
Research Article
EMM-CLODS: An Effective Microcluster and Minimal Pruning
CLustering-Based Technique for Detecting Outliers in
Data Streams

Mohamed Jaward Bah ,1 Hongzhi Wang ,2 Li-Hui Zhao ,3 Ji Zhang ,4 and Jie Xiao5

1Zhejiang Lab, Hangzhou, China
2Harbin Institute of Technology, Harbin, China
3North University of China, Taiyuan, China
4University of Southern Queensland, Toowoomba, Australia
5Hangzhou Yugu Technology Co., Ltd., Hangzhou, China

Correspondence should be addressed to Ji Zhang; zhangji77@gmail.com

Received 7 July 2021; Revised 10 August 2021; Accepted 23 August 2021; Published 13 September 2021

Academic Editor: Fei Xiong

Copyright © 2021Mohamed Jaward Bah et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Detecting outliers in data streams is a challenging problem since, in a data stream scenario, scanning the data multiple times is
unfeasible, and the incoming streaming data keep evolving. Over the years, a common approach to outlier detection is using
clustering-based methods, but these methods have inherent challenges and drawbacks. +ese include to effectively cluster sparse
data points which has to do with the quality of clustering methods, dealing with continuous fast-incoming data streams, high
memory and time consumption, and lack of high outlier detection accuracy. +is paper aims at proposing an effective clustering-
based approach to detect outliers in evolving data streams. We propose a new method called Effective Microcluster and Minimal
pruning CLustering-based method for Outlier detection in Data Streams (EMM-CLODS). It is a clustering-based outlier detection
approach that detects outliers in evolving data streams by first applying microclustering technique to cluster dense data points and
effectively handle objects within a sliding window according to the relevance of their status to their respective neighbors or
position.+e analysis from our experimental studies on both synthetic and real-world datasets shows that the technique performs
well with minimal memory and time consumption when compared to the other baseline algorithms, making it a very promising
technique in dealing with outlier detection problems in data streams.

1. Introduction

In the current era, the need to detect abnormal behavior to
reveal salient facts, observations, and realizing accurate
predictions of data is extremely significant. Detecting out-
liers is one such important data mining task that aims at
detecting objects that deviate from the expected pattern of
the normal data. +e process of detecting outliers is chal-
lenging due to the advancement in the digital age. For in-
stance, with the revolution of data from traditional batch
data, we have witnessed the advent of a large volume of data
that is generated continuously at high speed and dynami-
cally. +ese kinds of data are known as data streams and are

generated by many applications [1–3]. In contrast to tra-
ditional datasets, because of the nature of the data, it is not
feasible to save in memory the whole data stream or run the
data through multiple scans. +is is because the data are
massive and unbounded, have a varying rate, and continue
to evolve.

A significant number of approaches have been proposed
to detect outliers in data streams [8–11]. Among the different
categories of proposed outlier detectionmethods, clustering-
based approaches have shown to be popular in static data but
yet one of the most challenging to adopt for outlier detection
tasks in data streams. Although they have shown to be ef-
ficient for some outlier detection tasks, they lead to low

Hindawi
Complexity
Volume 2021, Article ID 9178461, 20 pages
https://doi.org/10.1155/2021/9178461

mailto:zhangji77@gmail.com
https://orcid.org/0000-0002-7335-602X
https://orcid.org/0000-0002-7521-2871
https://orcid.org/0000-0003-3861-1352
https://orcid.org/0000-0001-7167-6970
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9178461

computational cost and high scalability in high-dimensional
data [5, 12]. However, most of the prevailing data stream
clustering approaches suffer from different drawbacks. +ey
can be improved when we consider the spectrum of effec-
tiveness and efficiency, for instance, to deal with the con-
tinuous fast-incoming data streams, higher computational
demand in terms of its memory and time, the cluster quality,
and the outlier detection rate. +e process of clustering and
detecting outliers in data streams is complicating since the
clustering techniques often involve several parameters and
operate in low- and high-dimensional spaces, constrained
with excessive distance-based computation of object
neighbors, noise, and so on. For this reason, clustering-based
approach has varying performance for different application
domains and data types. It is therefore imperative to design
an effective method that will holistically address the issues
and produce stable performance in detecting the outliers.

In spite of clustering’s occasional challenges and caveats,
it is still another good alternative and promising solution for
detecting outliers. +e advantage of clustering is that it
allows for the use of limited amounts of time and memory,
which is necessary when processing data streams. +is is
because clustering is the act of grouping elements using sets
that provide the capability of grouping items that are similar
to each other that curbs the need of redundant processing
and over calculations. Clustering methods offer online and
offline process support, which is usually used for data stream
applications and is also flexible in adapting to the evolving
nature of the data.

In this paper, we propose a new microclustering and
minimal pruning clustering-based unsupervised outlier
detection scheme to detect outliers in data streams while
simultaneously addressing the mentioned challenges. +e
proposed approach involves different stages to adapt to the
dynamic changes of data distribution that aims at elimi-
nating the limitations of previously proposed methods. +e
newly propose method is called Effective Microcluster and
Minimal pruning CLustering-based method for Outlier
detection in Data Streams (EMM-CLODS), which is a
clustering-based outlier detection approach. We call it
CLODS for short and use this abbreviation instead of EMM-
CLODS throughout the paper. It detects outliers from
evolving data streams by first applying the microclustering
technique to cluster dense data points. It then effectively
handles objects within a sliding window according to the
relevance of their status to their respective neighbors or
position through minimal pruning technique.

In our data stream scenario, where the size of the dataset
is potentially boundless, we process the data over a fixed
period to reduce the complexity of the outlier detection task.
When new incoming data points arrive, the microcluster
technique is applied, which identifies objects that are more
analogous to each other and that meet the fundamental
prerequisite of the clusteringmethods.+emethods scan the
data once and adapt to the time changes as the streaming
data evolve. It constantly and periodically updates incoming
data, and the results are obtained. Finally, the CLODS re-
ports key insights from these results to determine whether
they are outliers or inliers. +e advantages of the technique

are that it can effectively save time and memory, thanks to
the microclustering technique and minimal pruning. It
removes the need to compute every data point in and out of
the cluster and store every data point in memory. In
summary, the major contributions of this work are as
follows:

(i) We propose the CLODS, a new technique based on
microclustering andminimal pruning of data points
outside the clusters, to solve the problem of
detecting outliers in continuous evolving data
streams.

(ii) We propose the concept of priority handling of
evolving objects outside the clusters to minimize the
memory and time consumption during the
updating phase according to the relevance of their
status to their respective neighbors or position.

(iii) Our propose method can effectively optimize and
solve the problems and challenges of time and
memory constraints while maintaining its accuracy
for detecting outliers in data streams.

(iv) We demonstrate through an extensive experiment
on some benchmark datasets the effectiveness of our
method against some other methods used for the
outlier detection process in data streams.

+e rest of the paper is organized as follows: in Sections 2
and 3, we present the related work and problem formulation,
respectively. In Section 4, we present in details the method we
propose. In Section 5, we present the experimental studies
including the results and discussion. Finally, in Section 6, we
present the conclusion of the paper.

2. Related Work

Detecting outliers is a well-known domain in the data mining
community, and it has been applied in a wide range of ap-
plication areas [13, 14] and other domains such as community
detection [15, 16]. It has been studied extensively [17–19]. In a
recent survey [11], we classified outlier detection methods into
diverse categories and have proposed effective methods among
these categories to detect outliers in data streams [8, 11]. In
progress to this study series, the clustering-based category has
open research gaps and challenges. Proposing solutions and
improving these methods will greatly contribute to the general
body of outlier detection methods.

+e clustering approach is an unsupervised data mining
method that groups similar dense data points. Several
methods using clustering techniques and its variant ap-
proaches have been proposed for outlier detection tasks.
However, some earlier proposed clustering methods suffer
from drawbacks such as the buffering of all data points in
memory for future handling or, in some cases, not con-
sidering data points that often leads to poor clustering.
+ere are a significant number of these methods concen-
trated on both static data and streaming data types [20, 21].
+ese methods mostly adopt the two-phase scheme: the
online and offline phase. +e majority of the earlier pro-
posed method for stream data clustering deals with static

2 Complexity

clustering that is in a continuous form.One shortcoming of this
kind of approach is that recent and outdated data are handled
the same way. Several moving windowmodels are proposed to
solve this issue. For evolving data streams, Toshniwal and
Yokita et al. [20] proposed a framework using simple k-means
and the attribute weight to detect outliers, while Cao et al. [22]
proposed a technique related to density-based clustering for
evolving data streams. In their method, the incoming data are
selected depending on the distance between their centers to
either the outlier or potential core microcluster. In this case,
with an increasing number of outliers, the clustering accuracy
becomes a problem. +erefore, Liu et al. [23] proposed a new
technique to address this drawback. Although they tried to
address the issue, it comes at a high computational cost. To
salvage the computational cost and improve the clustering and
outlier detection accuracy, Kumar and Sharma [24] applied a
technique that extracts the boundary points in the overlapped
microclusters. Many other clustering techniques have been
proposed for outlier detection processes, such as density-based
microclustering [22, 25], grid-based clustering [6, 26], and
partitioning algorithm for data streams [12, 21]. However, since
this is a short paper, Table 1 briefly outlines some of these
techniques in comparison to our method in terms of the
summarization technique, evolving data model and outlier
detection method.

