaches.

To simulate the proposed approaches, we developed a
multirobot simulation platform in MATLAB from scratch.
In this platform, we can implement the simulations on any
custom map, while the number of each type of agent is
adjustable. We provide some basic functions for each type of
agent to enable them maneuver over the determined envi-
ronment. For gatherers, we utilized A∗-based motion
planning algorithm which enables them to move along two
points in a grid environment. Besides, the number of tasks is
also adjustable while they get located randomly over the
environment. As a matter of fact, we also provided the
perpetual mode for implantation of the simulations where,
for each gathered task, another task will be distributed
randomly in the environment. Accordingly, at each itera-
tion, there are certain number of tasks available in the
environment which is adjustable for each mission. Further,
in the perpetual mode, each explored and known grid of the
environment turns into an unknown grid after certain it-
erations. )e perpetual mode helps the analysis be done in a
much more accurate and evidence-based way.

All simulations have been executed under the following
conditions: (1) the environment is sectioned as a eL × eW grid
of tiles where eL � eW � 100, (2) the quantities of each type
of agents are adjusted as nh � 4 and ng � 2, (3) there are
always mp � 25 tasks in the environment, (4) the maximum
number of iterations is determined as τmax � 1000, and (5)
we considered the weighting parameters as ρh/ρg � 0.2.
Moreover, the simulations have been conducted with ab-
stract agents in order to experiment and evaluate the pro-
posed algorithms more generically and without being biased
to any specific types of agents.

4.1. Task Allocation Fairness. To demonstrate that the ac-
complishment’s workload is distributed equally for each type
of agent, the concept of fairness is introduced. We need to
investigate the task allocation algorithms from the fairness
perspective for two main reasons: (1) to prove that the al-
location is not biased to a particular agent by ensuring that
agents behave analogously under similar characteristics, and
(2) to confirm that there is no imbalance in agent’s in-
volvement in a mission which, practically speaking, results
in an equal wear and tear of individual robots while oper-
ating in real-world situations.

We define an effectiveness factor for each agent of both
types based on their costs and accomplishment. )en, using
the statistical analysis, the fairness of the HGM by comparing
effectiveness of different agents of each type can be proven.
Let ηh

i and ch
i denote the effectiveness of ah

i and the number of
tasks hunted by the agent, respectively, as the following:

ηh
i �

c
h
i


m
k�1 c

h
k,ix

i
k

. (10)

Similarly, ηg
j and c

g
j denote the effectiveness of a

g
j and

the total number of tasks gathered by the agent, respectively,
such that

ηg
j �

c
g

j


m
k�1 c

g

k,jy
j

k

. (11)

To investigate the fairness of the proposed algorithms,
we ran 100 missions and recorded agents’ effectiveness
according to (10) and (11). )en, utilizing statistical hy-
pothesis testing, we prove the fairness for each type of agents
by showing that the averages of agents’ effectiveness in 100
missions are statistically identical. Having said that, the
hypothesis testing will be applied on the mean of 100,
recorded effectiveness for each hunter and gatherer.
Figure 5(a) shows the statistical results of ηh

i for all hunters.
As nh � 4, an ANOVA test has been applied to the collected
data to statistically prove the fairness of the proposed al-
gorithms for hunters. )e ANOVA test has been applied as
follows: H0: μh

1 � μh
2 � μh

3 � μh
4, H1: μh

1 ≠ μh
i , and α � 0.05,

where μh
i denotes the average of ηh

i for ah
i in 100 tests and α

denotes the significance level. According to the results of the
ANOVA test, we have F � 0.39, F − crit � 2.62, and
P − value � 0.75. Since F<F − crit and P − value> α, we
must retain the null hypothesis.)us, it has been proved that
μh
1 � μh

2 � μh
3 � μh

4. In addition, as ng � 2, a paired T-test has
been applied to the data to investigate the fairness of the
proposed algorithms for gatherers. )e hypothesis testing
has been done in such a manner H0: μg

1 − μg
2� D0,

H1: μg
1 − μg

2 ≠D0, D0 � 0, ns � 100, dof � 99, and α � 0.05.
According to the test p − value � 0.1. Since, p − value> α,
we must retain the null hypothesis. )erefore, it has been
proven that μg

1 − μg
2 � D0 � 0, as it is illustrated in

Figure 5(b).

