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In order to improve the success rate of space debris object capture, how to increase the resistance to interference in the space robot
arm has become an issue of interest. In addition, since the space operation time is always limited, finite-time control has become
another urgent requirement needed to be addressed. Considering external disturbances, two control methods are proposed in this
paper to solve the control problem of space robot arm. Firstly, a linear sliding mode control method is proposed considering the
model uncertainties and external disturbances.)e robot arm can track the desired trajectory, while a trade-off between optimality
and robustness of the solved system can be achieved. )en, in order to reduce conservativeness and relax restrictions on external
disturbances, a novel backstepping control method based on a finite-time integral slidingmode disturbance observer is developed,
which compensates for the effects of both model uncertainties and infinite energy-based disturbance inputs. Finally, simulation
examples are given to illustrate the effectiveness of the proposed control method.

1. Introduction

With the rapid growth of space projects in the last several
decades, the increasing space debris residues from satellites
scrapped in space bring huge threat to the existing on-orbit
spacecraft [1]. )erefore, how to reduce the amount of space
debris and effectively lower their risk level becomes more and
more urgent. Under this background, Active Debris Removal
(ADR) has become a worldwide research hotspot [2–4].

Space debris is mostly discarded space scrap, which is out
of control and eventually moves freely due to complex
nutation. Since these high-speed tumbling targets are very
difficult to catch directly, it is necessary to reduce the relative
speed between the chaser and the target before the next on-
orbit capture [5–8]. )us, the final capture of the target can
be achieved when the relative speed is slow enough [9, 10].

In terms of control for system with uncertainties and
disturbances, numerous methods are proposed. Focused on
solving the problem of asynchronous phenomena with dif-
ferent solutions, Cheng et al. [11–13] proposed a finite-time
backstepping control method by incorporating a hidden
Markov model, and the finite-time asynchronous control is

achieved in the end. Considering time-varying full-state
constraints and uncertainties, an adaptive fuzzy backstepping
control was proposed for nonlinear state-constrained systems
by Zhou et al. [14–16], and the parameter updating law is
different compared with existing adaptive updating methods.
By using the integral sliding mode design method for non-
linear stochastic systems, Wang et al. [17, 18] presented a new
integral sliding mode control for fuzzy stochastic systems
subjected to matched/mismatched uncertainties. )e as-
ymptotic stability of sliding mode dynamics is guaranteed
while a simple search algorithm is provided to find the sta-
bility bound. Liu et al. [19, 20] proposed universal adaptive
control to solve the universal control problem of a class of
uncertain nonlinear systems. Yang and Tan [21, 22] designed
an adaptive neural network for sliding mode control of
flexible manipulators. However, the conservativeness and
strict restrictions of the disturbances of the above controller
are still needed to be addressed.

Taking into account the phenomenon of disturbing
moments in real systems, robust control with disturbance
observer is an efficient control scheme to address it. )e
essence of robust control is to maintain the robustness of a
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closed-loop system. Robustness refers to the ability of a
control system to maintain certain properties of the system
under certain parameter regimes. Robust control theory is
the theory of robustness in space by optimising certain
performance indicators with infinite parameters. So, in this
paper, a robust control system for a robotic arm will be
designed based on the backstepping method and the model
will be compensated with a finite-time integral sliding mode
disturbance observer in that it can approximate the dis-
turbance moment vector well. )us, the system can achieve
accurate tracking of the robotic arm attitude command.

Considering all the above practical challenges, in this
paper, we study the stabilization problem of the flexible
deceleration brush detumbling mechanism attached to a
space robot arm. Two sliding mode control methods are
developed to solve this problem. First, an optimal H∞sliding
mode control law is proposed for space multijoint robotic
manipulator with consideration of both optimality and
robustness of the detumbling system. )e proposed control
law can stabilize the overall closed-loop system with a
prescribed H∞ performance level. Moreover, in this design,

by using the weighting matrix method, the balance between
the optimality and robustness of the detumbling system is
achieved. Second, considering the fact that in practical space,
the external disturbance always refers to the mismatched
type, a novel backstepping control law with the finite-time
integral sliding mode disturbance observer is developed,
which can compensate the effects of model uncertainty and
mismatched disturbance input simultaneously. Finally,
simulation examples are given to verify the accuracy and
effectiveness of the controller.

2. Materials and Methods

2.1. Design of Robust Sliding Mode Controller. With the
consideration of microgravity environment, the potential
energy of the system can be ignored. )en, the Lagrange
function of the total kinetic energy of the space robot system
can be expressed as
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where r×
0g is r0g×, Iv0 is the linear velocity of the base, Iω0 is

the angular velocity of the base, mi is the mass of the ith rod
of the space robot, q � [q1, q2, q3, q4, q5, q6, q7] ∈ R7 are the
variables of each joint of the manipulator, Ji is the joint that
connects the i − 1th link and the ith link, Iri ∈ R3 is the
position vector of the centre of mass of the ith lever of the
manipulator in an inertial coordinate system, Ipi ∈ R3 is the
position vector of the ith joint in an inertial frame, mi is the
mass of the ith bar of the space robot, Ii is the inertial of ith
link, and M is a given constant.

