
Research Article
Low Complexity, Low Probability Patterns and Consequences for
Algorithmic Probability Applications

Mohammad Alaskandarani1 and Kamaludin Dingle 1,2,3

1Centre for Applied Mathematics and Bioinformatics (CAMB), Department of Mathematics and Natural Sciences,
Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait
2Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
3Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA

Correspondence should be addressed to Kamaludin Dingle; dinglek@caltech.edu

Received 23 August 2022; Revised 12 January 2023; Accepted 29 April 2023; Published 12 May 2023

Academic Editor: Hiroki Sayama

Copyright © 2023MohammadAlaskandarani and Kamaludin Dingle.Tis is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Developing new ways to estimate probabilities can be valuable for science, statistics, engineering, and other felds. By considering
the information content of diferent output patterns, recent work invoking algorithmic information theory inspired arguments
has shown that a priori probability predictions based on pattern complexities can be made in a broad class of input-output maps.
Tese algorithmic probability predictions do not depend on a detailed knowledge of how output patterns were produced, or
historical statistical data. Although quantitatively fairly accurate, a main weakness of these predictions is that they are given as an
upper bound on the probability of a pattern, but many low complexity, low probability patterns occur, for which the upper bound
has little predictive value. Here, we study this low complexity, low probability phenomenon by looking at example maps, namely
a fnite state transducer, natural time series data, RNAmolecule structures, and polynomial curves. Somemechanisms causing low
complexity, low probability behaviour are identifed, and we argue this behaviour should be assumed as a default in the real-world
algorithmic probability studies. Additionally, we examine some applications of algorithmic probability and discuss some im-
plications of low complexity, low probability patterns for several research areas including simplicity in physics and biology,
a priori probability predictions, Solomonof induction and Occam’s razor, machine learning, and password guessing.

1. Introduction

Many problems in science, statistics, and engineering re-
volve around estimating probabilities of events. Tis is es-
pecially true in the current climate, where machine learning
and data science are enjoying broad applications. Hence,
developing new methods for calculating, bounding, or
predicting probabilities is valuable. One direction for such
predictions is in theoretical computer science where algo-
rithmic information theory [1–4] (AIT) provides a theoretical
framework for studying randomness, probability, and
complexity. Te central quantity of AIT is Kolmogorov
complexity, K(x), which measures the complexity of an
individual object or pattern x via the amount of information
required to describe or generate x. Te object x could be

a binary string, integer, graph, or indeed anything that can
be represented as a binary string. Te AIT coding theorem
[5] establishes a fundamental connection between com-
plexity and probability predictions in very general settings. It
states that the chances that some output x is produced via
some generic computation mechanism are directly related to
the complexity of x. More formally, the coding theorem
states that P(x) ∼ 2− K(x) where P(x) is the probability that
an output x is generated by a (prefx optimal) universal
Turing machine fed with a random binary program input.
P(x) is known as the algorithmic probability of x, and the
associated probability distribution is known as the universal
distribution [6].

Algorithmic probability and AIT results are typically
difcult to apply in real-world settings due to the fact that

Hindawi
Complexity
Volume 2023, Article ID 9696075, 15 pages
https://doi.org/10.1155/2023/9696075

https://orcid.org/0000-0003-4423-3255
mailto:dinglek@caltech.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9696075

K(x) is uncomputable, the theorems assume the presence of
universal Turing machines (UTMs), and the results are
asymptotic and stated with accuracy to within an unknown
constant. Despite these theoretical difculties, in practice,
many successful applications of AIT have been made based,
for example, in bioinformatics [10, 11], physics [12], signal
denoising [13], among many other applications [4]. Mostly,
these applications use standard compression algorithms to
approximate K(x), sometimes combined with various forms
of theorem approximation. Additionally, often formal AIT
derivations are used to inspire quantitative practical pre-
dictions while being aware that the application settings are in
fact outside of the (e.g., asymptotic) regimes in which the
derivations are strictly valid. Algorithmic probability esti-
mates have beenmade numerically by random sampling [14]
and enumeration [15–17] of computer programs.

From a very diferent perspective, algorithmic proba-
bility estimates have also been made via deriving a weaker
form of the coding theorem, applicable in real-world con-
texts [9], taking the form of an upper bound. Tis weaker
form upper bound was applied in a range of input-output
maps to make a priori predictions of the probability of
diferent shapes and patterns, such as the probability of
diferent RNA shapes appearing on a random choice of
genetic sequence, or the probability of diferential equation
solution profle shapes, on random choice of input pa-
rameters, and several other examples [7, 9, 18, 19]. Sur-
prisingly, it was found that probability estimates could be
made directly from the complexities of the shapes them-
selves, without recourse to the details of themap or reference
to how the shapes were generated. Te authors of [9] termed
this phenomenon of an inverse relation between complexity
and probability simplicity bias (SB). One important draw-
back of this work is that only an upper bound prediction was
made, rather than a direct probability value prediction. In
contrast to the original coding theorem, in practice, it has
been observed that many simple patterns have low proba-
bility [9]. Such low Kolmogorov complexity, low probability
(LKLP) outputs present a weakness in the predictive ability
of the upper bound, because for these outputs, their com-
plexity and probability values are largely disconnected, and
hence, predicting one from the other is more challenging.
Understanding the causes and properties of LKLP outputs
may help to improve the accuracy of applications of algo-
rithmic probability, such as better a priori probability
predictions and induction. In this work, we investigate LKLP
behaviour and its implications for applied algorithmic
probability via some examples from previously
published works.

2. Background Theory

Some brief accessible background theory is given here; more
formal and detailed presentations are available in, e.g.,
[4, 20, 21]. A universal Turing machine (UTM) [22] is an
abstract general computing device which can simulate any
other Turing machine. A UTM has the highest computa-
tional capacity and can implement any conceivable algo-
rithm which could in principle be run on a computer. A

programming language is called Turing complete (or com-
putationally universal) if the language is sufciently ex-
pressive to be able to simulate a UTM and therefore
implement any algorithm. Common languages such as
Python, C, and FORTRAN are Turing complete. If a func-
tion can be computed by a fnite mechanical procedure, then
it is a computable function. For computable functions, all
inputs or programs eventually halt and cannot (for example)
run on forever in an infnite loop. Common functions such
as polynomials, exponentials, and trigonometric functions
are computable.

Te Kolmogorov complexity KU(x) of a string x with
respect to U is defned [1–3] as

KU(x) � minp |p|: U(p) � x , (1)

where p is a binary program for a prefx optimal UTM U,
and |p| indicates the length of the binary program p in bits.
Due to the invariance theorem [4] for any two optimal UTMs
U and V, KU(x) � KV(x) + O(1) so that the complexity of x

is independent of the machine, up to additive constants.
Hence, we conventionally drop the subscript U in KU(x)

and speak of “the” Kolmogorov complexity K(x). In-
formally, K(x) can be defned as the length of a shortest
program that produces x, or simply as the size in bits of the
compressed version of x. If x contains repeating patterns like
x � 1010101010101010, then it is easy to compress, and
hence, K(x) will be small. On the other hand, a randomly
generated bit string of length n is highly unlikely to contain
any signifcant patterns and hence can only be described via
specifying each bit separately without any compression, so
that K(x) ≈ n bits. Other names for K(x) are descriptional
complexity, algorithmic complexity, and program-size com-
plexity. Fundamentally, K(x) measures the amount of in-
formation to describe or generate x precisely and
unambiguously. Note that Shannon information and Kol-
mogorov complexity are closely related to each other [23]
but also difer fundamentally because Shannon information
quantifes the information content of a random source while
Kolmogorov complexity quantifes the information of in-
dividual sequences or objects.

Solomonof invented algorithmic probability [24], but it
was later formalised and extended by Levin [5] who proved
the AIT coding theorem in 1974 which states that

P(x) � 2− K(x)+O(1)
, (2)

where P(x) is the probability that UTM U generates output
string x on being fed random bits as a program (again, we
have dropped the subscript U). Tus, high complexity
outputs have exponentially low probability, and simple
outputs must have high probability.