4.2. Effect of Agent’s Profit Margins on the Total Effectiveness.
)e proposed algorithms rely strongly on introduced defi-
nitions of profit margins, as discussed in the methodology
section. Accordingly, we need to study the effect of profit
margins’ parameters on a mission’s effectiveness to dem-
onstrate their functionality for both types of agents. For this
reason, we define the effectiveness for a mission, denoted as
ηt, which is the ratio of the total number of completed tasks,
ct, and the collective cost of the whole mission, Ct, as
follows:

Ct � ρh 

nh

i�1


m

k�1
c

h
k,ix

i
k + ρg 

ng

j�1


m

k�1
c

g

k,jy
j

k, (12)

ct � 

ng

j�1
c

g
j , (13)

ηt �
cT

CT

. (14)

Regarding (14), extensive simulations have been ran for
all values of Rh

c and Rh
u, i.e., the profit margins of hunters,

such that 1≤Rh
c ≤ 136 and 1≤Rh

u ≤ 136, while R
g
c � R

g
c � 50.
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ηt has been calculated for each set of values for Rh
c and Rh

u, as
illustrated in Figure 6(a). )e results show that ηt ranges
from 0 to 0.012 while changing the value of Rh

c and Rh
u during

the whole simulation. As Figure 6(a) displays, the total ef-
fectiveness reaches its maximum value, when Rh

c � 10 and
Rh

u � 110. Besides, the slight increase in the total effective-
ness in Figure 6(a) for small values of Rh

c and Rh
u can be

interpreted as the effect of perpetual running of the simu-
lations. In perpetual mode, known areas get unknown after a
certain number of iterations which inevitably favors agents
with smaller profit margins. Because of that, although a
hunter agent with small values of Rh

c and Rh
u cannot explore

distant frontiers to detect tasks, its surrounding explored
areas get unknown with a possibility of popping up new
tasks. However, the ensemble effect of profit margins of
hunters ensures the existence of a maximum for ηt.

Similar simulations have been run for all values of R
g
c and

R
g
u , i.e., the profit margins of gatherers, such that 1≤R

g
c ≤ 136

and 1≤R
g
u ≤ 136, while Rh

c � Rh
c � 70. ηt has been calculated

for each set of values for R
g
c and R

g
u , as illustrated in

Figure 6(b). )e results show that ηtranges from 0 to 0.012
while changing the value of Rh

c and Rh
u during the whole

simulation. According to the results, the total effectiveness
reaches its maximum value when Rh

c � 30 and Rh
u � 40.

)e main conclusion to be drawn is that the introduced
profit margin parameters for both types of agents have
distinct effect on the total effectiveness and there exists a
maximum value for ηt. Moreover, according to the proposed
methodology for both types of agents, whenRc decreases, the
agent becomes less confident, and when Ru increases, the
agent becomes less conservative. In this regard, for both
types of agents, the best strategy to reach the maximum of ηt

is neither being completely confident nor being fully con-
servative, but a combination of both leads to the optimum
result.

4.3. Effect of Coordination Factor on the Total Effectiveness.
In this section, we aim to investigate the effect of the co-
ordination factor, introduced in Section 3.4, on the mission’s
effectiveness. To conduct a comprehensive investigation, we
carry out the experiments in three different grid maps with
various levels of obstacle complexities: (a) a simple grid map
containing two straight barriers, (b) a grid map containing
sparse obstacles, and (c) a confined grid map containing
narrow corridors and confined rooms, as depicted in
Figure 7.