By using the Lagrange equation
d
dt

zL

z _qtog

􏼠 􏼡 −
zL

zqtog

� τ, (3)

the dynamic equation of the space robot system can be
obtained as follows:

H qtog􏼐 􏼑€qtog + C qtog, _qtog􏼐 􏼑 _qtog � τ, (4)

where H(qtog) is the symmetric positive definite inertial
matrix, C(qtog, _qtog) is a nonlinear term satisfying

C(qtog, _qtog) _qtog � _H(qtog) _qtog − (z/zqtog)((1/2) _qT
togH _qtog),

and τ is the external control force and torque.
Since the space racemization robot works in a complex

microgravity environment, considering uncertainties such
as external disturbance, friction, and parameter error,
equation (4) can be further expressed as follows:

H qtog􏼐 􏼑€qtog + C qtog, _qtog􏼐 􏼑 _qtog � τ,

H qtog􏼐 􏼑 � H0 qtog􏼐 􏼑 + ΔH qtog􏼐 􏼑,

C qtog, _qtog􏼐 􏼑 � C0 qtog, _qtog􏼐 􏼑 + ΔC qtog, _qtog􏼐 􏼑,

(5)

where H0(qtog) and C0(qtog, _qtog) are nominal matrices and
ΔH(qtog) and ΔC(qtog, _qtog) are the corresponding uncer-
tain matrices. )en, the above equation can be further re-
written as

H0 qtog􏼐 􏼑€qtog + C0 qtog, _qtog􏼐 􏼑 _qtog

� τ − ΔH qtog􏼐 􏼑€qtog − ΔC qtog, _qtog􏼐 􏼑 _qtog.
(6)

Define the dynamic compensation as
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τ � H0 qtog􏼐 􏼑u + C0 qtog, _qtog􏼐 􏼑 _qtog,

€qtog � u − H
− 1
0 ΔH€qtog − H

− 1
0 ΔC _qtog,

(7)

where u is control input vector, and then define the external
disturbances τd as

δ qtog, _qtog, €qtog􏼐 􏼑 � − ΔH€qtog + ΔC _qtog − τd􏼐 􏼑. (8)

In order to make the space robot end track the time-
varying desired trajectory, the state tracking error e ∈ R13 is
defined as

e �
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where qd
tog is the desired joint angle and _qd

tog is the desired
joint angular velocity.

)e trajectory tracking error equation of the space robot
can then be obtained as follows:

_e � A qtog, _qtog􏼐 􏼑e + Bu + Bw, (10)

where each parameter is specifically defined as
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(11)

)erefore, the force and torque exerted on the space
robot can be solved as

τ � H0 €q
d
tog + u􏼐 􏼑 + C0 _q

d
tog. (12)

In order to facilitate the tracking control of the desired
trajectory and reach the desired racemate point at the end,
an auxiliary equation is designed as

z � De �
D11 D12

0 I
􏼢 􏼣

_􏽥qtog

􏽥qtog
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where D11 and D12 are constant matrices.
Substituting equation (13) into equation (10) yields
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)en, the control force and torque of the space robot can
be expressed as
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By designing u � − Ke(t), the external disturbance w in
the system can be reduced. Given any positive real number c,
we have

J � min
u∈L2
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Design the Lyapunov function V(x) � (1/2)xTPx, and
then the Riccati equation can be solved as follows:

_P + PAN + ANP + PBN R
− 1

−
1
c
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With C0 − (1/2)M0 being skew symmetric, P can be
designed as
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where N is a positive definite symmetric constant matrix.

Substituting equation (19) into equation (18), one can
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By utilizing Cholesky decomposition method, we can have
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)erefore, the robust optimal H∞ state feedback con-
troller can be designed as

u � − R
− 1

B
T

De . (25)

2.2. Design of Backstepping Controller with Finite-Time
Observer. In the previous section, we design an H∞ sliding
mode control law for space multijoint robotic manipulator,
which can stabilize the overall closed-loop system with a
prescribed H∞ performance level. It should be pointed out
that in the previous control approach, the model uncertainty
ΔA(x) is dealt with the robust control framework via the
LMI technique, which may bring conservativeness in
practical application when finding a feasible solution for
spacecraft or space robotic manipulator system. Moreover,
the considered external disturbance input w(t) refers to a
matched type, which is a conservative assumption for
practical space multijoint robotic manipulator, forthe orbit
disturbance is always unmatched. To this end, in this section,
we will revisit the control design problem for the space
multijoint robotic manipulator, where the model uncer-
tainty ΔA(x) is treated as a matched nonlinearity of the
system instead of a model uncertainty, and the considered
disturbance input w(t) is an unmatched term. A novel
backstepping control law with the finite-time integral sliding
mode disturbance observer is developed, which can com-
pensate the effects of model uncertainty ΔA(x) and infinite
energy type disturbance input w(t).

We first recall the following dynamic equation for space
multijoint robotic manipulator:

_q

€q
􏼢 􏼣 �

_q

M
− 1
∘ ΔM(q)€q

− M
− 1
∘ (q)△c(q, _q) _q

⎡⎢⎢⎢⎢⎢⎢⎣
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)en, we define the state vector as

x �
q

_q
􏼢 􏼣. (27)

)us, equation (26) can be rewritten as

_x(t) � Ax(t) +△A(x) + Bu(t) +△H( _x, x), (28)

where

A �
0 I

0 0
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I
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△A(x) �
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0 M
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􏼢 􏼣x(t).