Coding theorem-like behaviour in real-world input-
output maps was studied, leading to the observation of
a phenomenon called simplicity bias (SB) [9]. SB is captured
mathematically as

P(x)≤ 2− aK(x)− b
, (3)

2 Complexity

where P(x) is the (computable) probability of observing
output x on random choice of inputs, and K(x) is the es-
timated Kolmogorov complexity of the output x: complex
outputs from input-output maps have lower probabilities,
and high probability outputs are simpler.Te constants a> 0
can often be estimated without recourse to sampling, but just
by knowing or estimating the total number of diferent
possible outputs [9]. Using b � 0 is the default guess for this
constant, but it can also be ft to the data via partial sampling.

A complete understanding of exactly which maps will
show SB has not been developed, but SB is expected to
appear in many input-output maps, under fairly general
conditions. Importantly, the map should be “simple”
(technically of O(1) complexity) to prevent the map itself
from dominating over inputs in defning output patterns. If
an arbitrarily complex map was permitted, outputs could
have arbitrary complexities and probabilities and thereby
remove any connection between probability and complexity.
Strong bias is a prerequisite for SB; typically, the relative
value of the largest and smallest probabilities should be more
than the value of the number of outputs, i.e., for NO outputs,
max(P(x))/ min(P(x)) >NO.

3. Results

3.1. Low Complexity, Low Probability Behaviour is Very
Common. Based on numerical experiments using the upper
bound of (3), Dingle et al. [9] reported that many outputs x

have probability values far below their predicted upper
bounds, i.e., P(x)≪ 2− aK(x)− b for many x. Tis observation
was not due to the bound being trivially loose because it is
a tight bound for many outputs. Signifcantly, the small
fraction of outputs which were close to the upper bound
absorbed most of the probability mass or, in other words,
most of the inputs map to outputs for which the bound is
tight. As a consequence, it was shown [7, 9] analytically and
numerically that for an output x generated by a random
input, with high probability P(x) ≈ 2− aK(x)− b.

To illustrate the LKLP phenomenon, in Figure 1, we show
four probability-complexity plots. Te probabilities P(x) are
calculated as the fraction of random inputs which produce
output x. Te complexity K(x) denotes an estimate of the
Kolmogorov complexity of each output, using a slightly
adapted [9] version of the famous Lempel-Ziv [25] 1976
complexity measure. Te black lines are ftted upper-bounds,
depicting the SB upper bound of (3). All four maps have been
studied in earlier works and are (a) a fnite state transducer
(FST), which is a simple generic model of computation, but
unlike, a UTMhas a very limited computational capacity (being
the lowest on the Chomsky hierarchy). Here, the outputs are
length 30bits and were obtained from thorough sampling of
binary string inputs, and the data were taken from [7]. (b) Time
series data taken from the World Bank Open Data project
(https://data.worldbank.org), which have been discretised to
binary strings (of length 16bits) while studying SB [8]. (c)
Computationally predicted [26] RNA secondary structures
obtained from randomly sampling 1 million sequences of
length L � 35 nucleotides. Following the protocol of [9] in

which SB in computationally generated RNA structures was
frst reported, predicted dot-bracket structures were converted
to binary strings, and complexity values were thereby estimated.
(d) Polynomial curves y �

14
i�1αix

i with Gaussian random
coefcients αi and x ∈ (0, 1), with data from [9]. Te curves
were discretised to binary strings by the up/down method
[27, 28].More details of thesemaps and relevant analyses can be
found in the original cited papers.

It is apparent that in each panel of Figure 1, the data
points show a similar “triangle” shape, with some points
closely following the upper bound (black line), but at the
same time for each complexity value, a large variation in
probability values is observed, inferred from themany points
far below the bound. Occupying the bottom left corner of the
“triangles” are the outputs which exhibit the strongest LKLP
behaviour, because they have very low probability but, at the
same time, have relatively low complexity values. Tis LKLP
“triangle” depicted in all maps of Figure 1 appears in es-
sentially all examples of SB studied so far, including in
biology [29], machine learning [30], and other contexts [9]
(Supp. Info.).

In Figure 1 and in most other SB examples cited, the
previously described complexity estimator K(x) based on
the Lempel-Ziv complexity measure was used. However,
LKLP outputs have also been observed when using other
complexity measures, such as those used in protein qua-
ternary structures and polyominos [29], so LKLP outputs are
not merely an artefact of the Lempel-Ziv complexity mea-
sure. From another angle, nearly all the cited complexity-
probability plots showing SB were generated via random
sampling of inputs, and so it might be suggested that with
more sampling, or full enumeration of inputs, LKLP outputs
would disappear or at least become much less pronounced.
However, this suggestion is countered by the observation
that LKLP behaviour is also observed in maps for which
probabilities were directly calculated by enumerating every
possible input, for example, L-systems [9] and RNA length
L � 15 nucleotides [7]. Perhaps, the only clear example of
a map which does not show strong LKLP behaviour is in
a small polyomino system using path complexity (see Fig-
ure 4.2(a) in Chapter 4 of [31]).

To avoid confusion, we stress that LKLP behaviour is not
due to a failing of complexity measures to detect patterns. If,
say, the Lempel-Ziv measure failed to detect an important
pattern and thereby assigned a high complexity to an output
which is actually simple, then the opposite behaviour would
be observed in the complexity-probability plots, where some
outputs would be far above the upper bound, not far below
the bound.

A well-known limitation of the original coding theorem
is choice of UTM, the problem being that algorithmic
probability estimates from diferent machines will difer
[32], and there is no known way to remove this dependence
[33]. However, due to the invariance theorem, this machine
dependence is only a problem for (typically small) outputs
with low complexities, for which O(1) terms due to
translating between UTMs may dominate, but this is not
a problem for large complexity strings. Tis machine de-
pendence limitation may not be of great concern perhaps

Complexity 3

https://data.worldbank.org

because many real-world phenomena are highly complex. In
contrast, LKLP outputs do not disappear for large com-
plexity outputs because they are not a fnite size efect (see
below), and so LKLP can be seen as a more serious problem
for applied algorithmic probability than machine
dependence.

Finally, in many maps which exhibit SB, some patterns
are actually impossible to make, such that P(x) � 0, so this
could be viewed as an extreme form of LKLP behaviour.

3.2. Estimating Which of Two Outputs is More Likely.
Another way to examine and quantify LKLP behaviour is in
terms of predicting which of two outputs has higher
probability. In the absence of LKLP outputs, if K(x)<K(y)

for two strings x and y, then it follows from equation (2) that
P(x)>P(y), ignoring O(1) terms. With LKLP behaviour,
the direct connection between probability and complexity is
disrupted, and K(x)<K(y) does not imply that

P(x)>P(y) necessarily. Note that predicting which of two
strings has higher probability does not depend on estimating
or ftting the parameters a and b in equation (3); only the
complexity values are required. Tis kind of calculation was
done earlier by [8, 9].

Te manner in which the strings x and y are chosen also
afects the strength of the connection between complexity
and probability. If x and y result from randomly chosen
inputs, then they will be sampled with weights according to
their probabilities, and in this case, P(x) ≈ 2− aK(x)− b and
P(y) ≈ 2− aK(y)− b [7]. In this probability-weighted sampling
scenario, for randomly generated outputs, the probability-
complexity connection is quite strong. Hence, we should
expect to be able to predict whether P(x)>P(y) or
P(x)<P(y) just from the complexity values, with quite high
accuracy. If instead x and y are chosen uniformly randomly
from the full set of possible outputs, then we can expect the
probability-complexity connection to be less strong, and

0

–2

–4

–6

–8

lo
g 10

P
(x

)

10 20 30 40
K (x)
~

(a)

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

–3.5

–4.0

–4.5

5 10 15 20 25

lo
g 10

P
(x

)

K (x)
~

(b)

–1

–2

–3

–4

–5

–6

lo
g 10

P
(x

)

10 20 30 40 6050
K (x)
~

(c)

–1

–2

–3

–4

–5

–6

5 10 15 20 25 30 35

lo
g 10

P
(x

)

K (x)
~

(d)

Figure 1: Simplicity bias plots with low complexity, low probability outputs. Blue dots represent diferent binary string output patterns.Te
black line is the upper bound of equation (3). Probabilities P(x) are the fraction of random inputs that map to output x. K(x) are estimated
complexity values for each output x. Tere are many data points far below the upper bound; these points are low Kolmogorov complexity,
low probability (LKLP) output patterns. Te maps studied are (a) a fnite state transducer (FST) with data taken from [7]; (b) time series
patterns from theWorld Bank open data, with data taken from [8]; (c) computationally predicted RNA secondary structures from 1 million
randomly sampled input sequences; and (d) discretised polynomials curves generated with x ∈ (0, 1) and random coefcients, data taken
from [9].

