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Te existing research studies on adaptive control frequently introducemany parameter estimations and lead to a complicated controller.
Tis paper investigates the robust regulation issue for high-order system and plants to raise a new approach for adaptive control.
Specifcally, the considered system has odd system power, nontriangular form, and external disturbance. By introducing the trans-
formations of a parameter estimation, the studied system is transformed into a new dynamic system. By employing fuzzy systems and
some inequality skills, the appropriate bounds of nonlinear terms are established. Based on the adaptive method and homogeneous
control, a recursive control design algorithm is provided to construct a new adaptive controller, which dominates those uncertain
bounds and guarantees that the closed-loop system is semiglobally uniformly ultimately bounded (SUUB). Te constructed controller
employs only one adaptive law and has a much simpler form. Simulation examples verify the validness of the presented method.

1. Introduction

In engineering, plenty of practical plants [1, 2] sufer from
various disturbances, which produce bad infuences to system
responses and stability. For such kind of systems, robust
control approaches played an important role in stabilizing the
system [3]. On the other hand, multiple uncertainties exist in
nonlinear systems and often add the obstacles to design the
controllers [4, 5]. To overcome the difculty, it is necessary to
employ an efect tool, i.e., the adaptive technique, which
mainly utilizes the idea of certainty equivalence [6]. In ad-
dition, some nonlinear systems may have nontriangular form
[7, 8], which makes the traditional methods such as the
backstepping method and the sliding mode approach difcult
to apply. Since diferent nonlinear systems own their special
structures, it is unable to present a universal control strategy
to regulate all systems [9]. Up to now, there still exist many
challenging control issues for nonlinear systems.

Controls of nonlinear systems have been a hot topic in
recent years [10–12]. Scholarsmainly employed the idea of state
feedback or output feedback during the design procedure.

Specifcally, in control design steps, state feedback control
utilizes all the system state signals, while output feedback
control uses partial measurable signals and the signals obtained
from the constructed state observer. For systems with un-
certainties, many excellent strategies were reported over the
past years. For instance, to achieve the asymptotic tracking
control, the authors in [13] presented an adaptive σ-modif-
cation control method for systems that contained uncertain
control directions and the authors in [14] raised a novel
adaptive recursive RISE control for system with mismatched
uncertainties. To obtain the asymptotic prescribed tracking
performance, the authors in [15] proposed a RBFNN-based
adaptive control algorithm for complicated systems with heavy
modeling uncertainties. To study the fnite-time control
problem, the authors in [16] provided a fuzzy based event-
triggered controller for uncertain systems, and the authors in
[17] studied quantized systems and proposed an fnite-time
controller using the adaptive strategy. When the system in-
volves unmeasurable states, the authors in [18] raised an
adaptive neural output feedback scheme, and the authors in
[19] gave a new extended-state-observer based adaptive control
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strategy. Te authors in [20] further studied stochastic systems
using the dynamic gain and the state observer. For systemswith
external disturbances, some robust control approaches were
employed, see [21] and references therein.

When the system powers are odd numbers, the related
control problems are more difcult. One reason lies in that
many existing approaches are not applicable since the system is
not feedback linearization and the upper bounds of nonlinear
terms are difcult to identify. To tackle the control problems of
systems with odd system powers, the authors in [22] proposed
the adding a power integrator (API) scheme. Later, the
domination idea and homogeneous properties were applied to
solve the regulation of homogeneous systems [23]. Recently,
these methods have been extended to solve many nonlinear
systems. Particularly, by employing API scheme and dynamic
gain strategy, the authors in [24] designed a stable controller for
time-delay systems. Utilizing homogeneous domination (HD)
approach, the authors in [25] studied nonlinear systems and
constructed a homogeneous controller to make the system
globally stable. For some uncertain systems, the authors in
[26, 27] considered systems with diferent structures and
designed the associated controller. Actually, control issues of
nontriangular systems are more challenging. So far, intelligent
control strategies such as fuzzy control, neural network control,
and evolutionary computation have been applied to regulate
diferent systems. However, the obtained controller tends to be
very complicated. Naturally, a problem is: Is it possible to
present an adaptive control method which leads to a simpler
controller for nontriangular systems with odd system power?