(29)

As the previous discussion, in the practical space en-
vironment, there always exist unknownmodel nonlinearities
and unmatched external disturbances, which are denoted as
f(x, t) ∈ R6 and w(t) ∈ R6, respectively. )en, considering
these effects in system (23), the system equation can be
rewritten as

_x(t) � Ax(t) +△A(x) + Bu(t) +△H( _x, x) + ϕ(x, t),

(30)

where

ϕ(x, t) � f(x, t) + w(t). (31)

In the following discussion, we will employ the finite-
time integral sliding mode disturbance observer method to
estimate the total nonlinearity ϕ(x, t), based on which a
backstepping control law will be designed to stabilize system
(24).

Before proceeding the subsequent design work, we de-
compose the system state vector x(t) as
x(t) � xT

1 (t) xT
2 (t)􏽨 􏽩

T
with x1(t) � q(t) and x2(t) � _q(t)

and decompose ϕ(x, t) as ϕ(x, t) � ϕT
1 (x, t) ϕT

2 (x, t)􏽨 􏽩
T
.

)en, system (26) can be decomposed as
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I
􏼢 􏼣u(t).

(32)

We now rewrite equation (32) as the following two
subsystems:

_x1(t) � x2(t) + ϕ1(x, t),

_x2(t) � − M
− 1
∘ △M(q)x2(t) − M

− 1
∘ △M(q) _x2(t) + ϕ2(x, t) + u(t).

(33)

Next, we define the following two backstepping
variables as

z1(t) � x1(t),

z2(t) � x2(t) − r(t),
􏼨 (34)

where r(t) ∈ R3×1 is the virtual input vector to be designed,
which is constructed as

r(t) � − k1z1(t) + ϕ
∧
(x, t)􏼠 􏼡, (35)
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where k1 ∈ R3∗3 is a positive definite diagonal matrix to be
designed and ϕ

∧
(x, t) ∈ R3∗1 is the estimation of the non-

linearity ϕ(x, t). With all the information in hand, we

present the following finite-time integral sliding mode
disturbance observer (FTISMDO) for system (32) as

s0 � z1(t) − p(t),

p· � z2(t) + r(t) + ϕ
∧
(x, t),

s1j(t) � s
·
0j(t) + 􏽚

t

0
l1jsig

a1j s0j􏼐 􏼑 + l2jsig
a2j s

·
0j􏼐 􏼑􏽨 􏽩dt,

_􏽢ϕj(x, t) � l1jsig
a1j s0j􏼐 􏼑 + l2jsig

a2j s
·
0j􏼐 􏼑 + b1jsig

c1j s1j􏼐 􏼑 + b2js1 + L1jsgn s1j􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

where s0 � s01 s02 s03 s04􏼂 􏼃
T, for j � 1, 2, 3, 4; L1j ≥

supt≥0‖
_ϕj(x, t)‖ denotes the norm bound of the unknown

derivative of ϕj(x, t); and l1j, l2j, a1j, a2j, b1j, b2j, L1j are the
positive parameters to be designed. In particular, these

parameters should satisfy 0< a1j < 1, a2j � (a1j/(1 + a1j)),
siga1j (s0j) � |s0j|

a1jsgn(s0j), and siga2j ( _s0j) � | _s0j|
a2jsgn( _s0j)

where sgn(s0j) and sgn( _s0j) are two sign functions.
In observer (36), get

_s0 � _z1(t) − p(t)· � x2(t) + ϕ1(x, t) − z2(t) + r(t) + ϕ
∧
(x, t)􏼠 􏼡 � ϕ1(x, t) − ϕ

∧
(x, t), (37)

€s0 � _ϕ1(x, t) −
􏽢_ϕ(x, t). (38)

Combining equations (36)–(38) yields

_s1j(t) � €s0j(t) + l1jsig
a1j s0j􏼐 􏼑 + l2jsig

a2j _s0j􏼐 􏼑

� 􏽢ϕ1j(x, t) − b1jsig
c1j s1j􏼐 􏼑 − b2js1 − L1jsgn s1j􏼐 􏼑.

(39)

Design the Lyapunov function V1j � (1/2)s21j:

_V1j � s1j _s1j � s1j
_ϕ1j(x, t) − b1jsig

cj s1j􏼐 􏼑 − b2js1j − L1jsgn s1j􏼐 􏼑􏼐 􏼑Z

≤ − b1j|sig|
cj+1 s1j􏼐 􏼑 − b2js

2
1j.

(40)

So, _V1j + b1j|sig|cj+1(s1j) + b2js
2
1j ≤ 0.

s
·
0j(t) + 􏽚

t

0
l1jsig

a1j s0j􏼐 􏼑 + l2jsig
a2j s

·
0j􏼐 􏼑􏽨 􏽩dt � 0. (41)

Because of (41), s0j(t), s·
0j(t), €s0j(t) can converge in

finite time.
So,

€s0j(t) � − l1jsig
a1j s0j􏼐 􏼑 − l2jsig

a2j _s0j􏼐 􏼑. (42)

Based on equation (41) s0j(t), s·
0j(t),€s0j(t) can converge

in finite time T0j and so does s0 in finite time
Ts0 � maxj T0j􏽮 􏽯. It should be noted that Hurwitz condition
should be met for €s0j(t) + l1jsig

a1j (s0j) + l2jsig
a2j ( _s0j) � 0,

and also a2j ∈ (0, 1), a1j � (a2j/(2 − a2j)) or a2j ∈ (0, 1),
a1j � (a1j/(1 + a1j)). )erefore, after finite time Ts0

+

Ts1
, _s0 � 0 � ϕ1(x, t) − ϕ

∧
(x, t), namely, the estimate error is

able to converge in finite time Ts0
+ Ts1

.