4 Complexity

predicting whether P(x)>P(y) or P(x)<P(y) just from
the complexity values will be less accurate.

Here, we computationally study the question of which of
two strings has higher probability, both using the randomly
generated pairs x, y and also uniformly sampled x, y. Te
protocol we employ is to predictP(x)>P(y) ifK(x)<K(y)

and P(x)<P(y) if K(x)>K(y), and we randomly guess
which has higher probability if K(x) � K(y). Note that
there will be relatively few unique complexity values (e.g.,
only ∼ n values for strings of length n), and hence, it
happens quite commonly that two random strings have the
same complexity, while it is relatively rare for two strings to
have exactly the same probability value.

For both probability-weighted sampling and uniform
sampling, the protocol just described has a null prediction
accuracy level of roughly 50% (assuming a null hypothesis
that output complexity has no predictive value). Te cal-
culated accuracy values (after 10,000 sampled pairs) are FST
probability-weighted sampling achieved an accuracy of 79%
and uniform sampling an accuracy of 63%; time series 81%
and 80%; RNA 78% and 71%; polynomial 82% and 73%. It is
quite striking that high levels of accuracy can be achieved
just by complexity estimates, which does not even require
estimating the values of a or b. As expected, the accuracy
values for probability-weighted sampling are higher, while
substantially lower for uniform sampling, but still sub-
stantially above the 50% null model mark. Overall, the efect
of LKLP outputs is clear: while some % accuracy values are
(surprisingly) high, they are still substantially below 100%
which is what we would expect in the absence of LKLP
outputs.

Note that true uniform sampling strictly requires
knowing the full set of outputs, which might entail fully
enumerating all inputs, or very thorough input sampling. In
the four maps studied here, only the FST map was thor-
oughly sampled whereas the other maps were sampled
partially (e.g., for RNA, only 106 sampled inputs out of
a possible 430 ∼ 1018 RNA sequence inputs were made).
Hence, our stated accuracy values for “uniform sampling”
will be somewhat overestimates for RNA, time series, and
polynomials, but for the FSTmap, the accuracy value of 63%
is likely to be close to the true value.

3.3. Examining Causes for Low Complexity, Low Probability
Outputs. We have seen LKLP outputs in essentially all the
maps we have studied. Why are they so common? In the
original AITcoding theorem given in equation (2), there are
no LKLP output patterns, except in the rather modest sense
that the O(1) term in the exponent allows for relatively small
variation of probabilities within a constant, mathematically
|K(x) − log2(1/P(x))|< c for some constant c. Te reason
simple outputs cannot have very low probability in the
original AIT coding theorem is that the theorem is based on
random prefx codes run on a UTM. In a UTM, an output x

always has a program p of length K(x) by defnition of
Kolmogorov complexity. Te probability that the specifc
program p appears as the frst p bits of the random binary
program is 2− K(x) and therefore P(x)≥ 2− K(x) implying that

all simple strings must have high probability. Hence, in this
UTM setting, it is not possible to have LKLP outputs with
P(x)≪ 2− K(x)+O(1).

Computable maps lack some computational power as
compared to UTMs, which means that there are some al-
gorithms which they cannot implement (for example, ones
that don’t halt). As suggested earlier [7], the weaker com-
putational ability of these computable maps suggests that
theymay not be able to compute some output patterns which
are nonetheless simple, or at least cannot compute themwith
efcient short programs. Hence, we can expect some type of
LKLP in computable maps, and the lower bound
P(x)≥ 2− K(x) does not necessarily hold.

Looking more closely at the lower bound vs. upper
bound contrast, it appears that the upper bound on P(x) is
more fundamental. Te justifcation is that if the upper
bound was violated, and some complex outputs had high
probability, then it would be as if the map itself was creating
information, which is not possible, assuming that the map is
“simple” with O(1) complexity. In contrast, no fundamental
information theory violations arise if a simple output has
a low probability, which helps to understand their common
occurrence.

It is worth noting that LKLP behaviour is not actually
a mathematical necessity for computable maps in general if
a computable estimate of complexity is used. To see why, one
could easily directly construct a map which has outputs with
probability 2− K(x), for some (computable) choice of K(x)

such as a Lempel-Ziv complexity measure. By construction,
all probabilities would sit on the upper bound, with no LKLP
outputs. A less contrived instance where LKLP behaviour
may be less common is in maps for which inputs are
organised into “constrained” and “unconstrained” regions
[34], which is similar to a Shannon-Fano coding. Having
said that, even in this setting, it is possible to have simple
patterns with low probability.

In [7], it was suggested that LKLP outputs are in-
trinsically simple yet “hard” to make for the specifc map,
and it was shown analytically that such outputs coincide
with those that can only be generated (via the map) with
simple input. Indeed, a lower bound on P(x) based on
complexity inputs and outputs was derived.

Illustrating the “hard to make” argument in the present
context, we can take time series as an example, for which we
fnd that the bit strings x � 1111111011111111 and
y � 0000000011111111 in Figure 1(b) were assigned the
same low complexity value, and yet y had a ∼ 103 fold
higher probability than x, which was a LKLP output.
Tinking about common time series patterns from everyday
experience, we can see that y is “easy” to make for a time
series because the binary string pattern y would result from
essentially any gradually increasing series, such as linear or
exponential growth, both of which are very common. In
contrast, even though x is simple—just a string of 1’s with
a single 0 in the middle—it would be “hard” to make such
a string because in the discretisation process, a “1” denotes
a series value above the mean value of the series, and
0 denotes below. Hence, generating x would require one very
low value in the middle of a stretch of high values, which is

Complexity 5

perhaps quite unlikely to occur in a time series. Given the
way the series was discretised in terms of above/below the
mean value of the string, we can expect that strings with an
excess of 1’s or 0’s will have low probability, even if they are
not complex. For RNA secondary structure, a “hard to
make” output was given in [7] where it was pointed out that
the dot-bracket representation of an RNA structure such as
(.(.(.(.(.(.(.(.(.(. . .).).).).).).).).).) would be thermodynamically
unfavourable due to many lone chemical bonds, and
therefore, it would have very low probability despite being
a simple symmetric structure. More generally, it is not hard
to see that a given map will have certain biases towards or
against certain patterns, and these map-specifc biases can
afect probabilities strongly, independently of pattern
complexity.

Another way that LKLP outputs can occur is if the
complexity measure is too coarse, assigning too few com-
plexity values. For a binary string of length n, there are
around n possible complexity values, so if a measure assigns
much less than n complexity values, then diferent com-
plexity values will be combined together into one grouping,
but their true complexities will actually be varied, and hence,
we can expect their probabilities to vary also, apparently
yielding LKLP outputs.

Te fact that the LKLP “triangle” is common to essen-
tially all maps studied so far in the literature suggests there
may be a general explanation. One argument we can propose
is that if we pick n random bits as in a Bernoulli process with
probability not equal to 50%, then the outcome with the
highest probability and lowest probability is both the sim-
plest. For example, if the probability of a 1 is 0.8, and the
probability of a 0 is 0.2, then the string x � 111 . . . 111 will
have the highest probability of occurring, and the lowest
probability will be for the string y � 000 . . . 000. Both x and
y are the simplest strings. Hence, in the case of this Bernoulli
process, the cause of LKLP outputs is clear. As an extension,
we propose here that if an output is (even roughly) made up
of statistically independent parts, then the output may be
approximated as a (biased) Bernoulli process, for which we
expect LKLP behaviour. As an example, for a time series of
some fxed length n, the nonadjacent values are typically
correlated only weakly, hence roughly independent, espe-
cially if separated by longer intervals. Tis argument may
apply even to RNA structures, which have a combination of
tighly and loosely correlated subsections. Tis line of ar-
gument might help to explain some instances of LKLP
outputs.