After defining three different grid maps, we ran the
algorithm 200 times for different values of μ in each defined
grid map, as illustrated in Figure 8. First, these results show
that there is a value for μ in each grid map that leads to a
maximum value of ηt that denotes the average of ηt in 200
tests. Considering that we want to know that how much ηt

increases when coordination factor changes from μ � 0 to
μ � μmax. In fact, this investigation compares two cases: (1)
task planning without any coordination between gatherers
and hunters (μ � 0), and (2) task planning with the opti-
mum value of the coordination factor (μ � μmax). For that
purpose, we applied a paired T-test to two of the collected
datasets from Figure 8(a). )e first dataset contains 200
measures of ηt forμ � 0, and the second dataset comprises
200 measures of ηt forμ � μmax � 0.4. )e test has been
conducted considering H0: η2 − η1 ≤D0, H1: η2 − η11 >
D0, D0 � 0.15η1, ns � 200, do f � 199, and α � 0.05 where
η1 and η2 denote the average of ηt for the first and second
datasets, respectively. According to the test result,
p − value � 0.017, t � 2.12, and t0.05,99 � 1.65. Since
t> t0.05,99 and p − value< α, we reject H0. )erefore, the
results prove that ηt increases more than 15 percent by
changing μfrom 0 to 0.4.

Likewise, we applied the same statistical analysis on the
datasets collected from two other grid maps, i.e., the
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Figure 5: Investigating the fairness of the proposed algorithms for (a) hunter agents and (b) gatherer agents.
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environment with sparse obstacles and with confined ob-
stacles, as shown in Figure 8(b) and 8(c). According to the
analysis for the environment with sparse obstacles, ηt in-
creases by 35 percent when μ changes from 0 to its optimum

value which is 0.6. In addition, the analysis suggests that by
changing μ from 0 to its optimum value for the environment
containing confined obstacles, ηt increases by 60 percent.
Considering the statistical analysis for results in all three
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Figure 8: Investigating the effect of coordination factor on the planning’s total effectiveness in (a) a simple grid map, (b) a grid map with
sparse obstacles, and (c) a confined grid map.
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Figure 7:)ree grid maps with different levels of obstacle complexities: (a) a simple gird map, (b) a grid map with sparse obstacles, and (c) a
confined grid map.
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Figure 6: Investigating the effect of hunters’ and gatherers’ profit margins on the total effectiveness: (a) the contour plot of the results for
hunters’ profit margins, and (b) the contour plot of the results for gatherers’ profit margins.
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environments, there are two insightful implications about
the effects of the coordination factor in different
environments:

First, the more the complexity of the obstacles in the
environment, the more the drop of the total effectiveness of
the planning algorithms. On this subject, the total effec-
tiveness without any coordination between hunters and
gatherers (μ � 0) drops by 32.4% from an environment with
simple obstacles to the one with sparse obstacles.)is drop is
evenmore serious, that is 45.7%, by changing the obstacles of
the environment from simple obstacles to confined ones. All
told, lack of coordination between cooperating agents, i.e.,
hunters and gathers, is relatively more critical problem when
the environment comprises more complex obstacles and
confined and narrow corridors.

Secondly, when the environment contains more complex
obstacles, it takes higher values of the coordination factor
μto prevent the total effectiveness from dropping signifi-
cantly. As the results presented in Figure 8 suggested, the
optimum value of μ is 0.4 in an environment with simple
obstacles, while the optimum value increases to 0.6 and 1
with sparse and confined obstacles, respectively. All over
again, this finding emphasizes the criticality and necessity
and criticality of coordination between cooperating agents
from complementary teams.

4.4. Functionality Validation of the Hunter-and-Gatherer
Approach. In this section, we aim to compare the newly
developed planning algorithms addressing the exploration
and coordination aspects of the hunter-and-gatherer sce-
nario with the benchmark hunter-and-gatherer mission
planning introduced in [9]. To that end, we conduct the
comparison in three environments containing different
configurations of obstacles, as described in Figure 7. 200 tests
have been carried out for each solution in each environment,
as Figure 9 displays the results. To draw a valid comparison,
the mutual parameters in both solutions are set identically as
nh � 4, ng � 2, mp � 50, eL � eW � 100, τmax � 1000, and
ρh/ρg � 0.2. Other specific parameters are set to their op-
timal values for both solutions.