In observer (36), note that the information of s·
0j is

required, which cannot be measured and obtained directly
due to physical constraints. To this end, a high-order sliding
mode differentiator (HOSMD) is employed here to estimate
s·
0j. )e HOSMD is presented as follows:

y0· � h0 � − αk y0 − f(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(k/(k+1))sgn y0 − f(t)( 􏼁 + y1,

y1· � h1 � − αk− 1 y0 − h0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
((k− 1)/k)sgn y0 − h0( 􏼁 + y2,

yk− 1· � hk � − α1 yk− 1 − hk− 2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(1/2)sgn yk− 1 − hk− 2( 􏼁 + yk,

yk· � − α0 y1 − h0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

where α0, α1, . . . , αk > 0 are positive constants to be selected.
According to [23], the following conclusion holds after a
finite-time transient process:
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y0 � f(t),

yr � hr− 1 � f
(r− 1)

(t), r � 1, 2, . . . , k.

⎧⎨

⎩ (44)

In HOSMDs (37) and (43), f(t) denotes s0i(t), and _s0i(t)

can be calculated by y1(t).

Based on the FTISMDO (32) and HOSMDs (37)–(43),
we now reconsider the backstepping variables z1(t) and
z2(t). For z1(t), based on the virtual input vector r(t)

defined in equation (35), it is derived that

z
·
1 · (t) � _x1(t) � x2(t) + ϕ(x, t)

� z2(t) + r(t) + ϕ(x, t)

� z2(t) − k1z1(t) + ϕ
∧
(x, t)􏼠 􏼡 + ϕ(x, t)

� z2(t) − k1z1(t) − 􏽥ϕ(x, t),

(45)

where

􏽥ϕ(x, t) � ϕ
∧
(x, t) − ϕ(x, t). (46)

On the other hand, for z2(t), it is derived that

_z2(t) � _x2(t) − _r(t)

� − M
− 1
∘ △M(q)x2(t) − M

− 1
∘ △M(q) _x2(t) + ϕ2(x, t) + u(t) − k1 _z1(t) + ϕ

∧
· (x, t)􏼠 􏼡

� − M
− 1
∘ △M(q)x2(t) − M

− 1
∘ △M(q) _x2(t) + ϕ2(x, t) + u(t) − k1x2(t) + k1ϕ(x, t) + ϕ

∧
· (x, t)􏼠 􏼡

� − M
− 1
∘ △M(q)z2(t) + M

− 1
∘ △M(q)k1z1(t) + M

− 1
∘ △M(q)ϕ

∧
1(x, t) − M

− 1
∘ △M(q) _x2(t)

+ ϕ2(x, t) + u(t) − k1 z2(t) + r(t)( 􏼁 + k1ϕ(x, t)( 􏼁

� u(t) − ϕ
∧

· (x, t) + ϕ2(x, t) − k1 z2(t) + r(t)( 􏼁 + k1ϕ(x, t) + d(x, t),

(47)

where the lumped disturbance vector d(x, t) is defined as

d(x, t) � M
− 1
∘ △M(q)k1z1(t) + M

− 1
∘ △M(q)ϕ

∧
1(x, t) − M

− 1
∘ △M(q) _x2(t). (48)

As a result, we obtain the following system which is
equivalent to equation (33):

_z1(t) � z2(t) − k1z1(t) − 􏽥ϕ(x, t),

_z2(t) � u(t) − ϕ
∧

· (x, t) + ϕ2(x, t) − k1 z2(t) + r(t)( 􏼁 + k1ϕ(x, t) + d(x, t).

⎧⎪⎨

⎪⎩
(49)

Theorem 1. Considering system (49), suppose that the
model uncertainty △M(q) satisfies △M(q)≤ β1, where

β1 > 0 is a known constant; under the following adaptive
control law:
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u(t) � ϕ
∧

· (x, t) − I3 − k1( 􏼁ϕ
∧
1(x, t) + k1 z2(t) + r(t)( 􏼁 − z1(t)

− β1 M
− 1
∘

����
���� k1
����

���� z1(t)
����

���� + β1 M
− 1
∘

����
���� ϕ
∧
1(x, t)

�������

�������
+ β1 M

− 1
∘

����
���� _x2(t)
����

����sgn z2(t)( 􏼁,

(50)

the overall closed-loop system (49) is asymptotically stable.

Proof. Considering system (49), we define the Lyapunov
function for the first subsystem of (49) as follows:

V1(t) �
1
2
z

T
1 (t)z1(t). (51)

Calculating the time derivative yields

_V1(t) �
1
2
z

T
1 (t) z2(t) − k1z1(t) − 􏽥ϕ(x, t)􏼐 􏼑

� − k1 z1(t)
����

���� +
1
2
z

T
1 (t)z2(t) −

1
2
z

T
1 (t)􏽥ϕ(x, t).