Remarkably, from Table 1, no two methods share the same
approach. Our work is the first to use microclustering in the
sliding window model using outlier microcluster to handle
continuously evolving objects with changing features. For a
more comprehensive related work to clustering techniques for
outlier detection, we recommendWang et al. [11] survey paper.

3. Preliminaries and Problem Formulation

3.1. Notations and Definitions. +e key symbols used in
this paper include but not limited to the following in Table 2.

3.2. Definition of Key Terms

3.2.1. Outliers. For a dataset D of n points,
D � [d1, d2, . . . , dn]. Whenever the data point di or an entire
set of data points d1, d2, . . . , dn deviates drastically from
these other sets, these points are considered outliers.

3.2.2. Neighbor. In the case of two data points di and dn, a
data point di is considered a neighbor of dn if the distance
between the two does not exceed the distance threshold
value R> 0. In other words, if di is not further than R from
dn, then it is a neighbor of dn. A data point d cannot be a
neighbor of itself.

3.2.3. Sliding Window. In sliding window, the time-based
window and the count-based window are two types of
window models commonly used for data streams. +e
former takes into consideration the data points within the
time interval of two identify data points, for instance, at
point x and y, with tx and ty. +e latter thus considers the
count of the data points within a specified window size.

3.2.4. Microclusters. A microcluster is formed when a data
point has a radius of R/2 from the center, and in a
microcluster, the distance between two data points, let us
assume d1 and d2, should not exceed R.

+e function of the microcluster in our technique is as
follows: we applied the microclusters to minimize the range
queries and minimize the distance-based computations. +e
microclusters eliminate the need for excessive range queries by
storing the neighbor’s data points in the microclusters. +is,
therefore, improves the underlying evaluation metrics: the
memory and time consumption. +e microclusters adopted in
the proposed methods give the advantage of eliminating the
need for range queries and in curbing the distance compu-
tations. In addition to only storing crucial inliers in memory,
the microclusters also improve the memory constraints, since a
single microcluster has the ability to obtain the neighborhood
information of each object in the same cluster.

In Figure 1, we can see that W1 � t1 − t14 and
W2 � t10 − t21, where W2 is the current window and W1 is
the expired window. +e fast-incoming data points (dp)

from 1 to 23 are the data streams. By definition, the data
stream is an unlimited number of data points within a
specific timestamp or unbounded sequence. +at is, the data
stream i � St|0≤ t, with t� time and dp,
Si�1,2,n � S1, S2, S3, . . . , Sn. Each dp within its window could
have a neighbor or not, but it cannot be a neighbor on its
own. +e neighbor of any particular data point Si must not
exceed the required distance threshold R, from each other.
For instance, in Figure 1, dp 1, 2, 4, 5 are neighbors of 3,
while 17, 18, 20, 21 are neighbors of 19. +e neighbors play a
crucial role in the overall outlier detection process; therefore,
we pay special attention to them.

In W2, or when the window slides, determining whether
a data point is an outlier or inlier can create additional
constraints due to the evolving nature of the data points.
Some neighbors will expire, such as dp 8, 9 among 8 − 12,
and become obsolete when the window slides. In the dif-
ferent window stages, the question of how to perform
clustering, how to use minimal pruning to get the most
significant data points, how to deal with incoming and
expired dp, and what kind of clustering technique to apply
comes up, and also, what requirements should the clustering
technique meet to ensure that (1) the clusters capture more

Expired Slide

Va
lu

e

New Slide
Timet21t14t10

W1

❶

❷

❸
❹
❺

❻

❼

❽
❾❿

⓫

⓬

⓭
⓮⓯

⓰

⓱

⓲

⓳
⓴

W2

t1

Figure 1: Streaming data.

Complexity 3

dp and (2) the inliers or outliers are detected correctly and
computed with the lowest computational cost possible.

3.3. Problem Formulation. Problem statement: the major
goal of this paper is to present an improved solution to
address the problem of effectively clustering and detecting
outliers in fast-evolving data streams.

For new data streams arriving continuously, S � St t�1,2,...,

with dimensionality d at time t, and with evolving feature
changes as the data speed increases, we need to design a robust
approach that will deal with the evolving data streams by
clustering incoming data streams effectively and simulta-
neously detect all outliers in the shortest conceivable time, with
low memory usage, while maintaining high detection accu-
racy. Also, we handle data points outside the clusters while
dealing with the fading of old clusters, new and expired data
points, and detecting the outliers. +e key challenge is that the
actively evolving data point position continues to change due

to either the window slides or the arrival and expiration of
some data points. +is ultimately makes it complicating in
addressing the overall problem. It will be a challenging task to
process and remove data points one at a time as they arrive
over the stream. It will incur a lot of time.

In addition, managing memory space presents another
challenge since it is not possible to predict howmany data points
arrive and expire a priori. It becomes challenging to cluster
essential data points and dynamically allocate space for the
growing number of unknown data points that arrive and expire.

+is brings us to the essential problem statement and
question we address in this paper, how do we capture the
data points that deviate from the others in streaming data
which evolve as time progresses with these additional
constraints:

(i) +e data point features might change over time.
(ii) Prior unseen data point features might arrive over

time.

Table 1: Some key clustering algorithms.

Method Summarization technique Evolving data model Outlier detection
CluStream [4] Microcluster Tilted-time window —
D-Stream [5] Grid Fading window Sporadic grid
DenStream [6] Microcluster Fading window Outlier microcluster
DENGRIS-Stream [7] Grid Sliding window Sparse grid
Ours-CLODS Microcluster Sliding window Outlier microcluster

Table 2: List of symbols with their interpretations.

Symbols Interpretations
di i-th data point, i � 1, . . . , n

R Distance threshold
K Number of neighbors
W Window size
S Window slide size
∞ Data streams
ti +e specific time
dci Data points in the current window
dei Expired data points
Od Detected outlier/s

Clustering
with Micro-

Clusters

Report
Detected
Outliers

Outlier
Detection

Process

t1 tnSliding Window

Raw Data Stream

Data
Processing

Figure 2: +e framework of CLODS

4 Complexity

4. The Proposed Methodology

4.1. Fundamentals of the ProposedMethod. As data originate
from their source in the form of fast continuous evolving
data streams, they become challenging to cluster data points
and effectively detect the outliers, as explained in the
problem statement. +ere is a need for special attention on
the clustering method and in handling both the inliers and
outliers in this scenario. To do this, we propose a new
framework, which involves different stages in order to detect
the outliers efficiently while maintaining high accuracy. +e
newly proposed method called Effective Microcluster and
Minimal pruning CLustering-based method for Outlier
detection in Data Streams (EMM-CLODS) is a kind of
clustering-based outlier detection approach that detects
outliers in evolving data streams using microcluster and
minimal pruning. +is is done by first applying a micro-
clustering technique to cluster dense data points and ef-
fectively handle the data points according to the relevance of
their status to their respective neighbors or position in the
window. We adopt the sliding window model, and within
this model, the microclustering technique helps to cluster
dense data points quickly and eliminate the need for a range
query search. For the data points outside the clusters, an
approximate probing is implemented by excluding a set of
inliers whose significance in the computation is trivial in
order to reduce the computation demand.

+e CLODS makes use of both clustering and approx-
imate probing of data points within the adopted sliding
window model and minimal pruning of data points outside
the clusters. It simultaneously discovers the outliers and
deals with potential outliers outside the clusters, even when
they continuously evolve as the data point changes state. In
contrast to other conventional clustering-based approaches,
it does not limit itself to detecting outliers in static data
[2, 11, 27], and for those that support data streams, the
clustering procedure is different [12, 20, 28, 29], or they are
not clustering-based approaches [4, 8, 30]. +ose with
similar clustering techniques to ours use a different scheme
to deal with data points within the window or adopt different
window models [12, 27, 29]. Furthermore, the handling
procedure of data points outside the microclusters is dif-
ferent. Unlike some of these methods [12, 20, 27, 28] that
deal with every data point outside the microclusters equally,
we focus especially on the relevance of data points with
respect to its neighbors and position to determine its overall
role in the outlier detection process. +is is to ensure we
identify potential outliers rather than data points that might
be falsely labeled as outliers. +is consequently saves time
and memory constraints without a performance decline.