According to the results, the new approach presented in
this paper performs significantly superior to the benchmark
hunter-and-gatherer mission planning in all three different
environments. To demonstrate this statistically for the en-
vironment with simple obstacles, we apply a paired T-test to
two of the collected datasets, where the first dataset contains
200 measures of ηt for the new approach introduced in this
work, and the second dataset comprises 200 measures of ηt

for the benchmark hunter-and-gatherer approach. )e
statistical analysis suggests that the new approach performs
more effective than the benchmark approach by 14 percent,
where ns � 200, do f � 199, p − value � 0.026, t � 1.95, and
t0.05,99 � 1.66. By the same token, the new approach out-
performs the benchmark solution by 28% and 36% in the
environments with sparse and confined obstacles,
respectively.

)e analysis discussed above indicates that the amount
of the improvement is correlated with the complexity of the

obstacles in the environment. Having said that, addressing
the exploration and coordination of the hunter-and-gatherer
scenario is much more critical when the environment
comprises obstacles, especially dense obstacles. )at is
mainly because in the case of the benchmark approach
performing in confined environments including dense ob-
stacles, agents are more susceptible to get far away from each
other, which eliminates any overlap between agent’s profit
margins. Consequently, all sorts of negotiations converge to
being declined since the distance factor makes all negotia-
tions unprofitable. Although in the new approach the agents
still rely on their profit margins to make the decisions, the
coordination factor between hunters and gatherers facilitates
keeping reasonable overlap in their profit margins.)is leads
to a relatively muchmore effective and efficient performance
in environment with the presence of obstacles, compared to
the benchmark method.

To further investigate the performance of the proposed
planning method, we incorporated different multirobot
exploration algorithms into the developed platform and
measured the total effectiveness of the planning, as defined
in equation (14). In other words, we maintained the pro-
posed algorithm for gatherers and investigated the perfor-
mance of the proposed method with different search
algorithms for hunters, including the one proposed in this
paper called EG-based frontier selection. )is experiment
has been conducted on the confided grid map introduced in
Figure 7(c), and for each exploration algorithm, the ex-
periment has been repeated 20 times for each value of nt. As
demonstrated in Figure 10, the random walk multiagent
exploration algorithm [41] performed ineffectual compared
to other algorithms. )is is mainly because the random walk
search algorithm neglects the distance to the frontiers and
disregards the locations of other hunters in the environment.
By considering the distance to candidate frontiers, multi-
agent frontier-based exploration algorithm [42] enhances
the total effectiveness of the planning by 93.4% compared to
the results with the random walk algorithm. )e most
optimal performance of the frontier-based exploration al-
gorithm occurs with eight hunters in the confined
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Figure 9: Comparing the proposed approach with the benchmark
hunter-and-gatherer approach in three different environments.
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environment, while the random walk algorithm requires ten
hunters for the very same environment to reach the optimal
performance.

Alternatively, the scene partitioning multiagent explo-
ration algorithm [20] performs drastically superior to the
frontier-based algorithm and enhances the total effectiveness

2 3 4 5 6 7 8 9 10 1211
0.000

0.002

0.004

0.006

0.008

0.010

0.012

to
ta

l e
ffe

ct
iv

en
es

s (
η t

)

number of hunter agents (ηh)

Random Walk

Frontier Benchmark
Scene Partitioning

EG-based

Figure 10: Analyzing the total effectiveness of the proposed approach with various multirobot exploration algorithms including the EG-
based method introduced in this work.
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Figure 11: Comparing the hunter-and-gatherer approach with an alternative approach where each agent does both exploration and
completion together.
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by 115.2% compared to the results with the frontier-based
algorithm. )e partitioning mechanism of this algorithm
decreases the conflict and overlapping between explorers
which leads to relatively more efficient performance. Fur-
thermore, the scene partitioning algorithm requires six
hunters to perform optimally. Finally, the EG-based mul-
tirobot exploration algorithm presented in this paper out-
performs all three algorithms. Although the EG-based
exploration algorithm similarly requires 6 hunters to per-
form optimally, it enhances the scene partitioning results by
17.8%. In fact, EG-based exploration algorithm facilitates a
dynamic and temporal partitioning which provides more
flexibility and controlled freedom for agents to decide and
plan optimally.