(52)

Next, we design the Lyapunov function for the second
subsystem of (49) as

V2(t) �
1
2
z

T
2 (t) _z2(t) + V1(t), (53)

and then we have

_V2(t) � z
T
2 (t) _z2(t) + _V1(t)

� z
T
2 (t) u(t) − ϕ

∧
· (x, t) + ϕ2(x, t) − k1 z2(t) + r(t)( 􏼁 + k1ϕ(x, t) + d(x, t)􏼢 􏼣

− k1 z1(t)
����

���� +
1
2
z

T
1 (t)z2(t) −

1
2
z

T
1 (t)􏽥ϕ(x, t).

(54)

Considering the lumped disturbance d(x, t) in equation
(50), notice that the following inequality holds:

‖d(x, t)‖≤ β1 M∘
− 1����

���� k1
����

���� z1(t)
����

���� + β1 M∘
− 1����

���� ϕ
∧
1(x, t)

�������

�������
+ β1 M∘

− 1����
���� _x2(t)
����

����. (55)

If we substitute the control law (50) into equation (54), it
is shown that
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_V2(t)≤ z
T
2 (t) u(t) − ϕ

∧
· (x, t) + ϕ2(x, t) − k1 z2(t) + r(t)( 􏼁 + k1ϕ(x, t)􏼢 􏼣

+ β1 M∘
− 1����

���� k1
����

���� z1(t)
����

���� + β1 M∘
− 1����

���� ϕ
∧
1(x, t)

�������

�������
+ β1 M∘

− 1����
���� _x2(t)
����

����

− k1 z1(t)
����

���� +
1
2
z

T
1 (t)z2(t) −

1
2
z

T
1 (t)􏽥ϕ(x, t),

≤ z
T
2 (t)ϕ
∧

· (x, t) − I3 − k1( 􏼁ϕ
∧
1(x, t) + k1 z2(t) + r(t)( 􏼁 − z1(t) − β1 M∘

− 1����
���� k1
����

���� z1(t)
����

����

+ β1 M∘
− 1����

���� ϕ
∧
1(x, t)

�������

�������
+ β1 M∘

− 1����
���� _x2(t)
����

����sgn z2(t)( 􏼁

+ z
T
2 (t) − ϕ

∧
· (x, t) + ϕ2(x, t) − k1 z2(t) + r(t)( 􏼁 + k1ϕ(x, t)􏼢 􏼣

+ β1 M∘
− 1����

���� k1
����

���� z1(t)
����

���� + β1 M∘
− 1����

���� ϕ
∧
1(x, t)

�������

�������
+ β1 M∘

− 1����
���� _x2(t)
����

����

− k1 z1(t)
����

���� +
1
2
z

T
1 (t)z2(t) −

1
2
z

T
1 (t)􏽥ϕ(x, t).

(56)

By some calculation, we have that

_V2(t)≤ − 􏽥ϕ(x, t) − k1 z1(t)
����

���� − z
T
1 (t)􏽥ϕ(x, t)≤ − k1 z1(t)

����
����< 0 (57)

holds for ∀z(t) ∈ R6, z(t)≠ 0, which means that the overall
closed-loop system (49) is asymptotically stable. )us, we
complete the proof. □

3. Simulation Experiment and Result Analysis

3.1. Robust Optimal Controller Simulation Results. )e re-
dundant manipulator has seven degrees of freedom, and the
floating base has six degrees of freedom.)e structure of the
space robot is established by the DH method, as shown in
Figure 1, the dynamic parameters are shown in Table 1, and
the total detumbling chaser is illustrated in Figure 2.

Because optimal control, for a system of _x � A + Bu to
design a suitable state feedback control rate u � − Kx(t) ,
make the performance index

J � 􏽚
∞

0
x

T
(t)Q(t)x(t) + u

T
(t)R(t)u(t)􏼐 􏼑dt, (58)

where Q(t) is n × n of real symmetric semipositive definite
weighted matrices and R(t) is m × m of a real symmetric
positive definite matrix.

Q1 � eye(13),

R1 � 30 eye(13),

gamma � 1.9.

(59)

From equation (25), we obtain the corresponding pa-
rameters as

B � [eye(13)zeros(13)];

A1 � sqrt inv inv(R) −
1

gama2̂
􏼠 􏼡eye(13)􏼠 􏼡􏼠 􏼡,

T11 � A1′Q1,

T12 � A1′ ∗R1,

T0 � T11T12; zeros(13)eye(13)􏼂 􏼃;

u � − pinv(R)BT0De .

(60)

In this simulation, the end of the manipulator moves
from point A rA � 5.83 0 0 0 0 0􏼂 􏼃

T
􏼐 􏼑 to point

B rB � 5 − 2 1 0 0 0􏼂 􏼃
T

􏼐 􏼑. At the moment of t= 1 s, the
interference force of 200N is applied to the terminal flexible
reducer brush, with the action time being 0.01 s, which can
be regarded as an impulse force during the racemization
process.