4.2. 5e Proposed Framework. Figure 2 shows an illustrative
representation of the proposed framework. At the onset,
objects in the form of data streams arrive continuously and in
an unprecedented manner. We first filter the data through
data processing to determine its characteristics. +en, we
process the preprocessed data in the sliding window model.
During a specified period in the sliding window, we apply

probing and clustering process together with pruning the data
points outside the clusters and detect the outliers. During this
phase, additional processing such as handling of crucial inliers
and potential outliers, and handling of both active and expired
data points as the window slides is done. In the final stage, the
detected outliers are then reported.

Algorithm 1 gives the overall framework of CLODS, with
line 3–5 depicting the processes. In Algorithms 2–4, details of
algorithmic process are given to understand the whole
CLODS algorithm. In Algorithm 5, we extend details of the
different steps in Algorithm 1. In the first part, we perform
preprocessing. +e preprocessed data stream is then com-
puted in the next stage. In processing data points within the
window, in line 4 we determine whether they belong to a
cluster. If not in a cluster, the relevance of their status with
respect to the other members is checked in line 9. +e data
points outside the clusters and that are not relevant to their
respective members can be applied to the function in the last
stage and reported as an outlier as can be seen in line 11.

In Algorithm 2, the processing of new data points in the
new sliding window is shown. We first discover the cluster
and if there is a data point dp within the cluster, we add the
new data point or else initiate a new cluster accordingly (line
2–6), while in Algorithm 3, it shows the processing of the
expired data. Similarly, as in 3, we first discover the cluster and
if a data point is found in the cluster, we ensure that we check
the dp
′s relevance status to the other data points before we add

it into the cluster (line 4-5). If not, we try to remove it (line 7).
Lastly in Algorithm 4, we process and report the detected

outliers. We first initialize the count (line 1), and if dp is not
in any cluster and less number of neighbors to form a cluster,
it is returned as an outlier. If it has already expired, it is then
removed from data points outside the microclusters.

4.3.5eDataStreamStage. In a data streammodel, the input
data are not accessible through random disk or memory,
such as in the case of static data or batch data in standard
databases, but rather arrive in the form of one or more
continuous data streams. A data stream is an unlimited
number of sequence data points ∞i � St|0≤ t, within a
specific timestamp or unbounded sequence with data points,
Si � S1, S2, S3, . . . , Sn. +ey are infinite series of data points,
St−2, St−1, St, observed at a particular time t. +e streaming
data have the following characteristics:

(i) +e data points of streaming data arrive incre-
mentally in real-time. +e streaming data are active
since all inbound objects/items trigger actions on
the data rather than being invited to participate.

(ii) +e system has no control over the order or sequence
in which the items of the streaming data arrive.

(iii) +e streaming data have the possibility of un-
bounded numbers of data points.

+e problem of detecting or mining outliers in such data
with the abovementioned characteristics brings a number of
significant implications. Firstly, to ensure that the results are
continuously up-to-date, it is essential to analyze the in-
coming data within the shortest time and minimal memory

Complexity 5

usage. In the framework in Figure 3, the continuous infinite
series of data points observed at a particular time t1 is fed to
the next stage.

4.4. Data Preprocessing Stage. As the incoming unbounded
sequence of data arrives, it is impossible to store the entire
data stream. Besides, to apply the clustering technique
without taking note of the characteristics of the data makes
the overall process more tedious. +erefore, we initially did
some preprocessing based on the nature of the data to avoid
assumptions about having clean and well-structured data
and to tailor the data for our propose model. For instance,
real-world datasets are highly susceptible to missing and
inconsistent data. Such datasets may give rise to data quality
issues, which in turn affects the overall result. During the
data preprocessing and wrangling phase, we deal with the
missing data and inconsistent data. Although outliers
sometimes can influence the quality of the data, in this work
we entirely avoid dealing with outliers since our primary
goal is to detect outliers. For the missing data, we ensure that
we ignore, fill manually, and compute values. For incon-
sistent data, we normalize the necessary datasets.

4.5. Sliding Window-Based Outlier Detection Stage. In this
phase, we manage the evolving data streams; that is, we
implement the CLODS and detect data points that deviate
from their expected normal behavior when the window
slides and expires, also when the data points will expire. We
notice that it is not feasible to perform clustering on data
streams during the all probable time. We handle the data
points at different time windows. +e process of exploring
the evolving data stream during the different time windows
provides the users with additional insights into the evolving
nature and performance of the clusters. In terms of pro-
cessing evolving data streams, different algorithms have
adopted different window models. Some existing window
models include the damped window model also known as
the fading window model, the landmark window model, the
tilted-time windowmodel, and the sliding windowmodel. In
this paper, we use the sliding window model, in which the
data are processed before the end of the streaming data
window. +is is as opposed to the landmark window model,
which is adopted for cases where we want to mine the whole
data stream history. It is suitable for static data settings. In
the sliding window, the streaming data are considered from
the current time to a certain range in its history.+e key idea

Current Window Sliding Window Processing and detecting outliers

R

Outliers

Potential Outliers

inliers

Outliers

Micro-
Cluster

New OutliersExpiredOutliersReal Outliers Potential Outliers

Ws WE

t1 tn

Figure 3: +e different phases of processing the outliers in the sliding window.

Input: Preprocess Data Stream ∞, Data point dp, Parameters: {distance-threshold R, nearest-neighbor count K, sliding size S,
Window Size W.}
Output: Outliers in sliding window

(1) Procedure:
(2) While the window slide or in Wc ⊳ between period Wstart to Wend when S arrives
(3) Deal with data within Wc

(4) Deal with new dp, S and W

(5) Deal with expired dei, S and W.
(6) Report outliers, Od

(7) end

ALGORITHM 1: +e CLODS algorithm.

6 Complexity

(1) for dp in expired slide, S do
(2) c� discoverCluster
(3) if dp in C then
(4) CheckRelevance (dp)
(5) c.add (dp)
(6) else
(7) remove (dp)
(8) end If
(9) end for

ALGORITHM 3: ∗Process expired data point when slide expires.

(1) for dp in new slide, S do
(2) c� discoverCluster
(3) if dp in C then
(4) c.add (dp)
(5) else
(6) InitiateNewCluster (dp)
(7) else if
(8) end for

ALGORITHM 2: ∗Process new data in the new slide window.

(1) Initiate outliers� []
(2) Perform all functions
(3) for dp in W, S do
(4) if dp cannot form a new cluster
(5) add.Outlier (dp)
(6) else
(7) Processfunctions
(8) end if
(9) end for
(10) Return Outliers

ALGORITHM 4: ∗Process outlier W.

Input: Data Stream∞, Data point dp, Parameters: {distance-threshold R, nearest-neighbor count K, sliding size S, window size
W.}
Output: Outliers

(1) Procedure: ⊳ Preprocessing
(2) Perform Preprocessing ⊳ ProcessDataInWc

(3) for for each dp of preprocessed data in W do
(4) DiscoverInClusters
(5) If dp ≥ k + 1 neighbor then
(6) InCluster
(7) elseif
(8) NotIncluster
(9) CheckRelevance to di

(10) else
(11) ProcessNewData in S

(12) end if
(13) end for

ALGORITHM 5: Overall procedure of the CLODS.

Complexity 7

in the sliding window is to do exhaustive analysis of the most
up-to-date data items and summarized the outdated items.

As can be seen in Figure 3, in the second phase, we apply
the clustering of the data stream in the sliding windowmodel
where data points expire as the window slides. Moreover,
with an increasing time t � t + +, each data points’ weight
declines as it reaches the expiration point. In setting the
window size for a distribution that fluctuates dynamically,
we increased and set the window size large enough to
minimize the effect caused by the dynamic change of the
data. Consequently, this results in increased time usage,
which undermines the performance of real-time computa-
tion. Eventually, it creates a challenge to find a balance
between these two underlying issues.

In Figure 3, as the time increases t � t1, t2, t3, . . . , tn

within the time frame, some data points fade out and some
data points change state depending on the window slide.
Some evolving data points expire, some clusters dissolve,
and new ones are created, and some data points might be
classified wrongly as an outlier. +erefore, in designing
CLODS, we consider the following prerequisite:

(i) Firstly, we consider the status of the data points, i.e.,
whether they are in a cluster or not and whether
data points outside the cluster can be viewed as an
inlier or outlier.

(ii) Secondly, we consider the distance between the
clusters and data points outside the clusters,
whether they are far or close to the clusters, and
whether they can be viewed as an outlier or inlier.

(iii) +irdly, we consider whether the data points share a
relationship with few other data points that form a
cluster, and also, how to handle both the data points
within and out of the clusters to detect the outliers
accurately.

(iv) Finally, we consider the characteristics of the
summary information, and at what instance we
should store or discard the summary information,
and what to do with expired data points.

