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.is work principally considers the stability issue and the emergence of Hopf bifurcation for a class of fractional-order BAM
neural network models concerning time delays. .rough the detailed analysis on the distribution of the roots of the characteristic
equation of the involved fractional-order delayed BAM neural network systems, we set up a new delay-independent condition to
guarantee the stability and the emergence of Hopf bifurcation for the investigated fractional-order delayed BAM neural network
systems. .e work indicates that delay is a significant element that has a vital impact on the stability and the emergence of Hopf
bifurcation in fractional-order delayed BAM neural network systems. .e simulation figures and bifurcation plots are clearly
presented to verify the derived key research results. .e established conclusions of this work have significant guiding value in
regulating and optimizing neural networks.

1. Introduction

Neural networks have been found to have immense ap-
plication prospect in a lot of subject areas such as modeling
human brain, remote sensing, biological science, pattern
recognition, artificial intelligence, and control technique
[1, 2]. Usually, time delay often occurs in neural network
systems due to the lag of the response of signal transmission
of the neurons in neural networks. .us, it is necessary for
us to establish the delayed neural networks to describe the
real situation of neural networks. Generally speaking, time
delay often gives rise to the disappearance of stability,
periodic oscillation, chaotic behavior, and so on [3, 4]. In
order to grasp the effect of time delay on various dynamical
properties of neural networks, miscellaneous delayed
neural networks have been built and studied. Up to now, a
great deal of valuable publications has been achieved. For
instance, Aouiti et al. [5] investigated the existence and

global exponential stability of pseudo almost periodic so-
lution to delayed BAM neural networks involving leakage
delays by virtue of fixed point theory and mathematical
inequality skills. Yang et al. [6] studied the almost auto-
morphic solution to high-order delayed BAM neural
networks by means of the exponential dichotomy theory,
Banach contraction mapping law, and differential in-
equality strategy. Maharajan et al. [7] set up a new global
robust exponential stability condition for a class of un-
certain BAM neural network systems involving mixed time
delays. Popa [8] focused on the global μ-stability for im-
pulsive complex-valued BAM neural networks concerning
mixed delays. Sowmiya et al. [9] made a detailed analysis on
mean-square asymptotic stability for impulsive discrete-
time stochastic BAM neural networks involving Markovian
jumping and multiple delays. For details, we refer the
readers to [10, 11].

.e general BAM networks are given by
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_pi(t) � −αipi(t) + 􏽘
m

j�1
ajihi qj t − ηji􏼐 􏼑􏼐 􏼑 + Pi,

_qj(t) � −βjqj(t) + 􏽘
n

i�1
bijkj pi t − ζ ij􏼐 􏼑􏼐 􏼑 + Qj,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where i � 1, 2, ..., n; j � 1, 2, ..., m, αi and βj describe the
stability of internal neuron processes on P-layer and
Q-layer, respectively; aji, bij represent the connection
weights; pi(t) and qj(t) denote the states of the neurons on
P-layer and Q-layer, respectively; hi and kj are activation
functions; Pi,Qj denote the inputs; ηji and ζ ij are time
delays. .e model (1) describes the change law of different
neurons which lie in two layers. For details, please see
[12, 13].

System (1) is a large-scale nonlinear dynamical model. It
owns very complicated dynamical properties. In order to
have a good command of the internal law of network system
(1), many researchers pay much attention to some simplified
versions of delayed neural network models. By the inves-
tigation on various dynamical peculiarities of the simplified
neural network systems, we are able to grasp the potential
dynamical properties for large-scale delayed neural network
systems. During the past several years, a lot of works on the
simplified neural network models have been published. For
example, Hajihosseini et al. [14] discussed the bifurcation
problem for recurrent neural networks involving three
neurons. Kaslik and Balint [15] investigated the Nei-
mark–Sacker bifurcation of a discrete-time delayed neural
network system involving two neurons. Ge and Xu [16]
obtained the sufficient condition to ensure the stability and
the onset of Hopf bifurcation for delayed neural networks

involving four neurons. Yang and Ye [17] dealt with the
stability and bifurcation behavior for delayed BAM neural
network involving five neurons. As to more concrete lit-
eratures on this theme, one can see [4, 18].

All above publications are only restricted to the integer-
order dynamical equations. In recent years, fractional cal-
culus has displayed wide application value in a lot of fields
such as heat and mass transfer, electromagnetic and elec-
trodynamics, control science, population systems, bio-
physics, and neural networks [19–27]. .e study shows that
fractional calculus can be regarded as a very useful tool to
describe the object issues in the real world because it owns
the memory property and hereditary function during the
dynamic change process [28, 29]. Recently, fractional cal-
culus has become the biggest concern of the present day
world. In particular, fractional-order neural networks have
also become one of the key hot issues in neural network area.
Delay-induced Hopf bifurcation is a significant dynamical
property in delayed dynamical models. However, it is a pity
that a great deal of works is only concerned with delay-
induced Hopf bifurcation for integer-order dynamical sys-
tem concerning delays and few publications focus on the
fractional-order case (see [30, 31]). In fractional-order
neural networks, what is the effect of time delay and frac-
tional-order on the stability and bifurcation? .e solution of
this problem is beneficial to the design of neural networks.
Up to now, there are many bifurcation problems that are
expected to be solved. .is viewpoint stimulates us to deal
with the delay-induced Hopf bifurcation of delayed neural
networks involving multiple neurons.