3.4.RankPlots ofProbabilityValues, SeparatedbyComplexity.
We now study the distribution of LKLP probabilities for the
four maps as shown in Figure 1. Within Figure 1, LKLP
outputs appear as a “column” of overlapping blue dots
stretching down from the black line upper bound, but the
distribution of those LKLP probability values is not easy to
discern. Instead in Figure 2, for each of those maps, a log-log
plot is given showing the rank and probability of each

output, coloured separately by complexity value k, so that
the distribution is more easily visualised.

Tere are some common patterns to these disparate rank
plots: in nearly all cases, the rank plots for all complexity
values decay to the same lowest probability, e.g., for the FST
data in Figure 2(a), all the complexity values from k � 14 to
k � 46 decay to a similar low probability value of close to
10− 8. It is not clear exactly why this occurs with such
consistency. Tis needs to be explored in future work.

Another observation is that the probability decay follows
a similar form, with the lowest complexity curves starting at
a high probability and quickly decaying, and the higher
complexity curves starting lower probability and slowly
decaying.Tis observation can be rationalised by noting that for
low complexities, there are exponentially few possible outputs
(i.e., few simple patterns), yet some of these have exponentially
high probability as expected from SB. As the complexity in-
creases, it is well known from AIT that there are exponentially
more possible patterns for a given complexity value, yet the
maximum probability decays exponentially (consistent with the
upper bound of equation (3)), which explains why the rank
plots become wider and less tall for higher complexities.

Interestingly, in the FST map, which has the cleanest
data, the profle of the diferent curves appears to depict
a straight line decay on the log-log plot, suggesting some
kind of Zipf’s power law upper bound on the rank decay
profles. Although the other maps do not show this power-
law behaviour clearly, they are also more noisy datasets. We
conjecture that some kind of Zipf’s law may be a more
general feature of these kinds of plots.

It was shown [7] that the sum of the probability mass of
outputs with log2 probability that is at least ∆ bits below the
upper bound is no more than 2− ∆+1+O(1). Tis implies that if
there is decay in probabilities, it should be at least expo-
nential. However, this does not explain why there is, for all
maps, a roughly smooth exponential decay to the same
lowest probability. Tis remains and open question for
future work.

3.5. IsTere a Bias against Changes inNatural Data? We saw
that map-specifc idiosyncrasies can bias output proba-
bilities via patterns which are hard to make for the map but
are not in themselves very complex. But are there any
general trends which are likely to be common across dif-
ferent real world maps? Te AIT coding theorem in
equation (2) and the related upper bound in (3) are based
on fundamental information content of patterns assumed
to be generated by UTMs, but in the natural world, many
patterns may not be physically easy to make. We suspect
there is a disconnect between simple patterns with low
information content, and those which are easy to make by
real-world systems. As an example, the patterns
x � 00000001111111 and y � 01010101010101 have similar
complexity from an information perspective, e.g., they have
the same entropy and same size. But it may be that os-
cillations of y are “harder” to maintain in the physical
world than the one simple change in x because change is

6 Complexity

often expensive in terms of energy or mechanics (with
notable exceptions like pendulums, but even they can be
easily upset). A more extreme example is the Champer-
nowne’s number 0.123456789101112. . . which again is
a very simple in terms of information content, but it is hard
to see how any natural system in the physical world could
make such a pattern. Potentially, these kinds of patterns
may be LKLP in a range of diferent computable, physically
relevant maps.

As a frst brief investigation into whether change is
“hard” to generate for natural systems and hence associated
to LKLP outputs, we study just the frequency of 0/1 changes
in outputs. By “changes” we mean the number of times a 1 is
followed by a 0, or a 0 followed by a 1, e.g., the string
00111010 has four changes, and the string 0000 has no
changes. We ask for two strings of the same complexity value
k, does the probability of an output decrease with increasing
numbers of 0/1 changes?

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

P
(x

)

100 101 102 103 104 105

Rank

k=14
k=17
k=19
k=22
k=24

k=26
k=29
k=31
k=34
k=36

k=39
k=41
k=44
k=46

(a)

10–1

10–2

10–3

10–4

P
(x

)

100 101 102 103

Rank

k=24
k=26
k=28

k=12
k=14
k=16

k=18
k=20
k=22

(b)

10–3

10–4

10–5

10–6

P
(x

)

100 101 102 103 104

Rank

k=19
k=22
k=24
k=26
k=29
k=31

k=34
k=36
k=39
k=41
k=44
k=46

k=49
k=51
k=53
k=56

(c)

10–2

10–3

10–4

10–5

10–6

P
(x

)

100 101 102 103

Rank

k=16
k=19
k=22
k=25

k=28
k=31
k=33

(d)

Figure 2: Rank plots of probabilities, separated by complexity values. Each coloured line depicts the decay in probability of outputs with the
same complexity value k. Te complexity values k are shown in the fgure legends. Te plots present the same data as in Figure 1 but now
plotted as rank plots separated by complexity value. (a) FST; (b) time series; (c) RNA structures; and (d) random polynomials. In each case,
a similar pattern of decay is observed, and almost all rank plots decay to the lowest probability for that map.

Complexity 7

Figure 3 shows plots for the number of changes vs
probability for each map. To aid illustration in the fgure, for
each map, we chose just a single complexity value k, which
was the second lowest of the output complexity value. Te
reason for this choice is that LKLP behaviour is most
pronounced for very low complexities. For the FST, time
series, and RNA, there is a clear trend showing an expo-
nential decay in probability with increasing number of 0/1
changes. Te polynomial case does not show a trend, but on
the other hand, there are only two values (2 and 3 changes)
which makes observing a trend difcult.

Te linear correlation and p values for the trends are
given here in the format of complexity value, correlation
coefcient, and p value. For brevity, values are only reported
if either the p value was statistically signifcant (taken as
< 0.05) or the correlation coefcient r was nontrivial, taken
here as r< − 0.4. FST: k � 14, r � − 0.95, p value� 0.01; k �

17, r � − 0.49, p value� 3e − 05. Time series: k � 12, r � − 0.80,
pvalue� 3e-08;k � 14, r � − 0.44, p value� 1e − 05; k � 16,
r � − 0.42, pvalue� 1e-14;k � 18, r � − 0.46, p value� 1e − 50.
RNA: k � 19, r � − 0.82, p value� 0.002; k � 22, r � − 0.84,
pvalue� 1e-06;k � 24, r � -0.46, p value� 3e − 18; k � 26,
r � − 0.46, p value� 6e − 38; k � 29, r � − 0.45, p

value� 2e − 168. Polynomial: k � 16, r � − 0.95, p

value� 6e − 51; k � 22, r � − 0.70, p value� 6e − 321.
We conclude that a bias for or against changes is a simple

mechanism that can quickly lead to exponentially large
variation in probabilities, for outputs with the same in-
formational complexity. Furthermore, we tentatively con-
jecture that in the natural data, the bias is more likely to be
against changes.

3.6. Bias for 1’s or 0’s. Another simple mechanism which
might conceivably strongly afect probabilities is a bias for or
against 1’s or 0’s. In terms of information theory, 1’s and 0’s
are given equal weighting, and all common complexity
measures would assign equal complexity to a string and to
the same string but with the 0’s and 1’s fipped, e.g., 010110
fipped to become 101001. Despite this, it is easy to imagine
that a natural system may have a bias for 1’s or 0’s, and
hence, the symmetry in information between a string and its
fipped counterpart would not extend to a similarity in the
probabilities of the two strings (Cf. [35]). Furthermore, if
a discretisation such as converting a real-valued time series
into a binary string was performed, then how exactly this was
done could bias for 0’s or 1’s.

We investigate this potential bias in the four maps de-
scribed previously. Figure 4 shows the scatter plots for each
map, with the number of 1’s in a string vs the probability of
the string. Again here, just one complexity value k for each
map is used; if there was no LKLP behaviour, then all strings
would have the same probability. Te FST example in
Figure 4(a) has clear bias against 1’s, with exponentially
decaying probability with more andmore 1’s.Te time series
and polynomial data do not display a linear trend, but rather
large and small fractions of 1’s are associated with lower
probabilities, for which the time series can be expected from
the way the discretisation was done. Te reason is less clear

for the polynomial example. Te RNA example has an
overall bias against 1’s, but it is not quite a linear trend. Based
on these few examples, there is no obvious common relation
between the number of 1’s in a string and its probability.