4.6. CLODSClustering Phase. For a data stream with a set of
continuous multidimensional data points S1, Sn, arriving at
different period t1, . . . , tn, we considered a set of active data
points during the period t1, . . . , tn, which are the most recent
n data points at the time in the sliding window. During the
active period, we employ the microcluster concept, which is
a fast-efficient method for clustering objects within the
sliding window. We applied the idea of triangular inequality
in metric space [30, 31], to guarantee the data points’ dis-
tance between each other in the microclusters is less than the
distance threshold R. +us, confirming that every data point
is labeled as an inlier within the microcluster. Among the
labeled inliers, we store in memory only crucial inliers to
avoid memory congestion, and it is impossible to store every
object in memory. We stored each newly arrived object in a
fix size buffer. If the buffer is full, we consider each data point
in it as an inlier or outlier, depending on the weight of the
objects in relation to its distance to the other objects. +e

objects that are labeled as outliers are deleted in memory,
while all newly incoming labeled inliers are maintained in
the updated list. +e different actions taken depend on the
status of the data points in the different phases.

Figure 3 shows the different stages in the window model,
which is divided into three partitions with the x-axis dis-
playing the arrival time of the data points, while the ordinate
depicts the number of data points with radius R. In the first
partition, during the current window model space (Wstart to
Wend), we have a set of evolving data streams s1, s3 with
fixed radius R, and a neighbor count threshold k from time
interval t1, . . . , tn. In this partition, for k � 2, the micro-
cluster technique is applied to cluster K + 1 data points for
the objects in the window. +ese microclusters are data
points within the radius of R/2 from the center and are not
greater than the distance R between the two data points. +e
window contains four microclusters, c1 to c4 with radius R/2.
+e data points that are not within the microclusters are
probable outliers depending on their status in relation to the
other neighboring data points. To determine whether the
probable data points will be labeled as an outlier or not, we
consider both its ensuing and prior neighbors and, fur-
thermore, its relative strength to its neighbors. Also, to
consider which objects are stored in memory, we used a
similar concept as in previous work [8] by storing the data
points outside the microcluster in temporary memory while
applying the minimal pruning to minimize the computa-
tional cost and demand. From Figure 3, the red marked data
points show the outliers while the other data points, where
k≥ 2, are marked in green.

In the next phase, some data points change state due to
the sliding of the window, the appearance of new data points,
and the expiration of some data points. +ese new changes
create new challenges for detecting the outliers smoothly as
compared to the previous phase. In this case, we have three
sliding windows. In the first window, we have a single
microcluster, outliers, and a full cluster that has some data
points that their status will be potentially affected during the
next slide. In the next window, at the onset, although two
objects have expired, it does not dissolve the microcluster
since it has k + 1 points. However, in the final window, the
microcluster dissolves, which prompts the remaining data
points to become outliers. When new data points arrive, they
are added to their probable neighboring microclusters,
provided it is not greater than the distance threshold R.
Otherwise, it is added to the neighboring outlier cluster with
more space. If none of the conditions exist, then a new
marked outlier cluster is initialized. In the final stage, the
figure vividly shows the status of the different data points.
+e green data points indicate the inliers, yellow expired
data points, the orange points are those that have the
propensity to change state, and the red are the detected
outliers.

In terms of the memory usage, owing to the fast response
and limited memory requirements in these kinds of envi-
ronments, it is not practical to store the majority of the data,
and it is impossible to store all the data in memory.
+erefore, to salvage the situation, we minimize the memory
consumption and stored relevant data points that aid the

8 Complexity

overall clustering and outlier detection process. Further-
more, we minimized the number of rearranged micro-
clusters as the update in memory is done. As the continuous
incoming data arrive, we first determined whether it is in
memory or not. If not, it is added to the temporary memory,
and then an initialization process is done. +e key inliers are
temporarily stored in memory, and as the data evolve due to
changes in window slides, an update is done with new data
points replacing the older ones.We calculated the number of
inliers, and all expired data points are deleted from memory
to free the memory space. Finally, summary statistical in-
formation is obtained, and the outliers are then reported.

4.7. Outlier Detection Stage. +e outlier detection process
involves various phases. At the onset, we observe the
potential outliers through the clusters. By definition, an
outlier in an evolving data stream is a data point within
the computational time frame that deviates from the
clusters and lies beyond the distance threshold R with
fewer than k neighbors in the dataset. In every window,
data points that do not meet the deviation and threshold
criteria are labeled as outliers, while the others are labeled
as inliers. All potential outliers are initialized to one and
stored in temporary memory. As new potential outliers
accumulate, the longstanding vivid outliers stored in the
outlier list are deleted from memory to free up space after
processing. +e detected outliers are reported, and the
outlier list is updated.

5. Experiments and Results

In this section, we describe the experimental settings in-
cluding the datasets, parameter settings, evaluation metrics,
and the baseline methods and discuss the performance of
iGAAL in comparison to the other models.

5.1. Experimental Setup

5.1.1. Environment. We did our experiment using Java to
design the source code and ran it on Eclipse Java EE IDE on a
PC running Windows 10 Operating System with 3.20GHz
X4 CPU, 8GB of RAM, and Disk Space of 230GB. One of
the baseline algorithms is from previous work [8], and the
other was prepared by Tran et al. [32]. +e source code of
some baseline methods and all related datasets can be found
on the online repository [32].

5.1.2. Datasets. We use similar benchmark datasets that
have been adopted in some previous studies [8, 32]. As
shown in Table 3, we use three real-world datasets and one
synthetic dataset that are openly accessible. +e first dataset
is the Forest Covertype (FC) [7, 32] which is openly available
and can be found from the UCI Machine Learning Re-
pository and has 581,012 records with a high-dimensional
range of 1–55 attributes. +e dataset comprises tree ob-
servations from four zones of the Roosevelt National Forest
in Colorado. It has no remote sensing, as the entire ob-
servations are cartographic variables from 30m× 30m

sections of the forest. +e FC dataset includes information
on shadow coverage, tree type, distance to nearby land-
marks, soil type, and local topography. +e data are in raw
form (not scaled) and contain binary (0 or 1) columns of
data for qualitative independent variables (wilderness areas
and soil types).

+e second datasets adopted for our experiment are
the tropical atmospheric ocean project (TAO) datasets
[32, 33], which is a low-dimensional dataset with three
attributes and 575, 648 records. +e dataset is real-time
data extracted from National Oceanic and Atmospheric
Administration website [33]. TAO was established to get
useful insights and forecast climate variations related to El
Nino and the Southern Oscillation (ENSO). +e phe-
nomenon, ENSO, signifies the strongest year-to-year
climate instability on the planet. Its events undoubtedly
interrupt normal patterns of weather variability, thereby
disturbing farming, transport, Pacific marine ecosystems,
energy produce, and the livelihood of millions of people
around the world.

+e Stock dataset has only one attribute, and it is
available from UPenn Wharton Research Data Services [34]
with 1,048,575 records. +e dataset shows Stock trading
traces of about 1 million transactions throughout the trading
hours per day. Since the Wharton Research Data Services is
not easily accessible, the available data can be found on the
online repository [32] together with the other datasets used
in this experiment.

For the Synthetic dataset, we use the Gauss dataset [32].
+e dataset is generated to produce streams with measured
data distribution types and number of outliers. It is gen-
erated by mixing three Gaussian distributions and a random
noise distribution, and it contains 1 million records with a
single attribute. In each segment of the stream, the Gaussian
distributed points and noise are randomly distributed.

5.1.3. Default Parameter Settings. Before performing our
experiment, we take into consideration the slide size S, the
window size W, the distance threshold R, and the neigh-
boring count threshold K. +e window size W is the key
parameter which determines the volume of the data streams
and number of accommodated clusters, while the slide S
affects the speed and the remaining parameters help to
determine whether the evolving data points are inliers or
outliers or whether they belong to a cluster or not. +e
default value of W, S, R, and K is shown in Table 3 for the
different datasets.

5.1.4. Evaluation Method. We evaluated our method using
three evaluation metrics: the running time, memory us-
age, and the clustering quality. +e running time is the
time taken to complete the detection of outliers for each
window slide. +e memory usage is the record of the peak
memory used during the outlier detection process, in-
cluding the storage data for each window. Lastly, the
clustering quality defines how accurately our approach
clusters the datasets.