Tis work tries to give a solution to the problem. Te
main contributions are as follows:

(i) In this work, a new adaptive control strategy is pro-
posed. During the control design steps, the adaptive-
law-based transformation is introduced and a new
dynamic system is obtained. By choosing an appro-
priate Lyapunov function using a recursive design
method, a control input is designed without using the
information of the unknown functions. By using ho-
mogeneous domination method and fuzzy systems, the
unknown functions are dominated via the designed
adaptive law at last steps. In this way, this algorithm
yields a new adaptive controller by allowing the control
input and the adaptive law to be designed separately.

(ii) Te studied system is more general. It can be seen
from three aspects. Te studied system has high-
order power, which makes many methods for low-
order system difcult to work. Since the system is in
nontriangular structure, it is not easy to utilize the
existing methods for triangular systems to study the
control problem [23, 25]. Besides, the existing of

unknown functions and disturbance further add new
obstacles to the control design.

2. Problem Formulation

Consider nontriangular nonlinear system

_x1 � c1(t)x
p
2 + f1 θ, x1, . . . , xn(  + w(t),

_x2 � c2(t)x
p
3 + f2 θ, x1, . . . , xn(  + w(t),

⋮

_xn � cn(t)u
p

+ fn θ, x1, . . . , xn(  + w(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where x � [x1, . . . , xn]⊤ ∈R is the state vector, u ∈R
denotes the system input, θ is the unknown parameter
vector, w(t) is the disturbance, fi(·) is the continuous
function, and p is the odd system power. For 1≤ i≤ n, ci(t)

satisfes c0 ≤ ci(t)≤ cm, where c0 > 0 and cm > 0 are known
constants. |w(t)|≤w0, where w0 > 0 is a constant.

Remark 1. It shows that system (1) has odd system power
and is in a nontriangular form. It cannot be regulated with
the conventional methods like the backstepping control and
the sliding control for triangular systems. Te existing
methods for odd system power such as the API scheme and
the HD approach are also inapplicable since it is difcult to
deal with those nontriangular uncertain nonlinear terms. In
this work, by introducing new transformations, we will
transform the system into a new one. Ten, we propose
a fuzzy approximation based HDmethod for control design.

Te following Lemmas are needed later.

Lemma 2 (See [25]). Te inequality |κGδHλ|≤ c|G|δ+λ

+ λ/(δ + λ)(δ/c(δ + λ))(δ/λ)|κ|δ+λ/λ|H|δ+λ holds, where κ, G,

H ∈R are any constants, δ, λ, c ∈R are positive constants.

Lemma 3 (See [27]). For any constant δ0 > 0 and a contin-
uous function πi(θ, X) defned on the compact set Λ, a fuzzy
system Ψ⊤i Li(X) exists and guarantees supX∈Λ|πi(θ,

X) − Ψ⊤i Li(X)|≤ δ0.

3. Main Results

Introduce the transformations

ηi �
xi

H
ri (ϑ(t))

, v(t) �
u(t)

H
rn+1(ϑ(t))

, i � 1, . . . , n, (2)

where r1 � r0 ≥ 1, ri+1p � ri + r0, ϑ(t) is the estimation of
parameter ϑ to be defned later and satisfes ϑ(t)≥ 1, H(ϑ) is
selected such that H(ϑ)≥ 1, dH(ϑ)/dϑ> 0. Ten, we
transform system (1) into

_ηi � H
r0(ϑ)ci(t)ηp

i+1 −
ri

H(ϑ)

dH(ϑ)

dϑ
_ϑηi + Fi(·) + Wi(·), i � 1, . . . , n − 1,

_ηn � H
r0(ϑ)cn(t)v

p
−

rn

H(ϑ)

dH(ϑ)

dϑ
_ϑηn + Fn(·) + Wn(·),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)
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where Fj(·) � H− rj (ϑ)fj, Wj(·) � H− rj (ϑ)w(t), 1≤ j≤ n.