Based on the neural networks (1), we consider the fol-
lowing fractional-order simplified delayed neural networks:

d
ξ
u1(t)

dt
ξ � −ku1(t) + a11h u4(t − ζ)( 􏼁 + a12l u5(t − ζ)( 􏼁 + a13l u6(t − ζ)( 􏼁,

d
ξ
u2(t)

dt
ξ � −ku2(t) + a21h u5(t − ζ)( 􏼁 + a22l u6(t − ζ)( 􏼁 + a23l u4(t − ζ)( 􏼁,

d
ξ
u3(t)

dt
ξ � −ku3(t) + a31h u6(t − ζ)( 􏼁 + a32l u4(t − ζ)( 􏼁 + a33l u5(t − ζ)( 􏼁,

d
ξ
u4(t)

dt
ξ � −ku4(t) + a41h u1(t − ζ)( 􏼁 + a42l u2(t − ζ)( 􏼁 + a43l u3(t − ζ)( 􏼁,

d
ξ
u5(t)

dt
ξ � −ku5(t) + a51h u2(t − ζ)( 􏼁 + a52l u3(t − ζ)( 􏼁 + a53l u1(t − ζ)( 􏼁,

d
ξ
u6(t)

dt
ξ � −ku6(t) + a61h u3(t − ζ)( 􏼁 + a62l u1(t − ζ)( 􏼁 + a63l u2(t − ζ)( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(2)
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where ξ ∈ (0, 1] is a real number; k describes the stability of
internal neuron processes on P-layer and Q-layer; aij(i �

1, 2, 3, 4, 5, 6; j � 1, 2, 3) represents the connection weights;
ui(t)(i � 1, 2, 3) denotes the state of the i-neuron on
P-layer; uj(t)(j � 4, 5, 6) denotes the state of the j-neuron
on Q-layer; h and l are activation functions. In order to
establish the key results of this work, we make the following
hypothesis:

(H1) h,

l ∈ C
1
,

h(0) � l(0) � 0.

(3)

.e remainder of this article is planned as follows.
Section 2 presents the key theories on fractional calculus.
Section 3 displays the main conclusions on stability and
Hopf bifurcation for neural networks (2). Section 4 executes
software simulations to illustrate the key conclusions of this
article. Section 5 ends this work with a simple conclusion.

2. Indispensable Definitions and Lemmas

In this part, we give several necessary definitions and
lemmas about fractional calculus which will be used in the
next part.

Definition 1 (see [32]). Define Caputo fractional-order
derivative as follows:

D
ξ
u(ϱ) �

1
Γ(l − ξ)

􏽚
ϱ

ϱ0

u
(l)

(s)

(ϱ − s)
ξ−l+1 ds, (4)

where u(ϱ) ∈ ([ϱ0,∞), R), Γ(s) � 􏽒
∞
0 ϱ

s− 1e− ϱdϱ, ϱ ≥ ϱ0,
andl ∈ Z+, ξ ∈ [l − 1, l).

Lemma 1 (see [33, 34]). Consider the following model:

d
ξ
u(t)

dt
ξ � w(t, u(t)), u(0) � u0, (5)

where ξ ∈ (0, 1] and w(t, u(t)): R+ × Rn⟶ Rn, n ∈ Z+. Let
u∗ be the equilibrium point of system (5). If every eigenvalue
(denoted by ς) of (zw(t, u)/zu)|u�u∗

obeys |arg(ς)|> (ξπ/2),
then we say that u∗ is locally asymptotically stable.

Lemma 2 (see [35]). Consider the following model:

d
ξ1H1(t)

dt
ξ1

� e11H1 t − ζ11( 􏼁 + e12H2 t − ζ12( 􏼁 + · · · + e1lHl t − ζ1l( 􏼁,

d
ξ2H2(t)

dt
ξ2

� e21H1 t − ζ21( 􏼁 + e22H2 t − ζ22( 􏼁 + · · · + e2lHl t − ζ2l( 􏼁,

⋮

d
ξlH(t)

dt
ξl

� el1H1 t − ζ l1( 􏼁 + el2H2 t − ζ l2( 􏼁 + · · · + ellHl t − ζ ll( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where ξi ∈ (0, 1)(i � 1, 2, ..., l), the initial value
Hi(t) � ωi(t) ∈ C[−max

i,h
ζ ih, 0], t ∈ [−max

i,h
ζ il, 0], and

i, h � 1, 2, ..., l. Denote

Δ(η) �

ηξ1 − e11e
− ηζ11 −e12e

− ηζ12 · · · −e1le
− ηζ1l

−e21e
− ηζ12 ηξ2 − e22e

− ηζ22 · · · −e2le
− ηζ2l

⋮ ⋮ ⋱ ⋮

−el1e
− ηζ l1 −el2e

− ηζ l2 · · · ηξl − elle
− ηζ ll

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

9en, the zero solution of system (6) is said to be as-
ymptotically stable in Lyapunov sense provided that every
root of det(Δ(η)) � 0 owns negative real parts.