)e initial pose and final pose of the space racemization
robot are known, and the trajectory planning is carried out
within a specified time. After planning, the position changes
of the end points are shown in Figure 3. )e desired tra-
jectory of end-line velocity can be obtained by differentia-
tion, as shown in Figure 4. Among them, the terminal
attitude does not change, so it is unnecessary to repeat the
terminal attitude planning.
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)e end planning trajectory in the above Cartesian space
is transformed into the joint space. )e joint angle, joint
angular velocity, and joint angular acceleration after plan-
ning are shown in Figures 5–7 , respectively. )e first 10 s is
the planned motion mode, and the last 5 s is the reserved
stabilization time of the manipulator.

For the planned trajectory of the space robot, the H∞
robust optimal controller proposed in this paper is adopted,
and the switching frequency of joint control torque is high.
In order to simulate the actual working effect, a low-pass
filter is incorporated. )e joint torque is shown in Figure 8,
while the joint angle error is shown in Figure 9. )e upper
and lower bounds of the control torque are small, and with
the gradual convergence of the tracking error, the system is

asymptotically stable, and the control torque gradually de-
creases and ultimately converges.

H∞ robust optimal controller designed in this paper can
deal with disturbances with stronger robustness. As for the
joint angle error,H∞ robust optimal controller canmaintain
stability and suppress the tremor within only 0.5 s. If
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Figure 1: Structure of space robot.

Table 1: Kinetic parameters.

Parameter name Matrix Joint1 Joint2 Joint3 Joint4 Joint5 Joint6 Joint7
Length a (m) — 0 0 1 1 0 0 0
Angle α (°) — 90 90 0 0 90 90 0
Joint distance d (m) — 0 0.1 0 0 0.3 0.1 0
Joint angle θ (°) — θ1 θ2 θ3 θ4 θ5 θ6 θ7
Parameter name Matrix Link1 Link2 Link3 Link4 Link5 Link6 Link7
m (kg) 2811 2.8 2.8 25.39 25.39 2.8 2.8 10.6
Ix (kg·m2) 473 0.005 0.005 2.76 2.76 0.005 0.005 1.33
Iy (kg·m2) 473 0.005 0.005 2.76 2.76 0.005 0.005 1
Iz (kg·m2) 467 0.005 0.005 0.03 0.03 0.005 0.005 1.5

Figure 2: Space debris detumbling chaser.
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disturbance occurs, the H∞ robust optimal controller can
generate larger control torques to suppress vibration, which
is conducive to the racemization process. Moreover, theH∞
robust optimal controller has smaller tracking error and
higher tracking accuracy and can stabilize the system within
planned time, and thus its advantage of accuracy and ef-
fectiveness is clearly verified.

3.2.BacksteppingControl SimulationResults. In this section,
a simulation of the stabilization problem of a space
multijoint robotic manipulator is implemented to illus-
trate the effectiveness of the proposed backstepping
control law. Considering the double-joint robotic

manipulator, the mechanical model of the manipulator is
shown in Figure 10. For manipulator model (1) with
angular state variables q � q1 q2􏼂 􏼃

T and angular velocity
variables _q � _q1 _q2􏼂 􏼃

T, the initial attitude orientation and
attitude angular velocity of the manipulator are set as

q(0) �
π
3

−
π
6􏼔 􏼕

T

rad,

_q(0) � 0 0􏼂 􏼃
Trad/s.

(61)

In addition, the inertia matrix, Coriolis force, and
centrifugal force matrix are set as follows:
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M0(q) �
M1 M2

M2 M3
􏼢 􏼣,

C0(q, _q) �
0 C1

C2 0
􏼢 􏼣,

(62)

where

M1 � J1 + m1r
2
1 + m2l

2
1,

M2 � m1r1l1 cos q2 − q1( 􏼁,

M3 � J2 + m2r
2
2,

C1 � − m2r2l1 _q2 sin q2 − q1( 􏼁,

C2 � − m2r2l1 _q1 sin q2 − q1( 􏼁,

(63)

and the parameters above are selected as

J1 � 0.1169 kg · m2
,

J2 � 0.0042 kg · m2
,

m1 � 6.1643 kg,

m2 � 1.3212 kg,

l1 � 0.27m,

l2 � 0.23m,

r1 � 0.1235m,

r2 � 0.1133m.

(64)

)e uncertainties of the system are described as

ΔM �
ΔM1 ΔM2

ΔM2 ΔM3
􏼢 􏼣,

ΔC �
0 ΔC1

ΔC2 0
􏼢 􏼣,

(65)

with

ΔM1 � 0.01 + 0.004ε + 0.014ε2,

ΔM2 � 0.018ε cos q2 − q1( 􏼁,

ΔM3 � 0.008 + 0.007ε + 0.015ε2,

C1 � − 0.015ε _q2 sin q2 − q1( 􏼁,

C2 � − 0.015ε _q1 sin q2 − q1( 􏼁,

(66)
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where ε ∈ [0, 1] describes the size of the uncertainty and it is
designed as ε � 0.5. )e measurement errors of state vari-
ables are given as

Δx1 � 10− 5 10 sin(5 + 0.5t)

8 sin(3 + 0.7t)
􏼢 􏼣,

Δx2 � 10− 5 3 sin(5 + 0.5t)

2 sin(3 + 0.7t)
􏼢 􏼣.