Remark 4. In (3), the adaptive law should be designed such
that _ϑ≥ 0, H(ϑ)≥ 1. In this way, it can be utilized to
dominate some nonlinear terms raised during the control
design. For details, see the following.

Next, we give the following results.

Theorem 5. System (1) has the adaptive controller

u � − H
rn+1(ϑ)βnSn,

_ϑ �
λ

H
q
(ϑ)



n

j�1
S
2p
j , ϑ(0)≥ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where rn, q, λ and βj are constants to be specifed, ϑ is esti-
mation of an unknown parameter ϑ defned later, S1 � η1,
Sj � ηj − η∗j , η

∗
j � − βj− 1Sj− 1, j � 2, . . . , n. It ensures that all

system solutions are semiglobally uniformly ultimately
bounded (SUUB).

Proof. We frst provide the control design procedure. Later,
we perform the stability analysis. □

Part 6. Control design procedure.

Initial Step 7. Choosing the function V1 � 1/(p + 1)S
p+1
1 , we

get

_V1 � S
p
1 H

r0(ϑ)c1(t)ηp
2 −

r1

H(ϑ)

dH(ϑ)

dϑ
_ϑη1 + F1(·) + W1(·) 

� H
r0(ϑ)c1(t)S

p
1 ηp

2 − η∗p2  + H
r0(ϑ)c1(t)S

p
1η
∗p
2 −

r1

H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
1 + S

p
1 F1 + W1( .

(5)

By Lemma 3, there exists a fuzzy system Ψ⊤1 L1 such that
f1 � Ψ⊤1 L1 + δ1, |δ1|≤ δ0. Ten, we obtain

S
p
1F1 � H

− r1(ϑ)S
p
1 Ψ
⊤
1 L1 + δ1( 

≤H
− r1(ϑ) S1



p Ψ⊤1 L1


 + δ0


 

≤H
− r1(ϑ) a1 Ψ1

2
S
2p
1 +

1
4a1

��������

��������
L1

2
+ a1S

2p
1 +

1
4a1

δ20 ,

(6)

S
p
1W1 � H

− r1(ϑ)S
p
1w1 ≤H

− r1(ϑ) a1S
2p
1 +

1
4a1

w
2
0 .

(7)

Choosing η∗2 � − (na1/c0)
1/pS1≕ − β1S1 and substituting

(6) and (7) into (5), we have

_V1 ≤ − nρ0a1H
r0(ϑ)S

2p
1 −

h1

H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
1

+ H
r0(ϑ)c1(t)S

p
1 ηp

2 − η∗p2 

+ H
− r1(ϑ) 2a1 + a1 Ψ1

����
����
2

 S
2p
1 +

D1

H
r1(ϑ)a1

,

(8)

where ρ0 � 1, h1 � r1, D1 � 1/4(‖L1‖
2 + δ20 + w2

0).
Step k (k≥ 2). Suppose that for step k − 1 there exists

a continuous function Vk− 1 and transformations Sj � ηj −

η∗j , η∗j � − βj− 1Sj− 1, j � 2, . . . , k which satisfy

_Vk− 1 ≤ − (n − k + 2)ρ0 · · · ρk− 2 

k− 1

j�1
H

r0(ϑ)ajS
2p
j − 

k− 1

j�1

hk− 1

H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
j

+ ck− 1H
r0(ϑ)S

p

k− 1 ηp

k − η∗pk  + 

k− 2

i�1
ρi · · · ρk− 2 

i

j�1
H

− rj (ϑ) 2aj + aj Ψj

�����

�����
2

 S
2p
j

⎛⎝

+ 
i

j�1
H

− rj (ϑ)a
− 1
j Dj

⎞⎠ + 
k− 1

j�1
H

− rj (ϑ) 2aj + aj Ψj

�����

�����
2

 S
2p
j + 

k− 1

j�1
H

− rj (ϑ)a
− 1
j Dj.