3. Exploration on Delay-Induced
Hopf Bifurcation

In this part, by discussing the characteristic equation of
system (2) and setting the time delay as bifurcation pa-
rameter, we will establish the delay-independent sufficient
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condition to guarantee the stability and the onset of Hopf
bifurcation for system (2).

In view of (H1), one can easily know that system (2)
owns the unique equilibrium U(0, 0, 0, 0, 0, 0). .e linear

system of system (2) at the zero equilibriumU(0, 0, 0, 0, 0, 0)

owns the expression:

d
ξ
u1(t)

dt
ξ � −ku1(t) + b11 u4(t − ζ)( 􏼁 + b12 u5(t − ζ)( 􏼁 + b13 u6(t − ζ)( 􏼁,

d
ξ
u2(t)

dt
ξ � −ku2(t) + b21 u5(t − ζ)( 􏼁 + b22 u6(t − ζ)( 􏼁 + b23 u4(t − ζ)( 􏼁,

d
ξ
u3(t)

dt
ξ � −ku3(t) + b31 u6(t − ζ)( 􏼁 + b32 u4(t − ζ)( 􏼁 + b33 u5(t − ζ)( 􏼁,

d
ξ
u4(t)

dt
ξ � −ku4(t) + b41 u1(t − ζ)( 􏼁 + b42 u2(t − ζ)( 􏼁 + b43 u3(t − ζ)( 􏼁,

d
ξ
u5(t)

dt
ξ � −ku5(t) + b51 u2(t − ζ)( 􏼁 + b52 u3(t − ζ)( 􏼁 + b53 u1(t − ζ)( 􏼁,

d
ξ
u6(t)

dt
ξ � −ku6(t) + b61 u3(t − ζ)( 􏼁 + b62 u1(t − ζ)( 􏼁 + b63 u2(t − ζ)( 􏼁,
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(8)

where bi1 � ai1hi1′ (0), bi2 � ai2l′ (0), bi3 � ai3l′(0),

i � 1, 2, 3, 4, 5, 6. .e characteristic equation for equation (8)
owns the expression:

det

s
ξ

+ k 0 0 −b11e
− sζ

−b12e
− sζ

−b13e
− sζ

0 s
ξ

+ k 0 −b23e
− sη

−b21e
− sζ

−b22e
− sζ

0 0 s
ξ

+ k −b32e
− sη

−b33e
− sζ

−b31e
− sζ

−b41e
− sζ

−b42e
− sζ

−b43e
− sζ

s
ξ

+ k 0 0

−b53e
− sζ

−b51e
− sζ

−b52e
− sζ 0 s

ξ
+ k 0

−b62e
− sζ

−b63e
− sζ

−b61e
− sζ 0 0 s

ξ
+ k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0. (9)

By equation (9), we get U1(s) + U2(s)e
− 2sζ

+ U3(s)e
− 4sζ

+ U4(s)e
− 6sζ

� 0, (10)
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where

U1(s) � s
6ξ

+ μ5s
5ξ

+ μ4s
4ξ

+ μ3s
3ξ

+ μ2s
2ξ

+ μ1s
ξ

+ μ0,

U2(s) � ]4s
4ξ

+ ]3s
3ξ

+ ]2s
2ξ

+ ]1s
ξ

+ ]0,

U3(s) � χ2s
2ξ

+ χ1s
ξ

+ χ0,

U4(s) � ρ0 � −c11c22c33,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

where

μ0 � k
6

− k
4

c13c31 + c12c21 + c23c32( 􏼁 − k
3

c11c23c31 + c13c21c32( 􏼁,

μ1 � 6k
2

− 4k
3

c13c31 + c12c21 + c23c32( 􏼁 − 3k
2

c11c23c31 + c13c21c32( 􏼁

+2k c33 c11 + c22( 􏼁 + c11c22􏼂 􏼃,

μ2 � 9k
4

− 6k
2

c13c31 + c12c21 + c23c32( 􏼁 − 3k c11c23c31 + c13c21c32( 􏼁

+c33 c11 + c22( 􏼁 + c11c22,

μ3 � 26k
3

− 4k c13c31 + c12c21 + c23c32( 􏼁 − c11c23c31 + c13c21c32( 􏼁,

μ4 � 15k
2

− c13c31 + c12c21 + c23c32( 􏼁,

μ5 � 6k,

]0 � k
2

c11c31c22 + c12c21c33 + c11c23c32( 􏼁 − k
4

c11 + c22 + c33( 􏼁,

]1 � 2k c11c31c22 + c12c21c33 + c11c23c32( 􏼁 − 4k
3

c11 + c22 + c33( 􏼁,

]2 � c11c31c22 + c12c21c33 + c11c23c32 − 6k
2
,

]3 � −4k c11 + c22 + c33( 􏼁,

]4 � − c11 + c22 + c33( 􏼁,

χ0 � k
2

c33 c11 + c22( 􏼁 + c11c22􏼂 􏼃,

χ1 � 2k c33 c11 + c22( 􏼁 + c11c22􏼂 􏼃,

χ2 � c33 c11 + c22( 􏼁 + c11c22,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where

c11 � b41b11 + b42b23 + b43b32,

c12 � b41b12 + b42b21 + b43b33,

c13 � b41b13 + b42b22 + b43b31,

c21 � b53b11 + b51b23 + b52b32,

c22 � b53b12 + b51b21 + b52b33,

c23 � b53b13 + b51b22 + b52b31,

c31 � b62b11 + b63b23 + b61b32,

c32 � b62b12 + b63b21 + b61b33,

c33 � b62b13 + b63b22 + b61b31.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

