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)e increasing global demand for energy necessitates devoted attention to the formulation and exploration of mechanisms of
thermal heat exchangers to explore and save heat energy. )us, innovative thermal transport fluids require to boost thermal
conductivity and heat flow features to upsurge convection heat rate, and nanofluids have been effectively employed as standard
heat transfer fluids. With such intention, herein, we formulated and developed the constitutive flow laws by utilizing the Rossland
diffusion approximation and Stephen’s law along with the MHD effect. )e mathematical formulation is based on boundary layer
theory pioneered by Prandtl. Governing nonlinear partial differential flow equations are changed to ODEs via the implementation
of the similarity variables. A well-known computational algorithm BVPh2 has been utilized for the solution of the nonlinear
system of ODEs.)e consequence of innumerable physical parameters on flow field, thermal distribution, and solutal field, such as
magnetic field, Lewis number, velocity parameter, Prandtl number, drag force, Nusselt number, and Sherwood number, is plotted
via graphs. Finally, numerical consequences are compared with the homotopic solution as a limiting case, and an exceptional
agreement is found.

1. Introduction

In the recent development, nanofluid has gained consid-
erable attention from researchers, engineers, scientists, and
mathematicians due to its significant implementations in
diverse fields of sciences. )ese applications cover the fol-
lowing areas: chemical engineering, space science, nuclear
science, solar energy collection, and several other areas. )e
nanofluid applications can also be employed in other real-
world problems which include engine oils, heat exchangers,
and thermal conductivity [1]. )e word nanofluid is con-
sidered to incorporate small nanoparticles whose dimension
is up to 1–100 nm in the base liquid; biofluid, lubricants, oil,
and ethylene are the common examples of nanofluids [2].
Eastman et al. [3] studied to develop the thermal behavior of

nanofluids by incorporating various nanosized material
particles to base fluids. Chamkha et al. [4] examined radi-
ation effects onmixed convection in view of the vertical cone
embedded in the porous medium with the nanoliquid. )e
influence of hydromagnetic free convective and heat transfer
was analyzed by Sheikholeslami et al. [5]. )e consequences
of MHD flow and viscous dissipation on the momentum
boundary layer of the nanoliquid were evaluated by Abbas
and Sayed [6]. )e hydromagnetic flow of nanofluids over a
revolving disk was reported by Mahanthesh et al. [7]. Later
on, various potential investigations have been carried out by
many researchers and engineers into the development and
implications of these fluids [8–11]. Heat transfer rheology in
convective flow nanofluids with thermal conductivity and
electrical behavior received exceptional importance for their
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fruitful applications in life sciences and engineering devel-
opment. Such applications include solar energy, nuclear
reactor, and cooling and heating mechanisms. Using
Buongiorno’s model, Shehzad et al. [12] examined the effect
of convective heat flow of the nanoliquid. Shen et al. [13]
investigated the heat flow of a nanoliquid by a stretching
surface with thermal radiation effect and velocity slip. Jahan
et al. [14] evaluated the numerical solution to understand
heat transfer aspects in nanomaterials over a convectively
permeable stretching surface with radiation effect. Hamad
and Pop [15] described thermal radiation effects on unsteady
nanoliquid over an oscillatory moving plate with the heat
reservoir. Sheikholeslami and Ganji [16] conducted a nu-
merical consequence to analyze the three-dimensional
nanoliquid with thermal radiation effects in a revolving
system. Hussain et al. [17] illustrated analytical results by
employing Laplace transform to explore unsteady hydro-
magnetic flow over a rotating system subject to chemical
reaction and Hall current. Several mathematicians and in-
vestigators reported the thermal conductivity and electrical
conductivity nature of nanofluids under different conditions
with various geometry convective heat transfer effects in
[18–23]. Mahanthesh et al. [24] evaluated the impact of
suspended nanoparticles on the convective flow of nano-
material in view of the vertical surface with radiation effects.
Kumar et al. [25] conducted a numerical study by employing
the RK-4 method to analyze radiative Jeffrey nanofluid flow
with convective boundary conditions. Raza et al. [26] nu-
merically studied the influence of viscous dissipation and
magnetic field of molybdenum disulfide nanoliquid with the
shape effect. Al-Odat et al. [27] addressed the interaction of
magnetic effects and boundary layer flow of the fluid by an
exponentially stretchable sheet. Chamkha and Aly [28]
presented the numerical solution to magnetohydrodynamic
free convection flow of a nanoliquid by a vertical plane in
view of the porous medium and radiation effects. Aliakbar
et al. [29] studied the analytical solution to hydromagnetic
flow of upper convective Maxwell fluid past a stretchable
extended surface. Khan et al. [30] evaluated the numerical
solution by utilizing the explicit finite difference method
(FDM) with stability analysis to unsteady nanofluid flow by a
stretching surface. Ibrahim and Shankar [31] employed the
shooting technique to inspect magnetohydrodynamic
boundary layer flow of nanomaterial over the stretching
sheet with the slip condition. Sparrow and Cess [32], Ozisik
[33], Siegel and Howell [34], Howell [35], Takhar et al. [36],
and Hossain and Takhar [37] all contributed well to radiative
heat transfer analysis.