(67)

)e attitude angular and angular velocity trajectories are
depicted in Figures 11 and 12 , respectively, in which ideal
performances are achieved.

)e sign(·) function in control law (41) may lead to
undesirable chattering when the sliding manifold crosses the
sliding mode surface S(t) � 0. To avoid this phenomenon,
the sign(·) function can be replaced by

](t) �
S(t)

norm(S(t)) + ε1
, (69)

where ε1 > 0 refers to the size of the bounder layer, which
offers a continuous approximation to the sliding mode
controller inside the boundary layer. )e time response of
the controller is presented in Figure 13, of which the upper
bound is limited to 2Nm.

For the designed finite-time integral sliding mode dis-
turbance observer, the initial estimated value is set as
􏽢ϕ1(0) � 0 0􏼂 􏼃

T, and the gain parameters in observer (36)
are set as follows:

l1 � 0.01
8 0

0 8
⎡⎢⎣ ⎤⎥⎦,

l2 � 0.01
7 0

0 7
⎡⎢⎣ ⎤⎥⎦,

a1 � 0.01
4 0

0 4
⎡⎢⎣ ⎤⎥⎦,

a2 � 0.01
4 0

0 4
⎡⎢⎣ ⎤⎥⎦;

c1 � 0.01
4 0

0 4
⎡⎢⎣ ⎤⎥⎦,

b1 � 0.01
7 0

0 7
⎡⎢⎣ ⎤⎥⎦,

b2 � 0.01
8 0

0 8
⎡⎢⎣ ⎤⎥⎦,

L1 � 0.01
8 0

0 8
⎡⎢⎣ ⎤⎥⎦.

(70)

)e estimation performance is given in Figure 14, in
which ideal estimation is achieved in finite time. )us, the

improved control performance of the backstepping con-
troller with finite-time observer is demonstrated fully.

k1 �
0.5 0

0 0.5
􏼢 􏼣. (68)

)e uncertainties of the system are described as follows:
at 0 s, 10 s, and 30 s, moments of 15Nm lasting for 0.02 s are
entered in each dimension as a pulse. For the first dimen-
sion, a moment of 15Nm acting for 0.03 s, with an action
period of 10 s, is entered as a pulse. For the second di-
mension, a moment of 10Nm acting for 0.02 s, with a period
of 10 s is entered as a pulse. A set of random numbers
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Figure 11: )e trajectories of attitude angles (rad).
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between [− 4∗ 10(− 6), 4∗ 10(− 6)] is generated as a random
disturbance.

)e attitude and angular velocity trajectories are
depicted in Figures 15 and 16 , respectively, in which ideal
performances are achieved under the condition that a pulse
acts on the target at 0 s, 10 s, and 30 s.

)e time response of the controller is presented in
Figure 17, of which the upper bound is limited to 2Nm.

)e estimated performance is given in Figure 18, where
the ideal estimate is achieved in finite time. )us, given
multiple external disturbances, periodic disturbances, and
random disturbances, the improved control performance of
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an inverse stepper controller with a finite-time observer can
fulfil the requirements.

4. Conclusion

In this paper, the dynamic model of a space debris
detumbling system is established. For the manipulator with
uncertainty and external disturbance, we first design a H∞
robust optimal controller based on a linear quadratic per-
formance index. )e essence of H∞ control is to minimize
the H∞ norm of the error transfer function when the in-
terference is bounded and the maximum interference is
considered. At the same time, the optimal control makes the
system have robust optimal performance under a specified
performance index. It can be proved that the robust state

feedback controller can effectively compensate the uncer-
tainties and bounded external disturbances, which means
the manipulator can accurately track the desired trajectory,
and the quadratic performance index reaches the optimal.
)en, assuming that the disturbance is unmatched, a
backstepping controller with a finite-time integral sliding
mode disturbance observer is designed to further reduce the
conservativeness existing in first robust controller and im-
prove the control accuracy. )e stability analysis shows that
the finite-time integral sliding mode disturbance observer
can efficiently compensate the unmatched lumped uncer-
tainty in finite time..As this paper is a finite-time back-
stepping control of an observer, further research on finite-
time backstepping control of an controlleron redundant
robotic arms will be done in the future.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

References

[1] Y. Lu, X. Liu, Y. Zhou et al., “Review of detumbling tech-
nologies for active removal of uncooperative targets,” Acta
Aeronautica et Astronautica Sinica, vol. 39, no. 1, pp. 38–50,
2018, (in Chinese).

[2] X. Zhou,<e Simulation Analysis of Active Debris Removal of
Multiple Targets in a Single task, )e University of Chinese
Academy of Sciences, Beijing, China, 2017pp. 3–8, (in
Chinese).

[3] S. Kawamoto, K. Matsumoto, and S. Wakabayashi, “Ground
experiment of mechanical impulse method for uncontrollable
satellite capturing,” in Proceeding Of the 6th International
Symposium On Artificial Intelligence And Robotics & Auto-
mation In Space (I-SARAS), Montreal, Canada, June 2001.

[4] T. Sinn, T.)akore, and P.Maier, “Space debris removal using
self-inflating adaptive membrane,” in Proceedings of the 63rd
International Astronautical Congress, Bremen, Germany,
September 2012.