By virtue of (10), we get

U1(s)e
4sζ

+ U2(s)e
2sζ

+ U3(s) + U4(s)e
− 2sζ

� 0. (14)

Assume that s � iϑ � ϑ(cos(π/2) + i sin(π/2)) is the root
of (14) and denote the real parts and imaginary parts of
Uj(s)(j � 1, 2, 3, 4) by UjR(s) and UjI(s)(j � 1, 2, 3, 4),
respectively. It follows from (14) that

U1R(ϑ)cos 4ϑζ − U1I(ϑ)sin 4ϑζ + U2R(ϑ) + U4R(ϑ)􏼂 􏼃cos 2ϑζ

+ U4I(ϑ) − U2I(ϑ)􏼂 􏼃sin 2ϑζ � −U3R(ϑ),

U1I(ϑ)cos 4ϑζ + U1R(ϑ)sin 4ϑζ + U2I(ϑ) + U4I(ϑ)􏼂 􏼃cos 2ϑζ

+ U2R(ϑ) − U4R(ϑ)􏼂 􏼃sin 2 ϑζ � −U3I(ϑ),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)
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where

U1R(ϑ) � ϑ6ξ cos 3 ξπ + μ5ϑ
5ξ cos

5ξπ
2

+ μ4ϑ
4ξ cos 2 ξπ

+ μ3ϑ
3ξ cos

3ξπ
2

+ μ2ϑ
2ξ cos ξπ + μ1ϑ

ξ cos
ξπ
2

+ μ0,

U1I(ϑ) � ϑ6ξ sin 3 ξπ + μ5ϑ
5ξ sin

5ξπ
2

+ μ4ϑ
4ξ sin 2 ξπ

+ μ3ϑ
3ξ sin

3ξπ
2

+ μ2ϑ
2ξ sin ξπ + μ1ϑ

ξ sin
ξπ
2

,

U2R(ϑ) � ]4ϑ
4ξ cos 2 ξπ + ]3ϑ

3ξ cos
3ξπ
2

+ ]2ϑ
2ξ cos ξπ + ]1ϑ

ξ cos
ξπ
2

+ ]0,

U2I(ϑ) � ]4ϑ
4ξ sin 2 ξπ + ]3ϑ

3ξ sin
3ξπ
2

+ ]2ϑ
2ξ sin ξπ + ]1ϑ

ξ sin
ξπ
2

,

U3R(ϑ) � χ2ϑ
2ξ cos ξπ + χ1ϑ

ξ cos
ξπ
2

+ χ0,

U3I(ϑ) � χ2ϑ
2ξ sin ξπ + χ1ϑ

ξ sin
ξπ
2

,

U4R(ϑ) � ρ0,

U4I(ϑ) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

In view of (16), we can rewrite (15) as

U1R(ϑ)cos 4 ϑζ − U1I(ϑ)sin 4 ϑζ + U2R(ϑ) + U4R(ϑ)􏼂 􏼃cos 2 ϑζ − U2I(ϑ)sin 2 ϑζ � −U3R(ϑ),

U1I(ϑ)cos 4 ϑζ + U1R(ϑ)sin 4 ϑζ + U2I(ϑ) + cos 2 ϑζ + U2R(ϑ) − U4R(ϑ)􏼂 􏼃sin 2 ϑζ � −U3I(ϑ),

⎧⎨

⎩ (17)

According to sin 2 ϑζ � ±
����������
1 − cos22ϑζ

􏽰
, we are to deal

with two cases.
(i) If sin 2 ϑζ �

����������
1 − cos22ϑζ

􏽰
, it follows from the first

equation of (17) that

2U1R(ϑ) 2 cos22ϑζ − 1􏼐 􏼑 − 2U1I(ϑ)cos 2 ϑζ
����������

1 − cos22ϑζ
􏽱

+ U2R(ϑ) + U4R(ϑ)􏼂 􏼃cos 2 ϑζ − U2I(ϑ)

����������

1 − cos22ϑζ
􏽱

� −U3R(ϑ),

(18)

which leads to
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2U1R(ϑ) 2 cos22ϑζ − 1􏼐 􏼑 + U2R(ϑ) + U4R(ϑ)􏼂 􏼃cos 2 ϑζ + U3R(ϑ)􏽨 􏽩
2

− 2U1I(ϑ)cos 2 ϑζ − U2I(ϑ)􏼂 􏼃
2 1 − cos22ϑζ􏼐 􏼑.