(9)
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In this step, choose Vk � ρk− 1Vk− 1 + 1/(p + 1)S
p+1
k ,

which leads to

_Vk � ρk− 1
_Vk− 1 + S

p

k
_ηk − _η∗k( 

≤ − (n − k + 2)ρ0 · · · ρk− 1 

k− 1

j�1
H

r0(ϑ)ajS
2p
j − 

k− 1

j�1

ρk− 1hk− 1

H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
j

+ ρk− 1ck− 1H
r0(ϑ)S

p

k− 1 ηp

k − η∗pk  + 
k− 1

i�1
ρi · · · ρk− 1 

i

j�1
H

− rj (ϑ) 2aj + aj Ψj

�����

�����
2

 S
2p
j

⎛⎝

+ 
i

j�1
H

− rj (ϑ)a
− 1
j Dj

⎞⎠ + S
p

k H
r0(ϑ)ck(t)ηp

k+1 −
rk

H(ϑ)

dH(ϑ)

dϑ
_ϑηk + Fk + Wk − 

k− 1

j�1

zη∗k
zηj

_ηj
⎛⎝ ⎞⎠.

(10)

By Lemma 2, we obtain

ρk− 1ck− 1H
r0(ϑ)S

p

k− 1 ηp

k − η∗pk ≤H
r0(ϑ)ϕk1S

2p

k + H
r0(ϑ)

ρ0 · · · ρk− 1

3
S
2p

k− 1, (11)

where ϕk1 > 0 is a constant. Noting that H(ϑ)≥ 1, we obtain

− S
p

k

rk

H(ϑ)

dH(ϑ)

dϑ
_ϑηk ≤ − rkb0

1
H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
k + Bk1

1
H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
k− 1 , (12)

where 0< b0 < 1 and Bk1 > 0 are constants. By Lemma 3,
there is a fuzzy system Ψ⊤k Lk such that fk � Ψ⊤k Lk + δk,

|δk|≤ δ0. By Lemma 2, we get S
p

kΨ
⊤
k Lk ≤ ak‖Ψk‖2S

2p

k +

‖Lk‖2/(4ak), S
p

kδk ≤ akS
2p

k + δ2k/(4ak), and S
p

k w≤ akS
2p

k +

w2
0/(4ak), which and (3) yield that

S
p

k Fk + Wk( ≤H
− rk (ϑ) 2ak + ak Ψk

����
����
2

 S
2p

k + H
− rk (ϑ)

Dk

4ak

, (13)

where ak is a positive constant, Dk � ‖Lk‖2 + δ20 + w2
0.

Similarly, using Lemma 3, it is deduced that

− S
p

k 

k− 1

j�1

zη∗k
zηj

_ηj ≤H
r0(ϑ)ϕk2S

2p

k + H
r0(ϑ)

2ρ0 · · · ρk− 1

3


k− 1

j�1
S
2p
j +

rkb0

2
1

H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
k

+ Bk2
1

H(ϑ)

dH(ϑ)

dϑ
_ϑ 

k− 1

j�1
S

p+1
j + 

k− 1

j�1
H

− rj (ϑ) 2aj + aj Ψj

�����

�����
2

 S
2p
j + 

k− 1

j�1
H

− rj (ϑ)
Dj

4aj

,

(14)

where ϕk2 and Bk2 are positive constants, Dj � 1/4(‖Lj‖
2 +

δ20 + w2
0). Considering that ηp

k+1 � ηp

k+1 − η∗pk+1 + η∗pk+1 and
choosing η∗k+1 � − (((n − k + 1)ak + ϕk1 + ϕk2)/c0)

1/pSk, it
follows that
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_Vk ≤ − (n − k + 1)ρ0 · · · ρk− 1 

k

j�1
H

r0(ϑ)ajS
2p
j − hk 

k

j�1

1
H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
j

+ ckH
r0(ϑ)S

p

k ηp

k+1 − η∗pk+1  + 
k− 1

i�1
ρi · · · ρk− 1 

i

j�1
H

− rj (ϑ) 2aj + aj Ψj

�����

�����
2

 S
2p

j
⎛⎝

+ 
i

j�1
H

− rj (ϑ)a
− 1
j Dj

⎞⎠ + 
k

j�1
H

− rj (ϑ) 2aj + aj Ψj

�����

�����
2

 S
2p
j + 

k

j�1
H

− rj (ϑ)a
− 1
j Dj,

(15)

where hk � min ρk− 1hk− 1 − Bk1 − Bk2, rkb0/2 . Tis com-
pletes the recursive design.