Complexity 9

5.1.5. Baseline Algorithms. We chose three state-of-the-art
algorithms, MCOD [4, 35] Thresh LEAP, MCMP for
comparison with the CLODS. MCOD and Thresh LEAP
were the best performing among the existing methods [36]
until the hybrid approach called MCMP [8] was proposed,
which uses the strength of both techniques to boost the
performance in solving outlier detection problems. In
MCMP, the key difference when compared to the other
baseline methods is in dealing with data points within the
current window. MCMP implement uses the concept of
strong and trivial inliers of dealing with the objects outside
the microclusters. Thresh LEAP in the majority cases is
inferior to both MCOD and MCMP because of their lack of
memory-efficient microclusters. It uses an index per slide for
its neighbor search. Its minimal probing principle mitigates
the expensive range queries and prioritizes the discovery of a
minimal number of data points according to their arrival
time. It has to continually re-evaluate and manage the data
points in the updated list, which consequently increases its
computational demand, while MCOD prunes out and
minimizes outlier candidates. It uses an index structure
called a microcluster that helps to prune out unqualified
outlier candidates resourcefully. However, in MCOD, the
absence of clearly distinguishing between the points outside
the microclusters limits its potential to perform even better.
+erefore, MCMP improves this shortcoming by using the
strength of Thresh LEAP minimal probing and the mem-
ory-efficient microcluster and introduces the concept of
trivial and strong inliers. +is consequently improves the
overall performance both in terms of reducing time and
memory consumption. However, the improved performance
comes at a cost, and we noticed that the absence of the
extensive distance-based computation of data points outside
the microclusters thus would lower the time and memory
usage when we focus mainly on the clustering and deal with
those points according to the relevance of their respective
neighbors. For in-depth understanding of the baseline
methods, we request our audience to read the individual
references.

5.2. Results and Discussion

5.2.1. CPU Time. In order to observe the CPU time usage,
we take into consideration the following: we vary the
window size W, the distance threshold R, and the nearest
neighbor count K.

Figure 4 shows the outcome of varying the window sizes
W, from 10k–20k for FC and TAO and then 10k–200k for
Stock and Gauss. +e results are shown for fixed K � 50 and
an approximate 1% outlier rate across the datasets. In

Figure 4, for all datasets, in most cases as W increases which
means more data points to cluster and compute, the CPU
time also increases (Figures 4(a) and 4(c)) except for
Thresh LEAP in Figures 4(b) and 4(c), and MCOD in
Figure 4(d). +e CLODS, similar to MCMP and MCOD in
FC and TAO, shows a steady rise in all the datasets.
However, in Gauss, when W is above 50K, we observe a
sharp spike for Thresh LEAP because fewer data points are
captured since it does not have microclusters. Both CLODS
and MCMP show the lowest CPU time usage when com-
pared to the others since the use of index structures is absent.
+e CLODS ensures that significant inliers are stored in
microclusters, which reduces the computational demand of
performing range queries for every data point. Generally, we
observe that when W is large enough, there is a tiny effect on
the streaming data whose distribution changes dynamically.
Nevertheless, if W becomes too large, then it will influence
the responding time, and the time will greatly increase,
which will, in turn, downgrade its performance.

Figure 5 illustrates the result of changing the neighbor
count threshold k, from 1 to 100 across all the datasets. +e
results are shown for window size,W� 10K for FC and TAO
and W� 100K for the remaining two datasets with other
default parameters been maintained. In Figure 5, all the
methods showed some changes across the different datasets
since they depend on the neighbor count threshold k, which
affects the outlier rate. From the figures, except for
Thresh LEAP in TAO and Stock (Figures 5(b) and 5(c)),
which demands more probing to find k, the other methods
showed very good time consumption with CLODS showing
superior performance in the majority of the dataset. +is is
because, in the first three datasets, there are not many data
points that fall within the clusters that will require additional
computation. For Figures 5(a) and 5(d), an increase in k
shows an increase in the time since more probing needs to be
done. In Figure 5(d), we see that MCMP slightly outper-
forms CLODS because few clusters demand additional
computation. Overall, our approach performs well for the
datasets that have points whose neighbors are close to each
other, which makes it easy for clustering and thus makes it
easy to differentiate between vivid or false outliers and
crucial or insignificant inliers. Consequently, it shows better
performance than the others since it can do the least
computation possible outside the clusters. +e likelihood of
getting enough neighbors to ensure the fast clustering
process is relatively low for datasets with sparse data points.
+erefore, there are fewer clusters in the synthetic dataset,
which also results in increased processing time when
compared to the real-world datasets.

Figure 6 displays the result and performance of
varying the slide size S, from 1% of W to 100% of W. +e

Table 3: Datasets with default values.

Dataset Size (M) Dim W S R K Outlier rate (%)
FC 0.6 55 10,000 500 525 50 1
TAO 0.6 3 10,000 500 1.90 50 0.98
Stock 1.1 1 100,000 5,000 0.45 50 1
Gauss 1.0 1 100,000 5,000 0.028 50 0.96

10 Complexity

slide size depicts the changes in the speed of the data
stream. Across all the datasets, the value of k and R is
maintained as in Table 3. In Figure 6, we can see that
across the datasets the CLODS shows the lowest CPU time
usage, while Thresh LEAP incurs in the majority of the
cases the highest CPU usage above that of MCOD and
MCMP. In TAO and Stock datasets, we omit the trend of
Thresh LEAP since the CPU time incurs far greater than
the others, and for the other two cases, it shows an ab-
normal trend when compared to the others. +e CLODS
and the other algorithm show an increase with increase in
S/W. It confirms that an increase in S results in arrival and
expiration of more data points, thereby consuming ad-
ditional time. However, the CLODS showed improved
performance compared to that of MCMP since it uses less
time than MCMP and MCOD that tries to update its
neighbors after the detection of strong and trivial inliers
and in identifying the outliers. In addition, we can observe
that the processing of new arriving data points in CLODS
scales well to that of the expired data points when the

window size increases. In MCOD, for example, the time
taken to process half of the data points outweighs the time
for saving in discarding the expired data points. Overall,
the slowest CPU time growth is shown across the datasets.

Figure 7 shows the effect of varying the distance
threshold R through all the datasets, from 0–1000. +e
results are shown for slide size, S � 500 for the first two
datasets and S � 5K for Stock and Gauss. +e other pa-
rameters are maintained as shown in Table 3. In each
dataset, when the value of R is varied, it influences the
outlier rate. For Figures 7(c) and 7(d), Thresh LEAP
incurs more time due to its trigger list, which makes it
difficult to find neighbors. Overall, the CLODS showed
better performance than the others and especially against
MCMP since it has less distance computation when
compared to MCMP that has to deal with strong and
trivial inliers. +e CLODS takes into consideration the
relevance of K against each other rather than focusing on
the influence of R. In Table 4, we notice that the outlier
rate of R increases when default value of R≤ 10%.

0

0.1

0.2

0.3

CP
U

 T
im

e (
S)

0.4

0.5

0.6

1K 5K 10
K

W

15
K

20
K

MCMP
MCOD
CLODS
Th_LEAP

(a)

0

0.02

0.04

0.06

0.08

0.10

1K 5K 10
K

W

15
K

20
K

25
K

CP
U

 T
im

e (
S)

MCMP
MCOD
CLODS
Th_LEAP

(b)

0

0.2

0.4

CP
U

 T
im

e (
S)

0.6

0.8

1.0

10
K

50
K

10
0K

W

15
0K

20
0K

MCMP
MCOD
CLODS
Th_LEAP

(c)

0

40

0

80

CP
U

 T
im

e (
S) 120

160

200

10
K

15
K

20
K

W

50
K

10
0K

20
0K

15
0K

MCMP
MCOD
CLODS
Th_LEAP

(d)

Figure 4: CPU time-varying W. (a) FC. (b) TAO. (c) Stock. (d) Gauss.

0

0.1

0.2

0.3CP
U

 T
im

e (
S)

0.4

0.5

0.6

0.7

0.8

20 40 60

K

80 10
0

MCMP
MCOD
CLODS
Th_LEAP

(a)

0

0.01

0.02

0.03

CP
U

 T
im

e (
S) 0.04

0.05

0.06

20 40 60

K

80 10
0

MCMP
MCOD
CLODS
Th_LEAP

(b)

0

0.2

0.4

0.6

CP
U

 T
im

e (
S)

0.8

1.0

20 40 60

K

80 10
0

MCMP
MCOD
CLODS
Th_LEAP

(c)

0

5
4
3
2
1
0

6
7

CP
U

 T
im

e (
S)

8
9

20 40 60

K

80 10
0

MCMP
MCOD
CLODS
Th_LEAP

(d)

Figure 5: CPU time-varying k. (a) FC. (b) TAO. (c) Stock. (d) Gauss.

Complexity 11

5.2.2. Memory Usage. In Figure 8, as the window sizes in-
crease, it shows that more data points need to be processed,
which result in an increase in memory usage for the majority
of the datasets. More inliers will be in the microclusters,
crucial inliers will be stored in temporary memory, and the
objects’ neighbors information will also be stored. From the
figures, all the methods that make use of microclusters
showed better performance across the datasets than
Thresh LEAP, which does not have the memory-efficient
microcluster. Across all the datasets, it consumes more
memory since its trigger list has to be redone every time the
slides expire. In Figure 8(d), the Gauss datasets have few
neighbors, and it shows an increase in memory usage for the
various methods when compared to the other datasets, since
finding the neighbors consumes the temporary memory.
Our approach shows almost the same performance as
MCOD since there is not much computation outside the
microclusters like that in MCMP, which incurs slightly more
memory. +e CLODS, in the majority of cases, showed the
least memory consumption due to freeing up space by
deleting in memory detected outliers and queuing in tem-
porary memory only significant inliers that are outside the
microclusters.