(19)

.en, one gets

ρ1cos
42ϑζ + ρ2cos

32ϑζ + ρ3cos
22ϑζ + ρ4 cos 2 ϑζ + ρ5 � 0,

(20)

where

ρ1 � 16U2
1R(ϑ) + 4U2

1I(ϑ),

ρ2 � 8U1R(ϑ) U2R(ϑ) + U4R(ϑ)( 􏼁 + 4U1I(ϑ)U2I(ϑ),

ρ3 � U2R(ϑ) + U4R(ϑ)( 􏼁
2

+ 8U1R(ϑ) U3R(ϑ) − 2U1R(ϑ)( 􏼁 + U
2
2I(ϑ) − 4U2

1R(ϑ),

ρ4 � 2 U2R(ϑ) + U4R(ϑ)( 􏼁 U3R(ϑ) − U1R(ϑ)( 􏼁 − 4U1I(ϑ)U2I(ϑ),

ρ5 � U3R(ϑ) − 2U1R(ϑ)( 􏼁
2

− U
2
2I(ϑ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Suppose that cos 2 ϑζ � η and set

h(η) � η4 +
ρ2
ρ1
η3 +

ρ3
ρ1
η2 +

ρ4
ρ1

η +
ρ5
ρ1

, (22)

then

dh(η)

dη
� 4η3 +

3ρ2
ρ1

η2 +
2ρ3
ρ1

η +
ρ4
ρ1

. (23)

Let

4η3 +
3ρ2
ρ1

η2 +
2ρ3
ρ1

η +
ρ4
ρ1

� 0. (24)

Assume that y � η + (ρ2/4ρ1), then (24) can be
expressed as

y
3

+ r1y + r2 � 0, (25)

where

r1 �
ρ3
2ρ1

−
3ρ22
16ρ21

,

r2 �
ρ32
32ρ31

−
ρ2ρ3
8ρ21

+
ρ4
4ρ1

.

(26)

Denote

δ1 �
r2
2

􏼒 􏼓
2

+
r1
3

􏼒 􏼓
3
,

δ2 �
−1 + i

�
3

√

2
.

(27)

By (25), one gets

y1 �

���������

−
r2

2
+

��

δ1
􏽱

3

􏽲

+

���������

−
r2

2
−

��

δ1
􏽱

3

􏽲

,

y2 �

���������

−
r2

2
+

��

δ1
􏽱

3

􏽲

δ2 +

���������

−
r2

2
−

��

δ1
􏽱

3

􏽲

δ22,

y3 �

���������

−
r2

2
+

��

δ1
􏽱

3

􏽲

δ22 +

���������

−
r2

2
−

��

δ1
􏽱

3

􏽲

δ2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

According to the analysis above, one can obtain the
expression of cos 2 ϑζ . .en, one can derive the expression
of sin 2 ϑζ. Here, we suppose that

cos 2 ϑζ � φ1(ϑ),

sin 2 ϑζ � φ2(ϑ).
(29)

Hence,

φ2
1(ϑ) + φ2

2(ϑ) � 1. (30)

By virtue of computer software, one can easily derive the
root (say ϑ) of (30). .us, one has

ζ1l
�

1
2ϑ

arccosφ1(ϑ) + 2lπ􏼂 􏼃, l � 0, 1, 2, . . . . (31)

(ii) If sin 2 ϑζ � −
����������
1 − cos22ϑζ

􏽰
, by means of the same

method, one can also derive

cos 2 ϑζ � ψ1(ϑ),

sin 2 ϑζ � ψ2(ϑ).
(32)

.en,
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ψ2
1(ϑ) + ψ2

2(ϑ) � 1. (33)

By virtue of computer software, we can derive the root
(say ϑ) of (33). .en,

ζ2k
�

1
2ϑ

arccos ψ1(ϑ) + 2kπ􏼂 􏼃, k � 0, 1, 2, . . . . (34)

Define

ζ0 � min ζ1l
, ζ2l

􏽮 􏽯, l � 0, 1, 2, . . . . (35)

In the sequel, we are to verify the transversality condition
to ensure the onset of Hopf bifurcation. .e following
hypothesis is needed. (H2) A∗RB