Te linear correlation and p value are given now, but
only for correlations that were both nontrivial and statis-
tically signifcant. FST: k �14, r � − 0.95, p value� 0.01; k �

17, r � − 0.50, p value� 2e − 05; k � 22, r � − 0.41,
pvalue� 4e-65. Time series: no linear relations. RNA: k �19,
r � − 0.82, p value� 0.002; k � 22, r � − 0.84, p value� 1e − 06;
k � 24, r � − 0.48, p value� 6e − 20; k � 26, r � − 0.50, p

value� 6e − 45; k � 29, r � − 0.47, p value� 2e − 189. Poly-
nomial: No linear correlations.

It seems that exponentially varying probability, un-
related to complexity, can easily arise in natural systems
from biases for 1’s or 0’s and/or changes and oscillations.
Tis helps to understand LKLP behaviour, but a full un-
derstanding of the ubiquitous “triangle” scatter plots we see
arising from SB remains to be determined.

4. Applying Algorithmic Probability

4.1. Systems Efectively Equivalent to a UTM. Algorithmic
probability has been applied or invoked in many diferent
areas of science and mathematics, where implicitly or ex-
plicitly the original coding theorem involving a UTM is
assumed. No physical computational system can actualise
a UTM in the strictest sense, because a UTM requires infnite
computational resources, including infnite memory and
computation time, while this is not possible in practice.
Nonetheless, if a system is at least Turing complete, and if
a large memory resource is available which can be expanded
as needed, and “long” computations are permitted, then the
system can be considered efectively equivalent to a UTM.

We have seen that for computable maps, low Kolmo-
gorov complexity, low probability (LKLP) outputs are
ubiquitous and their existence can be understood from
a number of angles. While the original coding theorem in
equation (2) states a direct connection between Kolmogorov
complexity and probability, in applications of algorithmic
probability to real world scenarios, if it is known that the
system under consideration is not efectively equivalent to
a UTM, then LKLP outputs should be expected.

Additionally, even if a system has this efective equiv-
alence property and hence has the ability to implement
arbitrary algorithms, another issue is whether or not it is
reasonable to assume that the system is processing purely
random input programs (hence any conceivable algorithm
might be implemented), or instead is merely implementing
some random inputs to some computable functions for
which LKLP outputs might be expected. (Indeed, whether
the input programs being processed are reasonably modelled
as random at all is another question.) For example, a desktop
computer with a Turing complete language compiler like
Python is efectively equivalent to a UTM, but if the com-
puter is used to run RNA structure prediction with random
RNA sequences, then we can still expect that the outputs we
are observing will show LKLP behaviour like in Figure 1(c).
In this scenario, the UTM-equivalent computational

8 Complexity

capacity of the underlying system (i.e. the desktop com-
puter) does not preclude LKLP outputs, and is in a sense
irrelevant. Even though the computer is efectively a UTM,
we do not expect to see patterns like the algorithmically
simple digits of π (or perhaps even some nonpseudo random
patterns) appearing with high probability, because the
programs sampled are not relevant to that type of pattern.

4.2. Two Questions for Physical Systems. Te preceding
discussion suggests two questions in reference to when we
expect LKLP outputs: Is the physical system of interest likely
to be efectively equivalent to a UTM? If efectively UTM
equivalent, is it reasonable to assume that the physical
system of interest is running random programs for which all
manner of algorithms might be computed, or instead
computing only a small fraction of computable algorithms?

Regarding the frst question, the physical universe does
support universal computation, because it can (and is)
performed within the universe. Moreover, Wolfram
(Chapter 12 of [36]) has proposed a loose claim known as the

Principle of Computational Equivalence which states that
systems in nature which are not obviously simple, e.g. the
weather, have maximally possible computational power,
implying that many or even most natural systems operate
efectively equivalent to a UTM. Other work on un-
decidability in physics [37–40] and the computational ca-
pacity of physical world [41–43] may tend to support the
possibility of high-level computation in the natural world.
Despite these points, the Principle has not been proven to
hold and it is not clear that it does actually hold very
commonly in nature.

Regarding the second question, there are many examples
in nature of maps which are clearly not performing arbitrary
algorithms, but instead only performing a narrow set of
computable functions. In biology, the mapping from DNA
sequence programs to biological forms can often be mod-
elled with computable mathematical functions, and hence,
we can expect LKLP behaviour. Another example: the time
series pattern describing the daily temperature in London,
UK, over the year has been “computed” from a variety of

lo
g 10

P
(x

)

2 4 6 8 10 12 14 16
Number of changes

1

0

–1

–2

–3

–4

–5

–6

(a)

–2.75

–3.00

–3.25

–3.50

–3.75

–4.00

–4.25

–4.50

lo
g 10

P
(x

)

2 3 4 5 6 7
Number of changes

(b)

–4.0

–4.5

–5.0

–5.5

–6.0

lo
g 10

P
(x

)

10 15 20 25 30 35 40 45 50
Number of changes

(c)

–4.0

–4.5

–5.0

–5.5

–6.0

2.0 2.2 2.4 2.6 2.8 3.0
Number of changes

lo
g 10

P
(x

)

(d)

Figure 3: Number of 0/1 of changes in an output string vs the output probability, for just one complexity value k. (a) For the FSTmap, there
is a clear decay in probability with increasing numbers of 0/1 changes, using complexity k � 17; (b) similarly for the time series data, there is
a clear decay, using k � 14; (c) for the RNA, there is a strong decay after an initial increase, using k � 22; (d) no trend for the polynomials
data, using k � 19.

Complexity 9

input factors such as global air currents and cloud move-
ments. But this computation is described by computable
mathematical functions (and some uncomputable random
noise), and hence, we can expect LKLP behaviour if there is
any SB in this system. It may be that the weather system
could in principle perform arbitrary computations, but it is
far from clear that it is actually doing this, and hence LKLP
behaviour might be expected.

Because computable maps abound in nature, and UTM-
equivalent systems are not obviously very common, and
even if they are, do not commonly implement the full range
of possible algorithms, we suggest that LKLP behaviour
should be the default assumption in applications of algo-
rithmic probability in real-world settings. We now highlight
a selection of applications of algorithmic probability and see
how or if LKLP behaviour is relevant.

4.3. Explaining Symmetry and Simplicity in Biology. It has
recently been argued [29] that a signifcant factor causing the
symmetry and simplicity in many biological forms (e.g. in

large symmetric biomolecules, petal arrangements in
fowers) is due to simplicity bias described by the upper
bound in equation (3). Tis application of algorithmic
probability is unproblematic, because even in the presence of
LKLP outputs, there remains a bias towards simpler outputs.

4.4. Time Series Prediction. Te authors of reference [8]
invoked algorithmic probability and the upper bound in
equation (3) to make predictions about natural time series
data taken from the World Bank Open Data project (the
example time series data set described above was taken from
their study). Tey proposed to make a kind of “forecasting
without historical data.” In this prediction context, LKLP
outputs do cause a problem for prediction, because although
the predicted upper bound closely matches the upper bound
of the data, the presence of LKLP outputs imply that many
series extrapolations will be predicted to have high proba-
bility (on account of being simple) but in fact have low
probability. Tis amounts to a signifcant weakness in the
prediction due to LKLP outputs. A similar challenge to

lo
g 10

P
(x

)
–1

–2

–3

–4

–5

–6

–7

–8

1 2 3 4 5 6 7 8
Number of 1's

(a)

Number of 1's

–2.75

–3.00

–3.25

–3.50

–3.75

–4.00

–4.25

–4.50

lo
g 10

P
(x

)

2 4 6 8 10 12 14

(b)

Number of 1's

–4.0

–4.5

–5.0

–5.5

–6.0

lo
g 10

P
(x

)

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

(c)

Number of 1's

–4.0

–4.5

–5.0

–5.5

–6.0

lo
g 10

P
(x

)

0 10 20 30 40 50

(d)

Figure 4: Te number of 1’s in an output string vs the string’s probability. For each example map, a plot is given for just one complexity
value k, the second simplest, chosen to aid illustration. (a)Te FSTexample shows a linear trend in log probability with increasing number of
1’s, using complexity k � 17; (b) large and small numbers of 1’s are not favoured in the time series, using k � 14; (c) RNA shows an overall
negative relation, using k � 22; (d) polynomials, similar to time series, large and small numbers of 1’s are not favoured, using k � 19.