When we vary the neighbor count threshold by increasing
the value of k as shown in Figure 9, we expect more memory
usage since k impacts the storing of the neighbors. For a few
scenarios, it is almost stable, showing a small difference. For
instance, in Figure 9(b), Thresh LEAP difference does not
exceed 1MB for 50 dp≤K≤ 20 dp, likewise for the other
datasets in the same figure. +e CLODS among the algorithms
showed superior performance in most cases due to it is not
entirely depending on K, as in the case of MCOD and MCMP.
As K increases, more data points are not in microclusters,
thereby occupying the temporary memory. For MCMP, the
process of differentiating between the inliers utilizes some
memory, while the CLODS only keeps a significant inlier in
memory temporarily. One notable difference is in Figures 9(a)
and 9(d) for Thresh LEAP, which shows highermemory usage
as compared to the others because of the neighbor count list
that needs to be processed.

In Figure 10, when we vary the distance threshold R,
there is no constant observable trend across the datasets.
Overall, the CLODS together with the other algorithms does
not make use of range queries; therefore, an increase in R
does not result proportionally to an increase in memory
usage. Initially, more memory is used for MCOD and

MCMP
MCOD CLODS

Th_LEAP

1 10 50
S/W (%)

70 100

CP
U

 T
im

e (
S)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

(a)

1 10 50
S/W (%)

70 100

CP
U

 T
im

e (
S)

0.100
0.095
0.090
0.085
0.080
0.075
0.070
0.065
0.060
0.055
0.050
0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005
0.000

CLODS
Th_LEAPMCMP

MCOD

(b)

7.7
6.6
5.5
4.4

CP
U

 T
im

e (
S)

3.3
2.2
1.1
0.0

1 10 50
S/W (%)

70 100

CLODS
Th_LEAPMCMP

MCOD

(c)

160
140
120
100

80
60

20

-20
0

40CP
U

 T
im

e (
S)

1 10 50
S/W (%)

70 100

CLODS
Th_LEAPMCMP

MCOD

(d)

Figure 6: CPU time-varying S. (a) FC. (b) TAO. (c) Stock. (d) Gauss.

12 Complexity

MCMP since not many data points can be found in
microclusters, and the additional computation to find
neighbors occupies the memory. +e CLODS showed, in
most cases, better performance to some degree since it does
not differentiate every outliers or inlier as in the case of
MCMP, so it uses less memory at the start. In most cases, the
decline in memory usage is because an increase in the value
of R translates to more neighbors, which result in more
objects within the microclusters and fewer data points
outside the microclusters. +is thus curbs the memory
utilization.

Figure 11 shows the result of the memory usage when S
increases. Across the datasets, the CLODS showed a decline
in peak memory usage as S increases, likewise the other
algorithms. +e Thresh LEAP case shows unique perfor-
mance, since it differs from the others in how it processes its
data points. Thresh LEAP at the onset has higher peak
memory consumption and continues to reduce further. +e
other memory-efficient microcluster algorithm including
CLODS showed less memory consumption since it does not
make use of trigger list as in Thresh LEAP. +anks to their
microclusters, the CLODS is slightly superior to that of

1.6

1.2
1.4

1.0
0.8
0.6

CP
U

 T
im

e (
S)

0.2
0.4

0.0
-0.2

0 200 400 600
R/DefaultValue (%)

800 1000

MCMP
MCOD

CLODS
Th_LEAP

(a)

0.7

0.5

0.6

0.4

0.3

CP
U

 T
im

e (
S)

0.1

0.2

0.0

0 200 400 600
R/DefaultValue (%)

800 1000

MCMP
MCOD

CLODS
Th_LEAP

(b)

100

80

60

40

CP
U

 T
im

e (
S)

20

0

0 200 400 600
R/DefaultValue (%)

800 1000

MCMP
MCOD

CLODS
Th_LEAP

(c)

300

250

200

150

100

CP
U

 T
im

e (
S)

50

0

0 200 400 600
R/DefaultValue (%)

800 1000

MCMP
MCOD

CLODS
Th_LEAP

(d)

Figure 7: CPU time-varying R. (a) FC. (b) TAO. (c) Stock. (d) Gauss.

Table 4: +e outlier rate-varying R

R/default_R (%) FC (%) TAO (%) Stock (%) Gauss (%)
1 100.0 99.3 44.97 98.9
10 99.8 49.5 6.03 32.3
50 9.90 3.10 2.10 3.00
70 7.80 1.10 2.01 1.60
200 0.93 0.72 0.97 0.85
500 0.00 0.01 0.15 0.20
700 0.00 0.10 0.11 0.20
1000 0.00 0.10 0.07 0.20

Complexity 13

MCMP in Figures 11(c) and 11(d), since storing the data
points occupies the majority of the total memory. +e ab-
sence of additional computation and to queue in memory
trivial inliers gives it an advantage.

5.2.3. Space and Time Complexity. +e complexity of the
algorithm defines the running time and storage space needed
by the algorithm in terms of its input size. +e space
complexity signifies the amount of memory space required
by CLODS in its life cycle. To calculate the worst-case space
required by CLODS, we take into consideration the space
required to store the data and variables that are independent
of the size of the problem. In Tables 5 and 6, we show the
time and space complexity of the algorithms.

+e time complexity in processing the data points within
the current window in the worst-case scenario is the time
cost of the function to discover whether the data point is in

cluster or not, which is O(1 − c)W and in checking the
relevance of the dp with respect to their neighbors in the
sliding window. Since we are considering the worst-case
scenario, we take into consideration the cost of computing
this, which incurs higher cost than the processing of the new
data points within the slide.+e overall cost in this case is the
cost of the data point in the window by the window slide size,
that is O(1 − c)W∗ 1/S. When the data points expire, in the
worst-case, the process of removing expired data points
within the slide does not cost as much as when we need to
check the relevance of these objects and adding the data
point if in cluster. In this case, the overall cost is
O(W/S log k). +erefore, the overall time complexity is
O((1 − c)W + (1 − c)W/S + W/S log k) which can be ap-
proximated to O(W/S((1 − c) + log k)). +e time com-
plexity of CLODS is better than that of MCMP because in
CLODS the cost of checking the relevance of the neighbors
to their respective neighbors is less than that of MCMP cost,

MCMP
MCOD

CLODS
Thresh_Leap

1k 5k 10k
W

20k

25

20

15

M
em

or
y

(M
B)

10

5

0

(a)

MCMP
MCOD

CLODS
Thresh_Leap

1k 5k 10k
W

20k

7

5

4

6

3

M
em

or
y

(M
B)

2

1

0

(b)

MCMP
MCOD

CLODS
Thresh_Leap

10k 50k 100k
W

200k

70

60

50

40

30

M
em

or
y

(M
B)

20

10

0

(c)

MCMP
MCOD

CLODS
Thresh_Leap

10k 50k 100k
W

200k

140

120

100

80

M
em

or
y

(M
B)

40

60

20

0

(d)

Figure 8: Memory-varying W. (a) FC. (b) TAO. (c) Stock. (d) Gauss.

14 Complexity

which incurs additional cost due to the cost of differentiating
between the strong and trivial inliers. We can see that the
overall time complexity of MCMP is
O(W + W log k + log Cw + W log Cw) which is approxi-
mately O(W(log Cw + log k)). +is compared to the time
complexity of the other two algorithms is almost the same as
that of MCOD but superior to that of Thresh LEAP. +e
reduction in the time complexity of MCMP confirms that
microcluster using the concept of minimal probing by
differentiating the strong and trivial inlier reduces the extra
time required for computing data points outside the clusters
as it minimizes the time complexity of recalculating and
evaluating the all the inliers, as in the case of MCOD. Since
differentiating between the inliers also incurs some amount
of cost, however, this cost is less compared to the other way
around.

In terms of the space complexity, a simple answer to the
detection of continuous evolving outliers over streaming
data in the window model will involve storing neighbors of

each data object in the current window. It is apparent such
computation in the worst-case will result in a quadratic
space requirement O(n2); therefore, for larger window size
w, it will be practically unfeasible. For each data point di,
instead of keeping all the preceding dp and succeeding
neighbors ds, we store a number of ds neighbors and at most
k data point will suffice to detect the outliers for specific R

and K. +e space complexity for managing data points
within the current window is O(kW). We first calculate the
size of the preceding neighbors dp that corresponds to the
unexpired data points. When the size is less than k − ds, then
di is labeled as an outlier. When the window slides and
expired, the space required to keep the neighbor counts is
similar to that of MCMP, that is, O(W/S) since each data
point within the window is not stored in for each W/S slide.
However, in CLODS with in-depth analysis, we could say
that it will slight outperform MCMP since the space com-
plexity needed in PD to store extra trivial inliers is less than
that of saving relevant inliers in queue of the memory. +e

MCMP
MCOD

CLODS
Th-LEAP

5dp
0
2
4
6
8

10

M
em

or
y

(M
B)

12
14
16
18
20

30dp 70dp
K

100dp

(a)

0

1

2

3

4

5

M
em

or
y

(M
B)

MCMP
MCOD

CLODS
Th-LEAP

5dp 30dp 70dp
K

100dp

(b)

0

5

10

15

20

25

30

M
em

or
y

(M
B)

MCMP
MCOD

CLODS
Th-LEAP

5dp 10dp 50dp
K

100dp

(c)

0

20

40

60

80

100

M
em

or
y

(M
B)

MCMP
MCOD

CLODS
Th-LEAP

5dp 30dp 70dp
K

100dp

(d)

Figure 9: Memory-varying K. (a) FC. (b) TAO. (c) Stock. (d) Gauss.