∗
R + A∗IB

∗
I > 0, where

A
∗
R � 6ξϑ6ξ−1

0 cos
(6ξ − 1)π

2
+ 5ξμ5ϑ

5ξ−1
0 cos

(5ξ − 1)π
2

+ 4ξμ4ϑ
4ξ−1
0 × cos

(4ξ − 1)π
2

+ 3ξμ3ϑ
3ξ−1
0 cos

(3ξ − 1)π
2

􏼢

+ 2ξμ2ϑ
2ξ−1
0 cos

(2ξ − 1)π
2

+ ξμ1ϑ
ξ−1
0 cos

(ξ − 1)π
2

􏼣

+ 4ξ]4ϑ
4ξ−1
0 cos

(4ξ − 1)π
2

+ 3ξ]3ϑ
3ξ−1
0 cos

(3ξ − 1)π
2

+ 2ξ]2ϑ
2ξ−1
0 cos

(2ξ − 1)π
2

+ ξ]1ϑ
ξ−1
0 cos

(ξ − 1)π
2

􏼢 􏼣cos 2ϑ0ζ0

+ 4ξ]4ϑ
4ξ−1
0 sin

(4ξ − 1)π
2

+ 3ξ]3ϑ
3ξ−1
0 sin

(3ξ − 1)π
2

+ 2ξ]2ϑ
2ξ−1
0 sin

(2ξ − 1)π
2

+ ξ]1ϑ
ξ−1
0 sin

(ξ − 1)π
2

􏼢 􏼣sin 2ϑ0ζ0

+ 2ξχ2ϑ
2ξ−1
0 cos

(2ξ − 1)π
2

+ ξχ1ϑ
ξ−1
0 cos

(ξ − 1)π
2

􏼢 􏼣cos 4ϑ0ζ0 + 2ξχ2ϑ
2ξ−1
0 sin

(2ξ − 1)π
2

+ ξχ1ϑ
ξ−1
0 sin

(ξ − 1)π
2

􏼢 􏼣sin 4ϑ0ζ0,

A
∗
I � 6ξϑ6ξ−1

0 sin
(6ξ − 1)π

2
+ 5ξμ5ϑ

5ξ−1
0 sin

(5ξ − 1)π
2

+ 4ξμ4ϑ
4ξ−1
0 × sin

(4ξ − 1)π
2

+ 3ξμ3ϑ
3ξ−1
0 sin

(3ξ − 1)π
2

􏼢

+ 2ξμ2ϑ
2ξ−1
0 sin

(2ξ − 1)π
2

+ ξμ1ϑ
ξ−1
0 sin

(ξ − 1)π
2

􏼣

+ 4ξ]4ϑ
4ξ−1
0 cos

(4ξ − 1)π
2

+ 3ξ]3ϑ
3ξ−1
0 cos

(3ξ − 1)π
2

+ 2ξ]2ϑ
2ξ−1
0 cos

(2ξ − 1)π
2

+ ξ]1ϑ
ξ−1
0 cos

(ξ − 1)π
2

􏼢 􏼣sin 2ϑ0ζ0

− 4ξ]4ϑ
4ξ−1
0 sin

(4ξ − 1)π
2

+ 3ξ]3ϑ
3ξ−1
0 sin

(3ξ − 1)π
2

+ 2ξ]2ϑ
2ξ−1
0 sin

(2ξ − 1)π
2

+ ξ]1ϑ
ξ−1
0 sin

(ξ − 1)π
2

􏼢 􏼣cos 2ϑ0ζ0

− 2ξχ2ϑ
2ξ−1
0 cos

(2ξ − 1)π
2

+ ξχ1ϑ
ξ−1
0 cos

(ξ − 1)π
2

􏼢 􏼣sin 4ϑ0ζ0 + 2ξχ2ϑ
2ξ−1
0 sin

(2ξ − 1)π
2

+ ξχ1ϑ
ξ−1
0 sin

(ξ − 1)π
2

􏼢 􏼣cos 4ϑ0ζ0,

B
∗
R � 2ϑ0 ]4ϑ

4ξ
0 cos 2 ξπ + ]3ϑ

3ξ
0 cos

3ξπ
2

+ ]2ϑ
2ξ
0 cos ξπ + ]1ϑ

ξ
0 cos

ξπ
2

+ ]0􏼠 􏼡sin 2ϑ0ζ0

+ 2ϑ0 ]4ϑ
4ξ
0 sin 2 ξπ + ]3ϑ

3ξ
0 sin

3ξπ
2

+ ]2ϑ
2ξ
0 sin ξπ + ]1ϑ

ξ
0 sin

ξπ
2

+ ]0􏼠 􏼡cos 2ϑ0ζ0,

B
∗
I � 2ϑ0 ]4ϑ

4ξ
0 cos 2 ξπ + ]3ϑ

3ξ
0 cos

3ξπ
2

+ ]2ϑ
2ξ
0 cos ξπ + ]1ϑ

ξ
0 cos

ξπ
2

+ ]0􏼠 􏼡cos 2ϑ0ζ0

+ 2ϑ0 ]4ϑ
4ξ
0 sin 2 ξπ + ]3ϑ

3ξ
0 sin

3ξπ
2

+ ]2ϑ
2ξ
0 sin ξπ + ]1ϑ

ξ
0 sin

ξπ
2

+ ]0􏼠 􏼡sin 2ϑ0ζ0.

(36)
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Lemma 3. Assume that s(ζ) � ϕ1(ζ) + iϕ2(ζ) is the root of
(10) at ζ � ζ0 and ϕ1(ζ0) � 0,ϕ2(ζ0) � ϑ0, then
Re[(ds/dζ)]ζ�ζ0 ,ϑ�ϑ0 > 0.

Proof. By virtue of (10), we get

dU1(s)

dζ
+

dU2(s)

dζ
e

− 2sζ
− 2e

− 2sζ ds

dζ
ζ + s􏼠 􏼡U2(s) +

dU3(s)

dζ
e

− 4sζ
,

− 4e
− 4sζ ds

dζ
ζ + s􏼠 􏼡U3(s) +

dU4(s)

dζ
e

− 6sζ
− 6e

− 6sζ ds

dζ
ζ + s􏼠 􏼡U4(s) � 0.