In the last step, we choose Vn � ρn− 1Vn− 1 + 1/p + 1 Sp+1
n +

ρ/2λϑ
2
, where λ> 0 is a constant, ρ � min1≤i≤n ρ0 · · · ρn− 1ai ,

ϑ � ϑ − ϑ. Using the similar procedure, we obtain the control
input

v � −
an + ϕn1 + ϕn2

c0
 

1
p

Sn≕ − βnSn,
(16)

which gives that

_Vn ≤ − ρ0 · · · ρn− 1 

n

j�1
H

r0(ϑ)ajS
2p
j − hn 

n− 1

j�1

1
H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
j

+ 
n− 1

i�1
ρi · · · ρn− 1 

i

j�1
H

− rj (ϑ) 2aj + aj Ψj

�����

�����
2

 S
2p

j + 
i

j�1
H

− rj (ϑ)a
− 1
j Dj

⎛⎝ ⎞⎠

+ 
n

j�1
H

− rj (ϑ) 2aj + aj Ψj

�����

�����
2

 S
2p

j + 
n

j�1
H

− rj (ϑ)a
− 1
j Dj +

ρ
λ

ϑ _ϑ.

(17)

Noting that



n− 1

i�1
ρi · · · ρn− 1 

i

j�1
H

− rj (ϑ)2ajS
2p

j

≤H
− q

(ϑ) 
n− 1

i�1
ρi · · · ρn− 1 2a1S

2p
1 + · · · + 2aiS

2p
i  

� H
− q

(ϑ)ρ1 · · · ρn− 12a1S
2p
1

+ H
− q

(ϑ)ρ2 · · · ρn− 1 2a1S
2p
1 + 2a2S

2p
2 

+ H
− q

(ϑ)ρ3 · · · ρn− 1 2a1S
2p
1 + 2a2S

2p
2 + 2a3S

2p
3 

+ · · · + H
− q

(ϑ)ρn− 1 2a1S
2p
1 + · · · + 2an− 1S

2p
n− 1 

� H
− q

(ϑ) 

n− 1

i�1


n− 1

j�i

ρj · · · ρn− 1
⎛⎝ ⎞⎠ · 2aiS

2p

i ,

(18)

where q � min1≤j≤n rj . Defning A � max1≤i≤n− 1 
n− 1
j�i ρj · · ·

ρn− 1 · 2ai + 2ai, 2an}, D � max1≤i≤n− 1 
n− 1
j�i ρj · · · ρn− 1a

− 1
j Dj +

a− 1
j Dj, a− 1

n Dn}, we have

_Vn ≤ − ρ
n

j�1
H

r0(ϑ)S
2p

j − hn 

n− 1

j�1

1
H(ϑ)

dH(ϑ)

dϑ
_ϑS

p+1
j

+

A 1 + max
1≤j≤n
Ψj

�����

�����
2

 

H
q
(ϑ)



n

j�1
S
2p
j +

D

H
q
(ϑ)

+
ρ
λ
ϑ _ϑ.