Complexity 15

overall worst space complexity of CLODS is O(kW + W/S)

which is almost the same as that of MCMP except that Cw in
MCMP implies that during the expired window slides, the
trivial inliers are stored in C, with 0≤ c≤ 1. +en, the
number of data points within the window will be
(1 − c)∗Window, W.+at is, the list of data point in PDwill
be (1 − c)∗W � Cw. From Table 6, we can see that MCMP
space complexity is also better than that of Thresh LEAP
and MCOD with O(W2/S) and O(cW + (1c)kW), respec-
tively. It is evident that the space needed for differentiating
the inliers is negligible and better off compared to the space
needed for data points outsidemicroclusters to save the extra
trivial inliers.

5.2.4. 5e Quality of Data Points in the Clusters. For clus-
tering-based methods, an important metric to consider is the
clustering quality, which affects the outlier detection rate in

the data streams. Figure 12 shows the effectiveness and
clustering quality of CLODS against previous methods that
also adopted microclustering technique. For the FC dataset
in Figure 12(a), the percentage of clusters is relatively low
since the distance between each object is sparse. In another
case, for the Gauss dataset, the percentage is almost zero,
with little or no data points participating in the micro-
clusters. +is is because, in this particular window, the
dataset has few neighbors. MCMP shows inferior clustering
quality when compared to bothMCOD and CLODS because
of its extra distance-based computation that involves
computing and storing the strong and trivial inliers. In some
instances, it influences the neighbor count threshold k’s
relationship of the points outside the microclusters. +e
CLODS overall showed better clustering quality in almost all
cases due to the absence of the extra computation that is
involved in MCMP, and it ensures that clusters are generally
formed on the basis of their relevance to their respective

14

MCMP
MCOD

CLODS
Th-LEAP

12

10

M
em

or
y

(M
B)

8

6

4

2

0
1dp 100dp

R/DefaultValue (%)
500dp 1000dp

(a)

6

5

M
em

or
y

(M
B) 4

3

2

1

0

MCMP
MCOD

CLODS
Th-LEAP

1dp 100dp
R/DefaultValue (%)

500dp 1000dp

(b)

70

60

50

M
em

or
y

(M
B)

40

30

20

10

0

MCMP
MCOD

CLODS
Th-LEAP

1dp 100dp
R/DefaultValue (%)

500dp 1000dp

(c)

100

80

40

60

M
em

or
y

(M
B)

20

0

MCMP
MCOD

CLODS
Th-LEAP

10dp 100dp
R/DefaultValue (%)

500dp 1000dp

(d)

Figure 10: Memory-varying R. (a) FC. (b) TAO. (c) Stock. (d) Gauss.

16 Complexity

neighbors’ position. +is results in some cases of large
percentage of data points discovered in the clusters, as can be
seen in Figure 12 across the datasets.

5.2.5. Advantages of CLODS. CLODS through experiments
has shown to outperform the existing methods in most cases
and succeeded in curbing the computational cost in terms of
the time taken and memory usage. It is a general solution used
as a clustering-based outlier detection method for clustering
evolving data streams based on microclusters and handling of
objects within a sliding window according to the relevance of
their status to their respective neighbors or position, excluding
extended extra distance-based computation. +e CLODS dy-
namically clusters data streams and offers support to meet
flexible mining requirements. Furthermore, it has shown

25

20

15

M
em

or
y

(M
B)

10

5

0
1 10 50

S/W (%)
70 100

MCMP
MCOD

CLODS
Thresh_Leap

(a)

60

50

40

M
em

or
y

(M
B)

20

30

10

0
1 10 50

S/W (%)
70 100

MCMP
MCOD

CLODS
Thresh_Leap

(b)

60

50

40

M
em

or
y

(M
B)

20

30

10

0
1 10 50

S/W (%)
70 100

MCMP
MCOD

CLODS
Thresh_Leap

(c)

60

50

40

M
em

or
y

(M
B)

20

30

10

0
1 10 50

S/W (%)
70 100

MCMP
MCOD

CLODS
Thresh_Leap

(d)

Figure 11: Memory-varying S. (a) FC. (b) TAO. (c) Stock. (d) Gauss.

Table 5: Time complexity analysis results.

Algorithms Time complexity
Thresh LEAP O(W2log S/S)

MCOD O((1 − c)W log((1 − c)W) + kW log K)

MCMP O(W(log Cw + log k))

CLODS O(W/S((1 − c) + log k))

Table 6: Space complexity analysis results.

Algorithms Space complexity
Thresh LEAP O(W2/S)

MCOD O(cW + (1 − c)kW)

MCMP O(kCw + W/S)

CLODS O(kW + W/S)

Complexity 17

robustness in the variation of the different performance pa-
rameters and its clustering quality with regard to the number of
data points in its clusters. Finally, it has shown to be an effective
method for detecting outliers.

6. Conclusion

Detecting outliers, which is the process of mining abnormal
events from data, is a significant and challenging task. In this
paper, we have proposed a clustering-based method called
EMM-CLODS to address the problem of detecting outliers in
continuous evolving data streams. +e proposed method
adopts the microcluster technique to group similar data points
that are in proximity in the streaming data. It minimized the
computational demand and showed an increase in the com-
putational speed while it still maintained its effectiveness to
detect outliers in the sliding window through minimal

computation of data points outside the microclusters. It terms
of its memory usage, not all objects outside the microclusters
were stored in memory, and likewise, expired outlier data
points were deleted from memory to minimize the memory
usage. From the experiments performed on both real and
synthetic datasets, our method showed effectiveness in
detecting outliers for continuous evolving data streams. In the
majority of the cases, it shows superior performance in terms of
both CPU andmemory utilizationwhen compared to the other
baseline algorithms. It has shown to be a good technique for
detection outliers in data streams as it is robust to the various
parameter variations (W, R, and K).

Data Availability

+e data and source code used to support the findings of this
study have not been made available. However, all the

80

70

60

50

Pe
rc

en
ta

ge
 o

f d
at

a p
oi

nt
s (

%
)

40

30

20

10

0
1k 5k 10k

W
15k 20k

MCOD

MCMP

CLODS

(a)

80

70

60

50

Pe
rc

en
ta

ge
 o

f d
at

a p
oi

nt
s (

%
)

40

30

20

10

0
1k 5k 10k

W
15k 20k

MCOD

MCMP

CLODS

(b)

80

60

Pe
rc

en
ta

ge
 o

f d
at

a p
oi

nt
s (

%
)

40

20

0
10k 50k 100k

W
150k 200k

MCOD

MCMP

CLODS

(c)

80

60

Pe
rc

en
ta

ge
 o

f d
at

a p
oi

nt
s (

%
)

40

20

0
10k 50k 100k

W
150k 200k

MCOD

MCMP

CLODS

(d)

Figure 12: Comparison of the average percentage of data points in microclusters for MCOD, MCMP, and CLODS when we vary W. (a) FC.
(b) TAO. (c) Stock. (d) FC.

18 Complexity

datasets except for the source code used have been clearly
explained in the experimental section with links of where to
directly access these data. Previously reported (FC, TAO,
Stock, and Gauss) data were used to support this study and
are available at http://infolab.usc.edu/Luan/Outlier/. +ese
prior studies (and datasets) are cited at relevant places within
the text.

Disclosure

Mohamed Jaward Bah, Hongzhi Wang, Li-Hui Zhao, and Ji
Zhang are co-first authors.

Conflicts of Interest

+e authors declare that they have no conflicts of interest
regarding this work.

Acknowledgments

+e authors would like to thank the support from the
Postdoctoral Fund of Hangzhou City (no. 119001-
UB2101SJ), PI Research Project of Zhejiang Lab (no. 111007-
PI2001), Natural Science Foundation of China (no. 62172372
and no. U1866602), and Zhejiang Provincial Natural Science
Foundation (no. LZ21F030001).

References

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detec-
tion: A survey,” ACM Computing Surveys (CSUR), vol. 41,
pp. 1–58, 2009.