[5] K. Daneshjou and R. Alibakhshi, “Multibody dynamical
modeling for spacecraft docking process with spring-damper
buffering device: a new validation approach,” Advances in
Space Research, vol. 61, no. 1, pp. 497–512, 2018.

[6] S.-I. Nishida and S. Kawamoto, “Strategy for capturing of a
tumbling space debris,” Acta Astronaut, vol. 68, no. 1,
pp. 113–120, 2011.

[7] P. Huang, M.Wang, Z. Meng, F. Zhang, Z. Liu, and H. Chang,
“Reconfigurable spacecraft attitude takeover control in post-
capture of target by space manipulators,” Journal of the
Franklin Institute, vol. 353, no. 9, pp. 1985–2008, 2016.

[8] P. Huang, F. Zhang, Z. Meng, and Z. Liu, “Adaptive control
for space debris removal with uncertain kinematics, dynamics
and states,” Acta Astronautica, vol. 128, pp. 416–430, 2016.

[9] Y. Geng, W. Lu, and X. Chen, “Attitude synchronization
control of on-orbit servicing spacecraft with respect to out-of-
control target,” Journal of Harbin Institute of Technology,
vol. 44, no. 1, pp. 1–6, 2012, (in Chinese).

10 20 30 40 500
Time (s)

–4

–2

0

2

4

Fo
rc

e (
N

m
)

dq1

dq2

Figure 17: )e control torque (Nm).

–0.2

0.0

0.2

Th
e e

sti
m

at
ed

 er
ro

rs
 (r

ad
·s–1

)

0 20 30 40 5010
Time (s)

dq1

dq2

Figure 18: )e estimated errors of FTISMDO (rad/s).

14 Complexity



[10] P. Huang, Y. Xu, and B. Liang, “Contact and impact dynamics
of space manipulator and free-flying target,” in Proceedings of
the 2005 IEEE/RSJ International Conference On Intelligent
Robots And Systems, pp. 1181–1186, Edmonton, Canada,
August 2005.

[11] P. Cheng, S. He, X. Luan, and F. Liu, “Finite-region asyn-
chronous H∞ control for 2D Markov jump systems,”
Automatica, vol. 129, no. 18, Article ID 109590, 2021.

[12] P. Cheng, S. He, J. Cheng, X. Luan, and F. Liu, “Finite-time L2-
gain asynchronous control for continuous-time positive
hidden markov jump systems via T-S fuzzy model approach,”
IEEE Transactions on Cybernetics, vol. 51, pp. 1–8, 2020.

[13] P. Cheng, S. He, J. Cheng, X. Luan, and F. Liu, “Asynchronous
output feedback control for a class of conic-type nonlinear
hidden Markov jump systems within a finite-time interval,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
pp. 1–8, 2020.

[14] W. Zhou, Y. Wang, C. K. Ahn, J. Cheng, and C. Chen,
“Adaptive fuzzy backstepping-based formation control of
unmanned surface vehicles with unknownmodel nonlinearity
and actuator saturation,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 14749–14764, 2020.

[15] W. Yan, P. Zhou, Y. Liang, Y. Wang, and D. Duan, “Adaptive
finite-time neural backstepping control for multi-input and
multi-output state-constrained nonlinear systems using
tangent-type nonlinear mapping,” International Journal of
Roust And Nonlinear Control, vol. 30, pp. 5559–5578, 2020.

[16] Y.Wei, Y. Wang, C. K. Ahn, and D. Duan, “IBLF-based finite-
time adaptive fuzzy output-feedback control for uncertain
MIMO nonlinear state-constrained systems,” IEEE Transac-
tions On Fuzzy Systems, 2020.

[17] Y. Wang, Y. Gao, H. R. Karimi et al., “Sliding mode control of
fuzzy singularly perturbed systems with application to electric
circuit,” IEEE Transactions on Systems Man & Cybernetics
Systems, vol. 48, pp. 1–9, 2017.

[18] Y. Wang, Y. Xia, H. Li, and P. Zhou, “A new integral sliding
mode design method for nonlinear stochastic systems,”
Automatica, vol. 90, pp. 304–309, 2018.

[19] Z. Liu, H. R. Karimi, and J. Yu, “Passivity-based robust sliding
mode synthesis for uncertain delayed stochastic systems via
state observer,” Automatica, vol. 111, no. 111, 2020.

[20] J. Zhai and H. R. Karimi, “Universal adaptive control for
uncertain nonlinear systems via output feedback,” Informa-
tion Sciences, vol. 500, pp. 140–155, 2019.

[21] H. Yang and M. Tan, “Sliding mode control for flexible-link
manipulators based on adaptive neural networks,” Interna-
tional Journal of Automation and Computing, vol. 15, no. 2,
pp. 239–248, 2018.

[22] H. Yang and J. Liu, “An adaptive RBF neural network control
method for a class of nonlinear systems,” IEEE/CAA Journal
of Automatica Sinica, vol. 5, no. 2, pp. 457–462, 2018.

[23] H. Sun, L. Hou, G. Zong, and L. Guo, “Composite anti-
disturbance attitude and vibration control for flexible
spacecraft,” IET Control <eory & Applications, vol. 11, no. 14,
pp. 2383–2390, 2017.

Complexity 15