(37)

Since

dU1(s)

dζ
� 6ξs

6ξ− 1
+ 5ξμ5s

5ξ− 1
+ 4ξμ4s

4ξ− 1
+ 3ξμ3s

3ξ− 1
+ 2ξμ2s

2ξ− 1
+ ξμ1s

ξ− 1
􏽨 􏽩

ds

dζ
,

dU2(s)

dζ
� 4ξ]4s

4ξ− 1
+ 3ξ]3s

3ξ− 1
+ 2ξ]2s

2ξ− 1
+ ξ]1s

ξ− 1
􏽨 􏽩

ds

dξ
,

dU3(s)

dζ
� 2ξχ2s

2ξ− 1
+ ξχ1s

ξ− 1
􏽨 􏽩

ds

dζ
,

dU4(s)

dζ
� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

then by (37) and (38), one gets

ds

dζ
􏼢 􏼣

− 1

�
A(s)

B(s)
−
ζ
s
, (39)

where

A(s) � 6ξs
6ξ− 1

+ 5ξμ5s
5ξ− 1

+ 4ξμ4s
4ξ− 1

+ 3ξμ3s
3ξ− 1

+ 2ξμ2s
2ξ− 1

+ ξμ1s
ξ− 1

+ 4ξ]4s
4ξ− 1

+ 3ξ]3s
3ξ− 1

+ 2ξ]2s
2ξ− 1

+ ξ]1s
ξ− 1

􏼐 􏼑e
− 2sζ

+ 2ξχ2s
2ξ− 1

+ ξχ1s
ξ− 1

􏽨 􏽩e
− 4sζ

,

B(s) � 2se
− 2sζ ]4s

4ξ
+ ]3s

3ξ
+ ]2s

2ξ
+ ]1s

ξ
+ ]0􏼐 􏼑

+ 4s χ2s
2ξ

+ χ1s
ξ

+ χ0􏼐 􏼑e
− 4sζ

+ 6sρ0e
− 6sζ

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)
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It follows from (H2) that

Re
ds

dζ
􏼢 􏼣

− 1⎧⎨

⎩

⎫⎬

⎭|ζ�ζ0 ,ϑ�ϑ0 �
A
∗
RB
∗
R + A

∗
IB
∗
I

A
∗
R( 􏼁

2
+ B
∗
I( 􏼁

2 > 0. (41)

.is completes the proof.
Let

τ1 � μ5,

τ2 � μ4 + ]4,

τ3 � μ3 + ]3,

τ4 � μ2 + ]2 + χ2,

τ5 � μ1 + ]1 + χ1,

τ6 � μ0 + ]0 + χ0 + ρ0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

Next, the following assumption is needed:
(H3) the following inequalities are true:

G1 � τ1 > 0,

G2 � det
τ1 1

τ3 τ2
⎡⎢⎢⎣ ⎤⎥⎥⎦> 0,

G3 � det

τ1 1 0

τ3 τ2 τ1

τ5 τ4 τ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0,

G4 � det

τ1 1 0 0

τ3 τ2 τ1 1

τ5 τ4 τ3 τ2

0 τ6 τ5 τ4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0,

G5 � det

τ1 1 0 0 0

τ3 τ2 τ1 1 0

τ5 τ4 τ3 τ2 τ1

0 τ6 τ5 τ4 τ3

0 0 0 τ6 τ5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0,

G6 � τ6 > 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

Lemma 4. If ζ � 0 and (H3) is fulfilled, then system (2) is
locally asymptotically stable.

Proof. Obviously, (10) with ζ � 0 owns the following
expression:

U1(s) + U2(s) + U3(s) + U4(s) � 0. (44)

Namely,

λ6 + τ1λ
5

+ τ2λ
4

+ τ3λ
3

+ τ4λ
2

+ τ5λ + τ6 � 0. (45)

By means of (H3), one knows that every root λi of (45)
satisfies |arg(λi)|> (ξπ/2)(i � 1, 2, ..., 6). So, we can obtain
that Lemma 3 holds. .is ends the proof.

According to the study above, the following result is
built.

Theorem 1. If (H1)–(H3) hold true, then the equilibrium
point U(0, 0, 0, 0, 0, 0) of system (2) is locally asymptotically
stable proved that ζ ∈ [0, ζ0) and a Hopf bifurcation is to arise
around U(0, 0, 0, 0, 0, 0) if ζ � ζ0.

Remark 1. .eorem 1 shows that ζ0 is a critical value which
determines whether system (2) is stable or unstable. If ζ < ζ0,
then system (2) is stable, and if ζ > ζ0, then system (2) be-
comes unstable and a family of periodic solutions will appear
near U(0, 0, 0, 0, 0, 0).

Remark 2. In [3, 4], Cheng et al. studied the stability and
Hopf bifurcation of integer-order delayed neural networks.
.ey obtain the characteristic equation by applying integer-
order differential equation theory and determinant knowl-
edge. In this work, we investigate the stability and Hopf
bifurcation of fractional-order delayed neural networks. We
obtain the characteristic equation by applying fractional-
order differential equation theory, Laplace transform, and
determinant knowledge. .e investigation on the distribu-
tion of the characteristic roots for characteristic equation of
fractional-order neural networks is more difficult that of
integer-order case. From this viewpoint, we think that our
work replenishes and improves the earlier works of Cheng
et al. [3, 4].