10 Complexity

prediction accuracy may also afect the prediction-by-
compression of time series studied by Ryabko et al. [44].

4.5.WhatWill I SeeNext? Müller [45] has recently proposed
a novel application of algorithmic probability as a frame-
work for addressing fundamental problems in theoretical
physics, such as why the universe obeys simple laws. He
points out that many problems in science and philosophy
reduce to the question “What will I see next?,” and suggests
that this single unifed approach to framing questions about
the world also has a single unifed approach to answering
them in all contexts uniformly, namely (conditional) algo-
rithmic probability. To see how, we briefy recap some
relevant theory [46]: the continuous universal a priori
probability M(x) is defned as

M(x) �
p: V(p)�x∗

2− |p|
, (4)

where p is a program that runs on some UTM V and
produces an output string which starts with x and then
continues (perhaps never halting), denoted by x∗ . So M(x)

is the probability that an infnite string begins with x. Now,
M(y|x) ≔M(xy)/M(x) provides a general method for
predicting the extrapolation y given a history x. Further-
more, Solomonof showed that even if μ is some computable
(e.g. real-world) probability distribution over binary strings,
then the conditional probability prediction problem μ(y|x)

can be estimated by M(y|x), with μ-probability 1 if
|x|⟶∞ and μ is low complexity computable function
[47]. We point out that predictions based on M(y|x) may be
very inaccurate, i.e., M(y|x)≫ μ(y|x), if y may is a LKLP
pattern, however.

Returning to the unifed approach to framing ques-
tions about the world, Müller takes as a starting point the
assumption that there is only the state of the observer
(which is not fundamentally embedded into anything),
and then postulates that what happens next to that ob-
server is dictated by algorithmic probability. He goes on to
show that this looks to the observer as if he/she was
embedded in some computable probabilistic world. Fi-
nally, assuming there is an external world with com-
putable laws within which the observer is embedded, then
it is proposed that algorithmic probability gives ap-
proximately correct predictions for what the observer sees
next, as indicated by the close quantitative relation be-
tween μ(y|x) and M(y|x).

Do LKLP outputs impact the stated goal to address
a unifed question in a unifed manner? Given that algo-
rithmic probability was directly postulated [45] to be the best
way to approach the question of “What will I see next?,” it is
perhaps inappropriate to consider whether it is reasonable to
assume the presence of a UTM. Nonetheless it is worth
noting that LKLP outputs may be relevant if the manner in
which the state of the observer is updated is not in fact
reasonably modelled as the result of (random) programs fed
into a system which is efectively equivalent to a UTM, but
instead as outputs from computable maps.

Müller also suggested that algorithmic probability helps
to explain why we see a “simple” world and physics laws.
Even with LKLP behaviour, this argument would still hold,
because the simplicity bias upper bound still favours simple
(compressible) outcomes and extrapolations of historical
patterns.

Somewhat related to the preceding, Lloyd [48] has ar-
gued that quantum fuctuations act a random programs
which are computed by the universe, to produce complexity
in the universe. Lloyd’s argument (which invokes AIT)
explicitly proposes that the universe acts as a computer; it
would be interesting to consider the implications (if any) for
LKLP outputs this perspective on the physical universe.

4.6. Universal Gambling. A universal gambling scheme
which considers specifc individual outcomes (and explicitly
was based on Kolmogorov complexity) was introduced by
Cover [49] in 1974, in which it was suggested that an in-
vestment portfolio should be constructed while respecting
probability predictions essentially similar to algorithmic
probability. In more detail, an investor having observed
a binary string fnancial time series x1x2 . . . xi for some
index i, in predicting whether the next bit will be a 0, the
formula Cover suggested was p(0) � 2l(x1x2...xi0)/2l(x1x2...xi),
and p(1) is similarly defned. In this formula l(z) measures
the minimum codelength for some string z, which is fun-
damentally the same notion as the Kolmogorov complexity
of z, which appears in the coding theorem.

It seems reasonable to assume that the natural context
for applying this universal gambling strategy, that is time
series in fnancial markets, are not the result of UTMs but
rather some computable processes. Hence it seems likely that
LKLP behaviour would be a challenge for the strategy, due to
the possibility that for example x1x2 . . . xi0 might be simpler
than x1x2 . . . xi1 but due to LKLP behaviour, the latter is
more likely. We are not saying that the gambling scheme is
invalid, just that its efcacy would be reduced somewhat in
the presence of LKLP outputs.

4.7. Solomonof InductionandOccam’sRazor. Occam’s razor
is a fundamental principle of scientifc reasoning, philoso-
phy, and model selection [27] stating that simpler expla-
nations or models should take preference over more
complex ones [50]. Despite its wide application and com-
mon sense appeal, a formal grounding for this principle has
been a challenge for philosophy. Solomonof introduced the
idea of algorithmic probability in the 1960s [4, 24] as part of
an investigation into induction, and it has been argued that
his formal method of induction has solved the long-standing
philosophical problem of why simpler explanations should
be preferred [51–53]. Solomonof’s basic argument is that
because simple hypotheses/explanations are a priori more
likely to appear from a random program running on a UTM,
then given some observed data the simplest hypothesis/
explanation should have the highest probability and hence
should be preferred (assuming it explains some observed
data as well as another competing hypothesis).

Complexity 11

Does LKLP behaviour afect the applicability of Solo-
monof induction to the real world? If we assume that the
contexts within which induction is to be made—presumably
the physical world—result from random programs fed into
a UTM, then LKLP do not even exist. However, as discussed
above it seems reasonable to assume that the physical world
is the result of computable physical laws and therefore we
can expect (many) LKLP outputs. Solomonof induction is
premised on the fact that a given simple pattern (hypothesis)
is a priori more likely than some other given more complex
one, and interestingly this property still holds albeit in
a weaker sense, even with LKLP outputs.

Recall that we saw above (Section III B) when predicting
whether x or y is more likely, that for both probability-
weighted and uniform sampling simpler strings tend to have
higher probability. However, because uniform sampling the
prediction accuracy is low, e.g. 63% for uniform sampling
with the FST, this suggests that while Solomonof induction
is still valid in LKLP settings, it is less likely lead to correct
induction as compared to in the UTM setting for which
complexity and probability is much more closely connected.
Terefore, a challenge to applying Solomonof induction in
the real world is faced because when weighing up two hy-
potheses H1 and H2 that both explain the observed data, H1
may be simpler than H2, but perhaps H1 is a LKLP output
and hence much less likely than H2. By extension, there is
a challenge to justifying Occam’s razor in the real physical
world—it is still valid even with LKLP, but the argument for
preferring simpler hypotheses is somewhat weakened.

Relatedly, Hutter has formed a universal theory of ar-
tifcial intelligence based on algorithmic probability and
Solomonof induction [54] (see also Shane and Veness [14]
for a numerical implementation of the theory). Te impli-
cations of LKLP outputs for this research project will be
similar to those for Occam’s razor, namely if the intelligent
agent is making observations resulting from an environment
that is known to generated by a computable map, then it is
still true that often a given simpler hypothesis is a priori
more likely than some given complex hypothesis, but not
that rarely the reverse is true. Hence in the computable
setting it may be that this form of induction is less likely lead
to correct predictions as compared to the UTM setting.

4.8. DNN Generalisation. Another recent and important
application of simplicity bias is in machine learning, where it
has been argued [30] that the surprising generalisation
ability of deep neural networks (DNN) is due in part to the
fact that DNN are biased towards simple functions (by
invoking equation (3)), and natural functions are also biased
towards simple functions, so the problem of learning
functions is signifcantly easier than it would be if there was
no simplicity bias in functions. Because LKLP behaviour is
also found in DNN [30], and LKLP has been observed in so
many other natural settings, this raises a question: does
LKLP behaviour create a challenge for this invocation of
algorithmic probability? One way to look at this is to ask, do
the simple functions in nature coincide with the simple
functions towards which the DNN are biased? Without

LKLP outputs in either DNN or nature, they would auto-
matically coincide, but this is no longer automatic given that
LKLP outputs exist. If the natural functions are highly
probable simple functions but diferent to the highly
probable functions that DNN produce (or at least not
a subset of these functions) then the argument for why DNN
generalise is weaker. On the other hand, if highly probable
natural functions do coincide (or are at least a subset) of the
highly probable functions generated by DNN then it would
be interesting to consider why this is.Tis question relates to
our earlier question regarding whether there might be
common patterns to which types of outputs are LKLP: if
diferent maps or systems have completely unrelated LKLP
patterns, then an overlap between diferent systems is less
likely as compared to if there are more general typical
patterns across diferent systems.