[2] X. Su and C. L. Tsai, “Outlier detection,”WIREs Data Mining
and Knowledge Discovery, vol. 1, no. 3, pp. 261–268, 2011.

[3] Ji Zhang, “Advancements of outlier detection: a survey,” ICST
Transactions on Scalable Information Systems, vol. 13, pp. 1–
26, 2013.

[4] L. Cao, Di Yang, Q. Wang, Y. Yu, J. Wang, and
E. A. Rundensteiner, “Scalable distance-based outlier detec-
tion over high-volume data streams,” in Proceedings of the
2014 IEEE 30th International Conference on Data Engineering,
pp. 76–87, IEEE, Chicago, IL, USA, April 2014.

[5] S. Guha, M. Adam, N. Mishra, R. Motwani, and
L. O’Callaghan, “Clustering data streams: theory and prac-
tice,” IEEE Transactions on Knowledge and Data Engineering,
vol. 15, pp. 515–528, 2003.

[6] Y. Chen and Li Tu, “Density-based clustering for real-time
stream data,” in Proceedings of the 13th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, pp. 133–142, San Jose, CA, USA, August 2007.

[7] S. Hettich and S. D. Bay, 5e UCI KDD Archive Irvine, De-
partment of Information and Computer Science, University of
California, Irvine, CA, USA, 1999, http://kdd.ics.uci.edu.

[8] M. J. Bah, H. Wang, H. Mohamed, F. Zeshan, and H. Aljuaid,
“An effective minimal probing approach with micro-cluster
for distance-based outlier detection in data streams,” IEEE
Access, vol. 7, pp. 154922–154934, 2019.

[9] L. Cao, J. Wang, and E. A. Rundensteiner, “Sharing-aware
outlier analytics over high-volume data streams,” in Pro-
ceedings of the 2016 International Conference on Management
of Data, pp. 527–540, San Francisco, CA, USA, July 2016.

[10] J. Tamboli and M. Shukla, “A survey of outlier detection
algorithms for data streams,” in Proceedings of the 2016 3rd

International Conference on Computing for Sustainable Global
Development (INDIACom), pp. 3535–3540, IEEE, New Delhi,
India, March 2016.

[11] H. Wang, M. J. Bah, and M. Hammad, “Progress in outlier
detection techniques: a survey,” Ieee Access, vol. 7,
pp. 107964–108000, 2019.

[12] C. C. Aggarwal, P. S. Yu, J. Han, and J. Wang, “A framework
for clustering evolving data streams,” in Proceedings 2003
VLDB Conference, pp. 81–92, Berlin, Germany, September
2003.

[13] P. Caroline Cynthia and S. +omas George, “An outlier de-
tection approach on credit card fraud detection using ma-
chine learning: a comparative analysis on supervised and
unsupervised learning,” in Intelligence in Big Data Tech-
nologies—Beyond the Hype, J. Dinesh Peter, S. L. Fernandes,
and A. H. Alavi, Eds., Springer Singapore, Singapore,
pp. 125–135, 2021.

[14] M. E. Villa-Pérez, M. Á. Álvarez-Carmona, O. Loyola-
González, M. A. Medina-Pérez, J. C. Velazco-Rossell, and
K.-K. R. Choo, “Semi-supervised anomaly detection algo-
rithms: a comparative summary and future research direc-
tions,” Knowledge-Based Systems, vol. 218, Article ID 106878,
2021.

[15] F. Liu, S. Xue, J. Wu et al., “Deep learning for community
detection: progress, challenges and opportunities,” in Pro-
ceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, Yokohama, Japan, July 2020.

[16] X. Su, S. Xue, F. Liu et al., “A comprehensive survey on
community detection with deep learning,” 2021.

[17] A. Boukerche, L. Zheng, and A. Omar, “Outlier detection:
methods, models, and classification,” ACM Computing Sur-
veys, vol. 53, no. 3, 2020.

[18] X. Ma, J. Wu, S. Xue, J. Yang, Z. S. Quan, and H. Xiong, “A
comprehensive survey on graph anomaly detection with deep
learning,” 2021, http://arxiv.org/abs/2106.07178.

[19] G. Pang, C. Shen, L. Cao, and A. Van Den Hengel, “Deep
learning for anomaly detection: a review,” ACM Computing
Surveys (CSUR), vol. 54, pp. 1–38, 2021.

[20] D. Toshniwal and Yokita, “A framework for outlier detection
in evolving data streams by weighting attributes in clustering,”
Procedia Technology, vol. 6, no. 2012, pp. 214–222, 2012.

[21] A. Zhou, F. Cao, W. Qian, and C. Jin, “Tracking clusters in
evolving data streams over sliding windows,” Knowledge and
Information Systems, vol. 15, no. 2, pp. 181–214, 2008.

[22] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based
clustering over an evolving data stream with noise,” in Pro-
ceedings of the 2006 SIAM International Conference on Data
Mining, pp. 328–339, SIAM, Bethesda, MD, USA, April 2006.

[23] L.-x. Liu, Y.-f. Guo, J. Kang, and H. Huang, “A three-step
clustering algorithm over an evolving data stream,” in Pro-
ceedings of the 2009 IEEE International Conference on Intel-
ligent Computing and Intelligent Systems, pp. 160–164, IEEE,
Shanghai, China, November 2009.

[24] M. Kumar and A. Sharma, “Mining of data stream using
“DDenStream” clustering algorithm,” in Proceedings of the
2013 IEEE International Conference in MOOC, Innovation
and Technology in Education (MITE), pp. 315–320, IEEE,
Jaipur, India, December 2013.

[25] A. Amini and T. Y. Wah, “A comparative study of density-
based clustering algorithms on data streams: micro-clustering
approaches,” in Intelligent Control and Innovative Computing,
pp. 275–287, Springer, Berlin, Germany, 2012.

[26] A. Amini, T. Y. Wah, and Y. W. Teh, “DENGRIS-Stream: A
density-grid based clustering algorithm for evolving data

Complexity 19

http://infolab.usc.edu/Luan/Outlier/
http://kdd.ics.uci.edu
http://arxiv.org/abs/2106.07178

streams over sliding window,” in Proceedings of the Inter-
national Conference on Data Mining and Computer Engi-
neering, pp. 206–210, Visakhapatnam, India, January 2012.

[27] L. Duan, L. Xu, Y. Liu, and J. Lee, “Cluster-based outlier
detection,” Annals of Operations Research, vol. 168, pp. 151–
168, 2009.

[28] M. Elahi, K. Li, W. Nisar, X. Lv, and H. Wang, “Efficient
clustering-based outlier detection algorithm for dynamic data
stream,” in Proceedings of the 2008 Fifth International Con-
ference on Fuzzy Systems and Knowledge Discovery, pp. 298–
304, IEEE, October 2008, Jinan, China.

[29] A. Forestiero, C. Pizzuti, and G. Spezzano, “A single pass
algorithm for clustering evolving data streams based on
swarm intelligence,” Data Mining and Knowledge Discovery,
vol. 26, no. 1, pp. 1–26, 2013.

[30] M. S. Sadik and L. Gruenwald, “DBOD-DS: distance based
outlier detection for data streams,” in International Confer-
ence on Database and Expert Systems Applications, pp. 122–
136, Springer, Berlin, Germany, 2010.

[31] M. B. Al-Zoubi, “An effective clustering-based approach for
outlier detection,” European Journal of Scientific Research,
vol. 28, no. 2, pp. 310–316, 2009.

[32] L. Tran, L. Fan, and C. Shahabi, Distance-Based Outlier De-
tection in Data Streams Repository, Information Laboratory
University of Southern California, Los Angeles, LA, USA.

[33] Pacific Marine Environmental Laboratory. 2019. Wharton
University of Pennsylvania. https://infolab.usc.edu/Luan/
Outlier/Datasets/tao.txt.

[34] Wharton Research Data Services, Distance-Based Outlier
Detection in Data Streams Repository, Wharton Research Data
Services, Philadelphia, PA, USA, 2020, https://wrds-web.
wharton.upenn.edu/wrds/.

[35] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas,
and Y. Manolopoulos, “Continuous monitoring of distance-
based outliers over data streams,” in Proceedings of the 2011
IEEE 27th International Conference on Data Engineering,
pp. 135–146, IEEE, Hannover, Germany, April 2011.

[36] M. Shukla, Y. P. Kosta, and P. Chauhan, “Analysis and
evaluation of outlier detection algorithms in data streams,” in
Proceedings of the 2015 International Conference on Computer,
Communication and Control (IC4), pp. 1–8, IEEE, Indore,
India, September 2015.

20 Complexity

https://infolab.usc.edu/Luan/Outlier/Datasets/tao.txt
https://infolab.usc.edu/Luan/Outlier/Datasets/tao.txt
https://wrds-web.wharton.upenn.edu/wrds/
https://wrds-web.wharton.upenn.edu/wrds/