2. Basic Flow Equations

Here, we considered steady magnetohydrodynamic
boundary layer nanofluid flow with a uniform velocity U

moving towards an infinite plate. )e velocity of the infinite
plate is defined by the relation Uw � λU; here, λ denotes the
velocity parameter. )e nanofluid flow is confined at 0≤y.

)e coordinate system is chosen in the form such that the
y − axis is normal to the direction of flow, and the magnetic
interaction is employed normal to the plate. Let Tw be the
fluid temperature and Cw be the concentration at the wall,
and free-stream numbers are T∞ and C∞. )e proposed
model is described by the following set of differential
equations. )e flow map and coordinates axes are presented
in Figure 1.
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Here, (u, v) are the velocity components in coordinates
axes, ] is the kinematic viscosity, k is the thermal con-
ductivity parameter, qr denotes the heat flux, DB represents
Brownian diffusion coefficient, DT represents the thermo-
phoresis diffusion coefficient, B0 denotes the field strength, σ
is the electrical conductivity parameter, τ represents the ratio
of the nanoparticle heat capacity to the base fluid heat ca-
pacity, τw is the shear stress, α � k/(ρc)f represents thermal
diffusivity, λ is the velocity parameter, λ> 0 corresponds to
the downstream motion of the plate from the origin, and
λ< 0 corresponds to the upstream motion.

)e appropriate extreme values are
y � 0: v � 0, u � λU, T � Tw, C � Cw,

y⟶∞: Uw⟶ U, T⟶ T∞, C⟶ C∞.
(5)

Utilizing the Rosseland diffusion approximation [35],
thermal flux is defined as

qr �
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4

zy
, (6)

where σ∗ is the Stefan–Boltzman constant and KS is the
Rosseland mean absorption coefficient. )e difference in the
nanofluid temperature within the fluid is sufficiently small
such thatT4 can bewritten as a linear function of temperature:

T
4

� 4TT
3
∞ − 3T

4
∞. (7)

Substituting (6) and (7) in (3), we attained
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Introduce the similarity transformations:
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ψ � (2Uvx)
(1/2)

f(η),

θ(η) �
T − T∞

Tw − T∞
,

φ(η) �
C − C∞

Cw − C∞
,

η � (U/2vx)
(1/2)

.

(9)

)e stream function ψ may be expressed as

u �
zψ
zy

,

v � −
zψ
zx

.

(10)

Equation (1) is justified automatically, while equations
(2)–(5) have the forms

f″′(η) + f(η)f″(η) − (Ha)f′(η) � 0, (11)

1
pr

(3 + 4R)θ″(η) + f(η)θ′(η) + Nbφ′(η)θ′(η)

+ Nt θ′(η)( 􏼁
2

� 0,

(12)

φ″(η) +(Le)f(η)φ′(η) +
Nt
Nb

􏼒 􏼓θ″(η) � 0, (13)

f(0) � 0,

f′(0) � λ,

θ(0) � 1,

φ(0) � 1,

f′(∞)⟶ 1,

θ(∞)⟶ 0,

φ(∞)⟶ 0.