4.9. PasswordGuessing. Although not based on Kolmogorov
complexity and Levin’s (2), an essentially very similar
probability prediction method has been derived by workers
in information theory. Merhav and Feder [55] point out in
an infuential review of universal prediction that 2− LZ(x) is
a universal probability assignment for prediction, citing the
work of reference [56] and others. In this context, LZ(x) is
the Lempel-Ziv compression complexity measure, which is
very similar to the measure used in most studies of SB.
Merhav and Cohen [57] have recently used this 2− LZ(x)

universal probability predictor in a cryptography setting,
where they suggested that it forms an optimal method for
guessing passwords. It would be interesting to investigate
any examples of LKLP passwords. If they did occur, then
they might represent a source of wasted guesses of the
guessing strategy, because the strategy would assign a high
probability of ∼ 2− LZ(x) to some password x, which is in fact
very rarely used as a password by people.

5. Discussion

We have investigated the occurrence of low Kolmogorov
complexity, low probability (LKLP) outputs in computable
functions with randomly sampled inputs. Te central
messages are that (a) LKLP outputs have been observed in
essentially all maps for which simplicity bias (SB) has been
studied; (b) LKLP outputs are expected in computable maps
for theoretical reasons; (c) there appears to be some common
statistical patterns to the distributions of the LKLP outputs
which form a kind of “triangle” shape in probability-
complexity plots; and (d) when applying algorithmic
probability in real world applications, LKLP outputs should
be the default expectation unless there is good reason to
expect that the outputs are indeed generated by purely
random programs fed into a universal Turing machine
(UTM), which we suggest is probably an uncommon sce-
nario in science, engineering, fnance, etc. Furthermore, we
briefy surveyed some works in which algorithmic proba-
bility in some form has been invoked and discussed some
possible implications of LKLP outputs, including studies of
a priori predictions, Solomonof induction, and Occam’s

12 Complexity

razor. Te main LKLP implication is that the connection
between complexity and probability is considerably less
strong, as compared to the original algorithmic information
theory (AIT) coding theorem.

Amainmotivation for this study is developing theory for
improved a priori probability predictions. Te AIT coding
theorem states that output probabilities can be directly
found via the Kolmogorov complexity of the output, rather
than, say, using historical frequency statistics to estimate
probabilities. In earlier work [9], a practical weaker version
of this AIT coding theorem was presented, in the form of an
upper bound on probabilities, rather than a direct estimate
of probabilities. Understanding the causes and nature of
LKLP outputs which fall far below the upper bound may
help to improve predictions of the probabilities of those
outputs, and hence, a stronger theory of a priori probability
predictions may be laid out.

Although algorithmic probability was originally for-
mulated in the context of random algorithms/programs that
generate outputs via a computer, we stress that algorithmic
probability estimates—especially the upper bound of
equation (3)—are not limited to what are usually understood
as algorithms per se. Instead, these estimates can be applied
to a wide range of problems for which output patterns result
from mathematical functions with some form of input
parameters. For example, the parameters of a large ordinary
diferential equation system are not usually understood as an
“algorithm” for the solution profle; nonetheless, the upper
bound has been shown to predict the probability of outputs
in such systems [9, 29]. Even more distant from a computer
running a program, the upper bound has been shown to
work well in predicting natural time series patterns [8] for
which both the notion of program and computer is much
less clearly defned.

Tere has been a lot of discussion in the statistics and
philosophy communities regarding how to choose a Bayes-
ian prior, and AIT promises to be one way to address this
[58] (but see also reference [59] for a critique of this ap-
proach). Our work here is directly relevant to making
practical implementations of this AITanswer to the Bayesian
prior question.

Several open questions remain. In general, how can we
better understand the causes and nature of LKLP outputs?
Given a small sample of outputs, can these be used to predict
which outputs are likely to be LKLP, and which are likely to
be close to the bound? Why is it that the data points form
“triangles” in Figure 1 and other simplicity bias studies? Are
there common patterns across diferent system dictating
which outputs will be LKLP? How can we best incorporate
simplicity bias probability predictions into other probability
estimation approaches, such as machine learning [19]?

Data Availability

Te datasets generated during and analysed during the
current study are available from the corresponding author
upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

MA performed the numerical calculations. KD conceived
the study and wrote the paper.

Acknowledgments

Te authors acknowledge fnancial support from the Gulf
University for Science and Technology Seed Grant (grant
number 234271). Complying with journal publication pol-
icy, the authors note that this work has appeared in a pre-
liminary form in a preprint [60]. Te authors thank Paris
Flood, Iain Johnston, Ard Louis, Nora Martin, Christopher
Mingard, and Markus Müller for valuable discussions and
suggestions related to this work.

References

[1] R. J. Solomonof, “A preliminary report on a general theory of
inductive inference (revision of report v-131),” Contract AF,
vol. 49, no. 639, p. 376, 1960.

[2] A. N. Kolmogorov, “Tree approaches to the quantitative
defnition of information,” Problems of Information Trans-
mission, vol. 1, no. 1, pp. 1–7, 1965.

[3] G. J. Chaitin, “A theory of program size formally identical to
information theory,” Journal of the ACM, vol. 22, no. 3,
pp. 329–340, 1975.

[4] M. Li and P. M. B. Vitanyi, An Introduction to Kolmogorov
Complexity and its Applications, Springer-Verlag New York
Inc, New York, NY.USA, 2008.

[5] L. A. Levin, “Laws of information conservation (nongrowth)
and aspects of the foundation of probability theory,” Problemy
Peredachi Informatsii, vol. 10, no. 3, pp. 30–35, 1974.

[6] R. J. Solomonof, “Te Kolmogorov lecture the universal
distribution and machine learning,” Te Computer Journal,
vol. 46, no. 6, pp. 598–601, 2003.

[7] K. Dingle, G. V. Pérez, and A. A. Louis, “Generic predictions
of output probability based on complexities of inputs and
outputs,” Scientifc Reports, vol. 10, no. 1, pp. 4415–4419, 2020.

[8] K. Dingle, R. Kamal, and B. Hamzi, “A note on a priori
forecasting and simplicity bias in time series,” Physica A:
Statistical Mechanics and Its Applications, vol. 609, Article ID
128339, 2023.

[9] K. Dingle, C. Q. Camargo, and A. A. Louis, “Input–output
maps are strongly biased towards simple outputs,” Nature
Communications, vol. 9, no. 1, p. 761, 2018.

[10] R. Cilibrasi and P. M. B. Vitányi, “Clustering by compres-
sion,” IEEE Transactions on InformationTeory, vol. 51, no. 4,
pp. 1523–1545, 2005.

[11] P. Ferragina, R. Giancarlo, V. Greco, G. Manzini, and
G. Valiente, “Compression-based classifcation of biological
sequences and structures via the universal similarity metric:
experimental assessment,” BMC Bioinformatics, vol. 8, no. 1,
p. 252, 2007.

[12] R. Avinery, M. Kornreich, and R. Beck, “Universal and ac-
cessible entropy estimation using a compression algorithm,”

Complexity 13

Physical Review Letters, vol. 123, no. 17, Article ID 178102,
2019.

[13] P. M. B. Vitányi, “Similarity and denoising,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical &
Engineering Sciences, vol. 371, Article ID 20120091, 2013.

[14] L. Shane and J. Veness, “An approximation of the universal
intelligence measure,” 2011, https://arxiv.org/abs/1109.5951.

[15] J. P. Delahaye and H. Zenil, “Numerical evaluation of algo-
rithmic complexity for short strings: a glance into the in-
nermost structure of randomness,” Applied Mathematics and
Computation, vol. 219, no. 1, pp. 63–77, 2012.

[16] F. Soler-Toscano, H. Zenil, J.-P. Delahaye, and N. Gauvrit,
“Calculating Kolmogorov complexity from the output fre-
quency distributions of small Turing machines,” PLoS One,
vol. 9, no. 5, Article ID e96223, 2014.