(19)

Defning ϑ � A(1 + max1≤j≤n ‖Ψj‖
2)/ρ and noting that

− hn
n− 1
j�11/H(ϑ)dH(ϑ)/dϑ _ϑS

p+1
j ≤ 0, we have

_Vn ≤ − ρ(1 − ϵ) 
n

j�1
H

r0(ϑ)S
2p
j

− ρ ϵHr0(ϑ) −
ϑ

H
q
(ϑ)

  

n

j�1
S
2p

j

+
ρ
λ
ϑ _ϑ −

λ
H

q
(ϑ)



n

j�1
S
2p
j

⎛⎝ ⎞⎠ +
D

H
q
(ϑ)

,

(20)

where 0< ϵ< 1 is a constant. Choosing H(ϑ) � (ϑ/ϵ)1/r0+q

and
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_ϑ �
λ

H
q
(ϑ)



n

j�1
S
2p
j , ϑ(0)≥ 1, (21)

we obtain

_Vn ≤ − ρ
n

j�1
S
2p
j + D, (22)

where ρ≤ ρ(1 − ϵ) and D � D are constants.

Part 8. Stability analysis. Defne the set Λ � S | 
n
j�1S

2p
j ≤

D/ρ}, where S � [S1, . . . , Sn]⊤. From (22), it follows that S

will stay in Λ for all S ∈ Λ. For S which satisfes


n
j�1S

2p
j >D/ρ, S will converge into the set Λ. Hence, the

vector S is bounded. Actually, ϑ(t) is also bounded on
[0, +∞). We prove it by contradiction. Suppose that there is
a fnite time T which satisfes limt⟶T

ϑ(t) � +∞. Ten,
integrate both sides of (21) and noting that Hq(ϑ)≥ 1, we
obtain

ϑ(T) − ϑ(0) � 
T

0
ϑ(l)dl � 

T

0

λ
H

q
(ϑ(l))



n

j�1
S
2p
j (l)dl

≤ λ
T

0


n

j�1
S
2p

j (l)dl< λ0,

(23)

where λ0 > 0 is a constant. Hence, ϑ(T)≤ ϑ(0) + λ0, which is
in contradiction with limt⟶T

ϑ(t) � +∞. Terefore, ϑ(t) is
bounded. Utilizing S1 � η1, Sj � ηj − η∗j � ηj − βj− 1 Sj− 1, j �

2, . . . , n, it yields that ηi, 1≤ i≤ n are bounded. By the def-
inition of Hq(ϑ) and the boundedness of ϑ, we know that
xi, 1≤ i≤ n are bounded. So, for any initial condition, all the
system signals are bounded. Tus, the system is SUUB.

Remark 6. Tis paper presents an adaptive control strategy,
which guarantees a SUUB stability result. Te advantages of
the result are as follows: (1) the result is applicable to systems
that require less stronger conditions. In many existing re-
sults, the nonlinear conditions should satisfy some growing
conditions, such as linear growing condition in [28], high-
order growing condition [26], and homogeneous growing
condition [23]. Tese conditions are somewhat stronger.
Also, the systems should satisfy the triangular form. In this
work, the nonlinear functions can be in a more general form
which covers all those conditions. Besides, the considered
system has a nontriangular structure. (2) Te result is
achieved via a much simpler adaptive controller. Diferent
from the methods [2, 6, 24], this paper employs one adaptive
law and does not introduce many complicated nonlinear
terms in the virtual controllers to dominate the uncertainties
in each steps. Instead, we utilize the adaptive law to dom-
inate them in the last design steps. Hence, the presented
adaptive controller has a much simpler form. (3) Te result
can be extended to asymptotic stability under some non-
linear growing conditions. For instance, suppose that the
disturbance w � 0 and the functions satisfy fi ≤ θ

n
i�1|xi|

p.

Following the similar deductions, we can obtain S
p

k Fk ≤
Hr0− a(ϑ)S

2p

k + Hr0− a(ϑ)θCk
k
i�1|Si|

2p, where a> 0, Ck > 0
are constants. Following the similar design steps, we can
design the adaptive controller such that the derivative of the
Lyapunov function satisfes _Vn ≤ − ρ

n
j�1S

2p
j . By the Lya-

punov stability theorem, we can show that the system is
globally asymptotically stability.