(14)

)e governing variables appearing in (11)–(13) are de-
fined as follows.

R � (4αδT3
∞/kk), Pr � (]/α), Le � (]/DB),

Ha � (2xB2
0/Uρf), Nb � (((ρc)pDB(φw − φ∞))/](ρc)f),

Nt � (((ρc)pDB(Tw − T∞))/](ρc)fT∞), Cf � (τw/ρu2),
Nux � (qw/(Tw − T∞)k), and Shx � (xqm/DB(Cw − C∞)k)

label the radiation constraint, Prandtl number, Lewis number,
Hartmann number, Brownian parameter, thermophoretic
force, drag force, and Nusselt and Sherwood numbers.

)e local Reynolds number is given by the equation
Rex � Ux/].

Using similarity variables in Cf,Nux, and Shx, we get
the dimensionless form as

(2Re)0.5
Cf � f″(0),

Rex

2
􏼒 􏼓

− 1
2Nux � − θ′(0),

Rex

2
􏼒 􏼓

− 1
2Nux � − φ′(0).

(15)

3. Numerical Solution and
Convergence Analysis

)e nonlinear flow expressions (ODEs) in (11)–(13) subject
to boundary conditions in (14) are first transformed into 1st-
order ODEs and then tackled numerically by employing a
built-in computational algorithm BVPh2 in Mathematica
software. )e routine flow numerical code is demonstrated
in Figure 2. Step size Δη � 0.001, and relative tolerance error
10− 6 is set; in addition, the choice of η∞ � 7 confirms that all
numerical approximations approach correctly to asymptotic
values.

Let us introduce the transformation variables as f(η)

� w1,f′(η) � w2,f″(η) � w3,θ(η) � w4,θ′(η) � w5, ϕ(η) �

w6, andϕ′(η) � w7; hence, the following system of 1st-order
seven differential equations are generated:

w1′ � w2,

w2′ � w3,

w3′ + w1w3 − (Ha)w2 � 0,

w4′ � w5,

1
pr

(3 + 4R)w5′ + w1w5 +(Nb)w5w7 + Nt w5( 􏼁
2

� 0,

w6′ � w7,

w7′ +(Le)w1w7 +
Nt
Nb

􏼒 􏼓w5 � 0.

(16)

)e transfer conditions are

Magnetic field

T∞, C∞

Force
Moving surface Tw, Cw

Thermal radiation

y

x

Figure 1: )e flow map diagram.
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w1(0) � 0,

w2(0) � λ,

w4(0) � 1,

w6(0) � 1,

w2(∞) � 1,

x4(∞) � 0,

x6(∞) � 0.

(17)

For authentication purpose, the computational results
are further tested by the use of an analytical scheme (HAM),
and a reasonable agreement has been obtained in two so-
lutions. )e attributes of two solutions via graphs are shown
in Figures 3–5, and the tabularized data for velocity and
thermal and solutal fields are presented in Tables 1–3. Fi-
nally, the residual error analysis has been evaluated and
shown in Figure 6. A decrease in error is perceived for
higher-order deformations.