[17] H. Zenil, L. Badillo, S. Hernández-Orozco, and F. Hernández-
Quiroz, “Coding-theorem like behaviour and emergence of
the universal distribution from resource-bounded algorithmic
probability,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 34, no. 2, pp. 161–180, 2019.

[18] K. Dingle, J. K. Novev, S. E. Ahnert, and A. A. Louis, “Pre-
dicting phenotype transition probabilities via conditional
algorithmic probability approximations,” Journal ofTe Royal
Society Interface, vol. 19, no. 197, Article ID 20220694, 2022.

[19] K. Dingle, P. Batlle, and H. Owhadi, “Multiclass classifcation
utilising an estimated algorithmic probability prior,” Physica
D: Nonlinear Phenomena, vol. 448, Article ID 133713, 2023.

[20] C. S. Calude, Information and Randomness: An Algorithmic
Perspective, Springer, Berlin, Germany, 2002.

[21] P. Gács, Lecture Notes on Descriptional Complexity and
Randomness, Boston University, Graduate School of Arts and
Sciences, Computer Science Department, Cambridge, MA,
USA, 1988.

[22] M. T. Alan, “On computable numbers, with an application to
the entscheidungsproblem,” Journal of Mathematics, vol. 58,
1936.

[23] P. Grunwald and V. Paul, “Shannon information and kol-
mogorov complexity,” 2004, https://arxiv.org/abs/cs/0410002.

[24] R. J. Solomonof, “Algorithmic probability: theory and ap-
plications,” in Information Teory And Statistical Learning,
pp. 1–23, Springer, Berlin, Germany, 2009.

[25] A. Lempel and J. Ziv, “On the complexity of fnite sequences,”
IEEE Transactions on Information Teory, vol. 22, no. 1,
pp. 75–81, 1976.

[26] R. Lorenz, S. H. Bernhart, C. Höner zu Siederdissen et al.,
“Viennarna package 2.0,” Algorithms for Molecular Biology,
vol. 6, no. 1, p. 26, 2011.

[27] M. H. Hansen and B. Yu, “Model selection and the principle of
minimum description length,” Journal of the American Sta-
tistical Association, vol. 96, no. 454, pp. 746–774, 2001.

[28] K. Willbrand, F. Radvanyi, J. P. Nadal, J. P. Tiery, and
T. M. A. Fink, “Identifying genes from up–down properties of
microarray expression series,” Bioinformatics, vol. 21, no. 20,
pp. 3859–3864, 2005.

[29] I. G. Johnston, K. Dingle, S. F. Greenbury et al., “Symmetry
and simplicity spontaneously emerge from the algorithmic
nature of evolution,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 119, no. 11,
Article ID e2113883119, 2022.

[30] G. Valle-Perez, Q. C. Chico, and A. A. Louis, “Deep learning
generalizes because the parameter-function map is biased
towards simple functions,” 2018, https://arxiv.org/abs/1805.
08522.

[31] K. Dingle, Probabilistic bias in genotype-phenotype maps, PhD
Tesis, University of Oxford, Oxford, England, 2014.

[32] L. Jan and M. Hutter, “Bad universal priors and notions of
optimality,” in Proceedings of the Conference on Learning
Teory, pp. 1244–1259, PMLR, New York City, NY, USA, June
2015.

[33] M. Müller, “Stationary algorithmic probability,” Teoretical
Computer Science, vol. 411, no. 1, pp. 113–130, 2010.

[34] S. F. Greenbury and S. E. Ahnert, “Te organization of bi-
ological sequences into constrained and unconstrained parts
determines fundamental properties of genotype–phenotype
maps,” Journal of Te Royal Society Interface, vol. 12, no. 113,
Article ID 20150724, 2015.

[35] J. Burkat and K. Dingle, “A note on simplicity bias in the
bernoulli process,” in preparation, 2022.

[36] S. Wolfram, A New Kind of Science, Wolfram Media,
Champaign, IL, USA, 2002.

[37] C. Moore, “Unpredictability and undecidability in dynamical
systems,” Physical Review Letters, vol. 64, no. 20, pp. 2354–
2357, 1990.

[38] K. Svozil, Randomness & Undecidability in Physics, World
Scientifc, Singapore, 1993.

[39] T. S. Cubitt, D. Perez-Garcia, and M. M. Wolf, “Un-
decidability of the spectral gap,” Nature, vol. 528, no. 7581,
pp. 207–211, 2015.

[40] A. Aguirre, Z. Merali, and D. Sloan, Undecidability,
Uncomputability, and Unpredictability, World Scientifc,
Singapore, 2021.

[41] S. Aaronson, “Guest column: Np-complete problems and
physical reality,” ACM Sigact News, vol. 36, no. 1, pp. 30–52,
2005.

[42] H. Zenil, A Computable Universe: Understanding and Ex-
ploring Nature as Computation, World Scientifc, Singapore,
2013.

[43] S. Lloyd, Programming the Universe: A Quantum Computer
Scientist Takes on the cosmos, Vintage, Redding, CA, USA,
2006.

[44] B. Ryabko, J. Astola, and M. Malyutov, Compression-based
Methods of Statistical Analysis and Prediction of Time Series,
Springer, Berlin, Germany, 2016.

[45] M. P. Müller, “Law without law: from observer states to
physics via algorithmic information theory,” Quantum, vol. 4,
p. 301, 2020.

[46] M. Hutter, S. Legg, and P. M. B. Vitanyi, “Algorithmic
probability,” Scholarpedia, vol. 2, no. 8, p. 2572, 2007.

[47] R. Solomonof, “Complexity-based induction systems: com-
parisons and convergence theorems,” IEEE Transactions on
Information Teory, vol. 24, no. 4, pp. 422–432, 1978.

[48] S. Lloyd, “Te Computational Universe,” Information And the
Nature of Reality: From Physics to Metaphysics, pp. 92–103,
2010.

[49] T. M. Cover, “Universal gambling schemes and the com-
plexity measures of Kolmogorov and chaitin,” Rep. No. 12,
Department of Statistics, Stanford University, Stanford, CA
USA, 1974.

[50] A. Baker, “Simplicity,” in Te Stanford Encyclopedia Of
Philosophy. Metaphysics Research Lab, E. N. Zalta, Ed.,
Stanford University, Stanford, California USA, 2016.

[51] A. Vallinder, Solomonof Induction: A Solution to the Problem
of the Priors?, Elsevier, Amsterdam, Netherland, 2012.

[52] W.W. Kirchherr, M. Li, and P.M. B. Vitanyi, “Temiraculous
universal distribution,” Mathematical Intelligencer, vol. 8,
1997.

14 Complexity

https://arxiv.org/abs/1109.5951
https://arxiv.org/abs/cs/0410002
https://arxiv.org/abs/1805.08522
https://arxiv.org/abs/1805.08522

[53] S. Rathmanner and M. Hutter, “A philosophical treatise of
universal induction,” Entropy, vol. 13, no. 6, pp. 1076–1136,
2011.

[54] M. Hutter, Universal Artifcial Intelligence: Sequential De-
cisions Based on Algorithmic Probability, Springer Science &
Business Media, Berlin, Germany, 2004.

[55] N. Merhav and M. Feder, “Universal prediction,” IEEE
Transactions on Information Teory, vol. 44, no. 6,
pp. 2124–2147, 1998.

[56] E. Plotnik, M. J.Weinberger, and J. Ziv, “Upper bounds on the
probability of sequences emitted by fnite-state sources and on
the redundancy of the lempel-ziv algorithm,” IEEE Trans-
actions on Information Teory, vol. 38, no. 1, pp. 66–72, 1992.

[57] N. Merhav and A. Cohen, “Universal randomized guessing
with application to asynchronous decentralized brute–force
attacks,” IEEE Transactions on Information Teory, vol. 66,
no. 1, pp. 114–129, 2020.

[58] M. Hutter, “On universal prediction and bayesian confr-
mation,” Teoretical Computer Science, vol. 384, no. 1,
pp. 33–48, 2007.

[59] S. Neth, “A dilemma for solomonof prediction,” Philosophy of
Science, pp. 1–25, 2022.

[60] A. Mohamed and K. Dingle, “Low complexity, low probability
patterns and consequences for algorithmic probability ap-
plications,” 2022, https://arxiv.org/abs/2207.12251.

Complexity 15

https://arxiv.org/abs/2207.12251