4. Software Simulation Plots

Give the fractional-order neural network system:
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d
ξ
u1(t)

dt
ξ � −u1(t) + 0.8tanh u4(t − ζ)( 􏼁 + 0.8tanh u5(t − ζ)( 􏼁 − 0.9tanh u6(t − ζ)( 􏼁,

d
ξ
u2(t)

dt
ξ � −u2(t) + 0.5tanh u5(t − ζ)( 􏼁 − 0.2tanh u6(t − ζ)( 􏼁 + 0.5tanh u4(t − ζ)( 􏼁,

d
ξ
u3(t)

dt
ξ � −u3(t) − 0.5tanh u6(t − ζ)( 􏼁 − 0.5tanh u4(t − ζ)( 􏼁 + 0.8tanh u5(t − ζ)( 􏼁,

d
ξ
u4(t)

dt
ξ � −u4(t) + 0.2tanh u1(t − ζ)( 􏼁 + 0.6tanh u2(t − ζ)( 􏼁 − 0.8tanh u3(t − ζ)( 􏼁,

d
ξ
u5(t)

dt
ξ � −u5(t) − 0.9tanh u2(t − ζ)( 􏼁 − 0.5tanh u3(t − ζ)( 􏼁 + 0.7tanh u1(t − ζ)( 􏼁,

d
ξ
u6(t)

dt
ξ � −u6(t) + 0.2tanh u3(t − ζ)( 􏼁 − 1.2tanh u1(t − ζ)( 􏼁 − 0.9tanh u2(t − ζ)( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

Apparently, neural network system (46) owns the unique
zero equilibrium point U(0, 0, 0, 0, 0, 0). Let ξ � 0.94. By
means of computer software, one can derive ζ0 � 0.75 and
ϑ0 � 2.0922. By virtue of algebraic computation with
computer, one can verify that the assumptions (H1)–(H3)

of .eorem 1 hold. .en, one can conclude that the zero
equilibrium pointU(0, 0, 0, 0, 0, 0) of neural network system
(46) is locally asymptotically stable provided that
ζ ∈ [0, 0.75). To illustrate this fact, we carry out computer
simulations. We carry out numerical discretizations of
model (46) by Adams–Bashforth–Moulton numerical al-
gorithm. .e integration algorithm starts with the solutions
of system (46) in terms of R-L integral. .e implicit dis-
cretization approach is applied to construct the tactics. We
select ζ � 0.67< ζ0 � 0.75. .e computer simulation figures
are presented in Figure 1 which shows the locally asymp-
totically stable behavior of the neural network system (46).
When ζ passes through the critical value ζ0 � 0.75, then the
delay-induced Hopf bifurcation of neural network system

(46) will arise in the vicinity of U(0, 0, 0, 0, 0, 0). To explain
this fact, we select ζ � 0.9> ζ0 � 0.75. .e computer sim-
ulation figures are presented in Figure 2 which shows the
Hopf bifurcation phenomenon of neural network system
(46). .e initial conditions are (0.09, 0.038, 0.02,

0.02, −0.039, 0.08) and the time step is 0.0035 and the time of
simulation is 250 seconds. To display the Hopf bifurcation
phenomenon of neural network system (46) intuitively, we
also draw the bifurcation plots which can be seen in
Figures 3–8. From Figures 3–8, one can easily know that the
bifurcation value of neural network system is 0.75.

Remark 3. In Figure 1, the subfigures 1–10 stand for the
relation of the variable in horizontal axis and vertical axis.
.e subfigures 11–26 stand for the relation of the variable in
horizontal axis, vertical axis, and vertical axis. In Figure 2,
the subfigures 1–10 stand for the relation of the variable in
horizontal axis and vertical axis. .e subfigures 11–26 stand
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Figure 1: Stability property for neural network model (46) involving ζ � 0.65< ζ0 � 0.75.
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Figure 2: Hopf bifurcation for neural network model (46) involving ζ � 0.9> ζ0 � 0.75.
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for the relation of the variable in horizontal axis, vertical axis,
and vertical axis.

5. Conclusions

Delay-induced Hopf bifurcation phenomenon is a signifi-
cant dynamical behavior in delayed dynamical models. In
particular, delay-induced Hopf bifurcation in neural net-
work area has attracted much attention from good many
scholars in the whole world. During the past decades, some
researchers have investigated the Hopf bifurcation problem
of fractional-order delayed neural networks. However, the
major works are only concerned with the low-dimensional
delayed fractional-order delayed neural networks; few works
focus on the high-dimensional fractional-order ones. In this
work, we mainly focus on the stability problem and the
appearance of Hopf bifurcation of high-dimensional frac-
tional-order delayed BAM neural network systems. .e

study shows that when the time delay keeps in a suitable
range, the neural network systems will remain a stable state
and if the time delay passes the critical value, then a Hopf
bifurcation will take place around the equilibrium point of
the involved neural networks. .us, the time delay is a
momentous factor that affects the stability and Hopf bi-
furcation for the investigated neural networks. In the end,
the software simulation results and bifurcation diagrams
efficaciously illustrate the effectiveness of the crucial ana-
lytical conclusions.
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[35] W. Deng, C. Li, and J. Lü, “Stability analysis of linear frac-
tional differential system with multiple time delays,” Non-
linear Dynamics, vol. 48, no. 4, pp. 409–416, 2007.

20 Complexity