4. Discussion

)e current computational results accomplished by a nu-
merical algorithm BVP2 unveil the influence of pertinent
governing constraints on velocity, thermal field, and con-
centration profile. )e impact of various emerging param-
eters in flow equations (11)–(13) is plotted through
Figures 7–19. )e numerical values of these flow factors are
regarded as Ha � 0.5, λ � 0.3,Nt � 0.5,Nb � 0.5, Le � 1.0,

Pr � 2.0, andR � 0.4.
Figure 7 describes the Hartmann number Ha effect on

the nanofluid velocity profile f′(η). As anticipated, f′(η)

dwindles when subject to upsurge in Ha. In reality, this
figure revealed that augmentation in Ha boosts Lorentz
force. In consequence, velocity f′(η) diminishes. )e

Declaration of variables

Evaluate the solution using
deval function

System of
first-order ODEs

Discretization
of the domain

Numerical results

Initialization

Call BVPh2

Boundary
condition

Guess function
/piecewise
continuous

polynomials

Figure 2: BVPh2 routine algorithm in Mathematica software.
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Figure 3: Graphical comparison for two solutions in case of the
velocity profile.
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Figure 4: Graphical comparison for two solutions in case of the
temperature profile.
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Figure 5: Graphical comparison for two solutions in case of the
concentration profile.

Table 1: Numerical solution via the analytical solution for the
velocity f′(η) profile.

η Numerical solution HAM solution Absolute error
0.0 0.000000 1.260600 × 10− 11 1.260600 × 10− 11

1.0 0.304039 0.306972 0.002933
2.0 0.987469 0.995322 0.007853
3.0 1.904260 1.913580 0.009316
4.0 2.893680 2.902320 0.008634
5.0 3.893100 3.900560 0.007458
6.0 4.893080 4.899550 0.006471
7.0 5.893080 5.898930 0.005845

Table 2: Numerical solution via the analytical solution for the
temperature θ(η) profile.

η Numerical solution HAM solution Absolute error
0.0 1.000000 1.000000 7.586150 × 10− 13

1.0 0.840974 0.840241 0.000733
2.0 0.682654 0.681360 0.001294
3.0 0.527582 0.526044 0.001539
4.0 0.379004 0.377623 0.001381
5.0 0.240021 0.239184 0.000837
6.0 0.113119 0.113103 0.000016
7.0 7.995770 × 10− 10 0.000912 0.000912

Table 3: Numerical solution via the analytical solution for the
nanoparticle concentration φ(η) profile.

η Numerical solution HAM solution Absolute error
0.0 1.000000 1.000000 2.065240 × 10− 12

1.0 0.703260 0.707816 0.004557
2.0 0.433740 0.441075 0.007335
3.0 0.229562 0.236590 0.007028
4.0 0.106379 0.110674 0.004295
5.0 0.045187 0.047072 0.001885
6.0 0.016303 0.017325 .001021
7.0 − 2.066080″ × 10− 8 0.000912 0.000912
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Figure 6: Total residual error via the order of approximation.
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Figure 7: Influence of the velocity f′(η) profile via Ha.
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Figure 9: Influence of the temperature θ(η) profile via Ha.
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Figure 10: Influence of the temperature θ(η) profile via R.

0 1 2 3 4 5 6 7
η

Nt = 0.3
Nt = 0.6
Nt = 0.9

Nt = 1.2
Nt = 1.5

1.0

0.8

0.6

0.4

0.2

0.0

θ 
(η

)

Figure 11: Influence of the temperature θ(η) profile via Nt.
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Figure 12: Influence of the θ(η) profile via Nb.
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Figure 13: Influence of the θ(η) profile via Pr.

0 1 2 3 4 5 6 7
η

Nt = 0.3
Nt = 0.6
Nt = 0.9

Nt = 1.2
Nt = 1.5

1.0

0.8

0.6

0.4

0.2

0.0

ϕ 
(η

)