4.5. Functionality Validation of the Hunter-and-Gatherer
Approach. To validate the functionality of the hunter-and-
gatherer approach, we compared the proposed approach
with an alternative approach in which there is only one type
of agent doing both exploration and completion of tasks
together. )e goal of this comparison is to answer two
critical questions: (1) is hunter-and-gatherer scheme more
economic than the explained alternative approach? and (2)
what criterion needs to be satisfied for the hunter-and-
gatherer scheme to be relatively economic?

)e hunter-and-gatherer approach fundamentally
differs from the alternative approach in employing two
types of agile (hunters) and dexterous (gatherers) agents.
In contrast to the alternative approach, each task takes two
agents, that is, a pair of hunter-and-gatherer agents, to be
completed in the hunter-and-gatherer scheme.)is makes
the ratio of the weighting parameters ρh/ρg an imperative
factor to conduct the study. Hence, the criterion judging
the functionality of the hunter-and-gatherer scheme
should be expressed with respect to the ratio of the
weighting parameters. To that end, we ran the algorithm
for different values of μin each map and compared its total
effectiveness with the total effectiveness of the alternative
approach in three previously defined environments, as
shown in Figure 11. According to the results, it is eco-
nomic to employ the proposed hunter-and-gatherer ap-
proach for dynamic ST-MR-TA : SP problems if and only
if we utilize hunter-and-gatherer agents that satisfy
ρh/ρg < 0.45 approximately. In other words, if the cost of
accomplishment of a hunter agent for a certain task is less
than 45 percent of the gather’s accomplishment cost for
the same task, then employing the hunter-and-gatherer
scheme, instead of the alternative approach, is relatively
economic.

5. Conclusion

)is paper addresses the multirobot task allocation prob-
lem in dynamic environments and focuses on the explo-
ration and coordination aspects of the hunter-and-gatherer
scheme. On this line of thought, we proposed an innovative
decision-making mechanism based on the novel notion of
EG, which measures the density of available information in

the surrounding of a potential job (task/frontier). We
demonstrated that applying the EG-based decision-making
mechanism on hunters and gatherers to address explora-
tion and task allocation aspects of the problem improves
the performance of the hunter-and-gatherer scheme sig-
nificantly compared to the authors’ previous negotiation-
based solution. We found that the significance of the
improvement is correlated with the complexity of obstacles
in the environment. Besides, this work proposed an EG-
based coordination algorithm for gatherers, which led to a
momentous increase in the planning’s effectiveness. Sta-
tistical analysis on the simulations’ results suggests that
there is an optimum value for the coordination factor
which maximizes the planning’s total effectiveness. Like-
wise, we found that the optimum value of the coordination
factor varies for environments with different densities and
difficulties of obstacles. Collectively, the higher the com-
plexity and difficulty of the obstacles in an unknown en-
vironment, the more the improving effect of the proposed
method on the planning’s total effectiveness. Moreover, we
showed that employing two complementary teams of
hunters and gatherers can effectually improve the total
effectiveness of the task allocation in a mission. However,
this is only true when the defined judging criteria, asso-
ciated with the ratio of the weighting parameters, is ade-
quately satisfied. Practically speaking, the affordability
criteria comparing relative costs of each type of agent are
straightforwardly satisfiable, as the USAR case exemplifies a
real-world problem where the relative accomplishment
costs of hunters (small UAVs) and gatherers (heavy-duty
UGVs) satisfy the defined criteria.

Future research should define the cost function more
comprehensively by considering the communication burden
between agents. )is provides more realistic settings to
evaluate the efficacy of solutions utilizing communication,
such as the hunter-and-gatherer scheme. Besides, further
research is needed to confirm the functionality of the hunter-
and-gatherer scheme in practice by carrying out a multi-
robot test bench to study the complexities and limitations of
the developed theories in the context of the hunter-and-
gatherer approach. Future works can also consider opti-
mizing the control parameters introduced in this work
utilizing a wide variety of optimization or learning methods.
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