4. Simulation Example

Example 1. We study the single-link robot system (see [29]):

_x1 � x2,

_x2 � x3 − Bx2 − g sin x1(  + μ x1( ,

_x3 � u −
K

M
x2 −

L

M
x3,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

where B, K, L are all unknown parameters, μ(x1) � sin(x1).
With the help of the method in Teorem 5, we obtain the
adaptive controller

u � − H
r4(ϑ)β3S3,

_ϑ �
λ

H
q
(ϑ)



3

i�1
S
2
i , ϑ(0) � 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

where S1 � x1/Hr1(ϑ), S2 � x2/Hr2(ϑ) + β1S1, and
S3 � x3/Hr3(ϑ) + S2. In the simulation, H(ϑ) � (ϑ/ϵ)1/r0+q,
the system parameters are selected as M � 1, L � 5, B � 1,
g � 10, and K � 10. Te design parameters are q � 1,
ϵ � 2/3, r0 � r1 � 1, r2 � 2, r3 � 3, r4 � 4, β1 � 1.5, β2 � 2,

β3 � 7, and λ2 � 10. Te initial conditions are given as
ξ1(0) � 0.5, ξ2(0) � 0, and ξ3(0) � 0. To make a compari-
son, the simulation is also performed using the fuzzy method
in [30] under the same condition. Te trajectories of system
signals are provided in Figures 1–4. As can be seen, with the
method of this paper, the states x1, x2, x3 have smaller
amplitudes. In detail, under the presented method, the
amplitudes of x1, x2, x3 are about 0.08, 1.1, and 2.5. Under
the method in [30], the amplitudes of x1, x2, x3 are about 0.2,
3, and 18. Te states x1, x2, x3 can converge to the neigh-
borhood of the original faster. Specifcally, under the pre-
sented method, the convergence time of the states x1, x2, x3
are about 2 s, 2 s, and 2 s. Under the method in [30], the
convergence times of the states x1, x2, x3 are about 3 s, 3 s,
and 3 s. Besides, the amplitude of the control input u in this
paper is smaller. More exactly, under the presented method,
the amplitude of u is about 20. Under the method in [30], the
amplitude of u is about 500. Tus, the presented method is
efective and has better system response.

Example 2. Consider the system

_x1 � c1x
3
2 + θ1x1x2 + w(t),

_x2 � c2u
3

+ θ2x
2
2,

⎧⎨

⎩ (26)
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Figure 1: Trajectory of x1 in system (24).
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where x1, x2 are the states, u is the input, θ1, θ2 are unknown
functions, w(t) is the disturbance. Let H � (ϑ/ϵ)9/14 and
choose ϵ � 1/2, r0 � r1 � 1, q � 5/9, r2 � 2/3, and r3 � 5/9.
Following the presented algorithm, we can construct the
adaptive controller

u � − H
r3(ϑ)β2S2,

_ϑ �
λ

H
q
(ϑ)

S
2p
1 + S

2p
2 , ϑ(0) � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

where p � 3, S1 � x1/Hr1(ϑ), and S2 � x2/Hr2(ϑ) + β1S1.
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u for method of this paper
u for the method of ref.[29]
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In the simulation, we choose c1 � 1, c2 � 1, θ1 � 1,
θ2 � 1, w(t) � 0.1 sin t, β2 � 9, β1 � 3, and λ � 500.
Figures 5–8 provide the trajectories of the system signals. As
can be seen, the control efort is small. Besides, all system
states are bounded. Hence, the provided strategy is valid.

5. Conclusion

In the research, the adaptive problem of the nontriangular
system has been discussed. In the control design procedure,
the function of parameter estimation is skillfully employed.
By utilizing the idea of homogeneous control, fuzzy systems,
and the adaptive scheme, a new robust adaptive controller
has been constructed. Since homogeneous control is
employed and only one parameter adaptive law is in-
troduced, the obtained adaptive controller has a simpler
form. Actually, future studies can focus on the following
problems. For instance, if the plant contains time-delay, can
we construct the similar stable controller? Can we extend the
result to stochastic nonlinear system? If the system has
unmodeled dynamics, can we construct the adaptive con-
troller with similar form?
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