Figure 14: Influence of the temperature ϕ(η) profile via Nt.
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contribution of velocity parameter λ on nanofluid velocity
profile f′(η) is evaluated through Figure 8. As perceived, in
this figure, fluid velocity enhances when λ upsurges. Hence,
f′(η) upsurges. )e attributes of thermal field θ(η) curves
for Ha magnetic field are disclosed in Figure 9. One can
perceive that θ(η) is a growing function of Ha. In reality, the
heat transfer rate of nanofluid particles boosts up through
larger Ha. Consequently, θ(η) escalates. Such a scenario is
perceived because higher Ha implies larger Lorentz force
provides more resistance which makes increases the fluid
flow. In consequence, θ(η) augments. Figure 10 explains
variations in thermal field θ(η) subjected to radiation pa-
rameter R. )is figure unveils θ(η) enhancement for higher
values of (R). In fact, working nanofluid acquires extra heat
subject to the radiation factor. In consequence, θ(η) up-
surges. ;Figure 11 reveals variations in θ(η) subject to
thermophoresis parameter Nt. Here, thermal field increases
with increasing Nt. Physically, the thermophoretic force
rises as Nt parameter is escalated. Such force is responsible to
move small size particles by hotter towards colder region.
Consequently, θ(η) escalates. Figure 12 explains the
Brownian motion parameter Nb effect on θ(η). As
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Figure 15: Influence of the ϕ(η) profile via Ha.
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Figure 16: Influence of the ϕ(η) profile via Le.
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Figure 17: Skin friction/drag force via R for different values of Ha.
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Figure 18: Nusselt number via R for different values of Ha.
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Figure 19: Sherwood number via R for changed values of Ha.
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anticipated, thermal field θ(η) enhances through larger
Nb parameter. In nanofluids, Brownian motion ascends
due to small-size nanoparticles, and at this point,
nanoparticle motion rate and its effect against the fluid
have a vital vibrant role regarding heat transport. In
consequence, upsurges in Nb produce active nano-
particle motion within the base fluid. )e result of dis-
ordered nanoparticle motion develops kinetic energy of
the nanoparticles, and eventually, thermal behavior θ(η)

of the fluid augments. )e contribution of Prandtl
number Pr on θ(η) is evaluated through Figure 13. Here,
thermal field diminishes against larger Prandtl number
estimations. Attributes of Nt on solutal field φ(η) are
interpreted in Figure 14. We perceived an increase in
φ(η) subjected to higher thermophoresis parameter es-
timations. In reality, an upsurge in thermophoresis force
is viewed through greater Nt parameter which is re-
sponsible for moving the fluid particles from higher
temperature to lower temperature. In consequence, φ(η)

profile boosts. Solutal field φ(η) curves for Hartmann
number Ha are unveiled in Figure 15. Clearly, the solutal
field is the augmenting function of the Hartmann
number. Mass transfer augments when Ha is enhanced.
Accordingly, φ(η) increases. )e attributes of Lewis
number parameter Le on solutal field φ(η) are interpreted
in Figure 16. Clearly, φ(η) diminishes when Le is in-
creased. Physically, Lewis number Le signifies the in-
fluence of thermal diffusion on mass diffusion in the
boundary layer region. Such a scenario is noticed because
higher Le implies lessening in the solutal field and
boundary layer.

Effects of pertinent variables against physical quantities
(f″(0), − θ′(0), and − φ′(0)) are described in Figures
17–19. )ese figures highlight decay in f″(0), − θ′(0),

and − φ′(0) for larger R andHa estimations.

5. Closing Remarks

)e aim of this research is to analyze two-dimensional in-
compressible viscoelastic magnetonanofluid flow with the
Buongiorno model. )is investigation further includes re-
sults of heat generation/absorption with convective condi-
tions. Current investigation enables us to explain the
following key outcomes:

(i) Velocity field f′(η) lessens when subject to incre-
ment in the Hartmann number Ha, and thermal
field θ(η) develops with magnetic strength

(ii) Velocity profile augmented with larger velocity
parameter λ

(iii) )ermal field θ(η) upsurges when radiation pa-
rameter R and Hartmann number Ha are improved

(iv) A similar feature is viewed qualitatively for higher
thermophoretic parameter Nt and Brownian mo-
tion variable Nb

(v) Solutal field φ(η) boosts through larger Hartmann
number Ha, and φ(η) field dwindles while Lewis
number Le augments

(vi) Larger values of radiation parameter R and Hart-
mann number Ha diminish f″(0) skin friction
(drag force), Nusselt number − θ′(0), and Sherwood
number − φ′(0)
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