Case Report

Lead Poisoning Can Be Easily Misdiagnosed as Acute Porphyria and Nonspecific Abdominal Pain

Ming-Ta Tsai, Shi-Yu Huang, and Shih-Yu Cheng

Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan

Correspondence should be addressed to Shi-Yu Huang; sarawah@ms28.hinet.net

Received 1 March 2017; Revised 13 April 2017; Accepted 9 May 2017; Published 29 May 2017

Academic Editor: Ching H. Loh

Copyright © 2017 Ming-Ta Tsai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Lead poisoning (LP) is less commonly encountered in emergency departments (ED). However, lead exposure still occurs, and new sources of poisoning have emerged. LP often goes unrecognized due to a low index of suspicion and nonspecific symptoms. We present a case of a 48-year-old man who had recurring abdominal pain with anemia that was misdiagnosed. His condition was initially diagnosed as nonspecific abdominal pain and acute porphyria. Acute porphyria-like symptoms with a positive urine porphyrin test result led to the misdiagnosis; testing for heme precursors in urine is the key to the differential diagnosis between LP and acute porphyria. The final definitive diagnosis of lead toxicity was confirmed based on high blood lead levels after detailed medical history taking. The lead poisoning was caused by traditional Chinese herbal pills. The abdominal pain disappeared after a course of chelating treatment. The triad for the diagnosis of lead poisoning should be a history of medicine intake, anemia with basophilic stippling, and recurrent abdominal pain.

1. Introduction

Lead poisoning (LP) is rarely encountered in emergency departments (ED). However, occupational and nonoccupational exposures to lead occur worldwide [1]. Patients often present with nonspecific symptoms and signs such as abdominal pain, fatigue, anorexia, constipation, headache, irritability, and insomnia [2, 3]. Owing to the low incidence rate and nonspecific clinical features of LP, physicians seldom consider this rare disease entity in diagnosis. LP can cause significant morbidity and mortality if its diagnosis is delayed or incorrect and it is untreated. We report a case of a 48-year-old male patient with LP presenting as recurring abdominal pain and anemia that was initially misdiagnosed as nonspecific abdominal pain (NSAP) and acute porphyria.

2. Case Report

A 48-year-old man was admitted to our ED for a recurring abdominal pain that had developed over the previous month. He was a farmer who was admitted to a different hospital for the same reason without any significant improvement in his symptoms. Thus, the patient sought a referral to our hospital. On presentation at the ED, he was afebrile, with a blood pressure of 144/80 mmHg and pulse rate of 88 beats per minute. The abdominal pain was characterized as cramping and was generalized. Associated symptoms included poor appetite, nausea, abdominal distention, cold sweating, and general weakness. The pain was nonradiating and not accompanied by fever, diarrhea, or other symptoms. The abdominal examination showed hepatosplenomegaly and diffuse tenderness to deep palpation of the whole abdomen, without rebound tenderness and guarding. Systemic examinations revealed no abnormalities. The blood test conducted in our ED revealed hypochromic microcytic anemia with basophilic stippling of the erythrocytes, decreased hemoglobin concentration of 9.4 g/dL, and hematocrit level of 27.9%. Liver function test results were mildly abnormal. The white blood cell count and levels of creatinine, glucose, total bilirubin, lipase, and electrolytes were all within their normal limits. Abdominal radiographs and abdominal CT scan revealed no abnormalities. Liver echo, tumor marker, and viral hepatitis screening test results were negative. The patient was admitted to the internal medicine ward with a diagnosis of NSAP. The diagnosis of
confirmed based on the high blood lead level of 62.8 \(\mu \text{g/dL} \) and an increased urinary lead excretion up to 1853 \(\mu \text{g/dL} \). The Chinese herbal pill was analyzed in the laboratory of the Department of Health and was found to contain an excessive amount of lead. Each pill was found to have up to 90 parts per million (ppm) lead, which is approximately 90 times higher than the maximum permissible limit for lead in certain food additives in Taiwan. The abnormal laboratory results obtained on admission and discharge are presented in Table 1. Based on the diagnosis of LP, the patient was treated with intravenous calcium disodium edetate (CaEDTA) at 1 g/d for 5 days as recommended by a toxicologist. On day 3 of chelation therapy, we noted a high body lead burden, as indicated by an increased urinary lead excretion up to 1853 \(\mu \text{g/dL} \). The clinical symptoms gradually improved. His blood lead level decreased to 31 \(\mu \text{g/dL} \), and his hemoglobin level and liver function had returned to normal levels when he was reevaluated 2 weeks after discharge. No relapse was observed thereafter and during the 1-year follow-up.

3. Discussion

LP can affect many systems in the body and consequently present with a wide range of symptoms, including fatigue, abdominal pain, headache, nausea, constipation, anemia, irritability, subtle mood changes, and pain in the hands, feet, muscles, or joints [3, 4]. These presentations can lead physicians to make a misdiagnosis of hematological, gastrointestinal, neuropsychiatric, cardiovascular, renal, or endocrine disorders [5–7].

As was evident in our case, abdominal pain is possibly the first and commonest manifestation of LP that leads to a visit to the ED. The abdominal pain in our patient was characterized as diffuse, severe, intermittent, and colicky pain. This resulted in a misdiagnosis of NSAP. A recent report described that the abdominal pain in LP is usually severe, intermittent, and poorly localized. It is sometimes associated with cramping (i.e., lead colic). It is also associated with gastrointestinal problems such as constipation, nausea, vomiting, diarrhea, and a sign of ileus such as abdominal distension and decreased bowel sounds [8]. LP should be considered as a differential diagnosis in cases of unexplained acute abdominal pain in the ED when other common causes have been excluded. In patients with unrecognized LP presenting with symptoms of abdominal pain, the condition can be easily misdiagnosed as acute cholecystitis, chronic pancreatitis, appendicitis, and acute abdomen and gastrointestinal evaluation, as well as laparotomies, can be unnecessarily performed [9, 10]. The abdominal pain generally does not occur until lead levels are very high. The blood lead levels associated with abdominal pain are reported in the literature to range from 46 to \(>200 \mu \text{g/dL} \). The initial lead level in our patient was 62.8 \(\mu \text{g/dL} \). At low blood levels (up to \(10 \mu \text{g/dL} \)), nonspecific symptoms are common, including malaise, anorexia, and irritability. Extremely high blood lead levels (\(>70 \mu \text{g/dL} \)) could result in cerebral edema, encephalopathy with confusion, drowsiness, coma, or seizures, and even death [11, 12]. The classical features of LP include abdominal pain (lead colic), anemia with basophilic stippling of red cells, blue-black gum deposits (Burton line), and lead line on joint radiography [11–13]. Making a diagnosis based on the classical clinical features such as abdominal pain and anemia is difficult because these are nonspecific features. Moreover, a lead line over the gum or joint often appears in chronic cases, but not in cases of acute poisoning such as in our patient.

Results of laboratory studies generally demonstrate hypochromic microcytic anemia, decreased liver function (AST/ALT levels), and elevated total and indirect bilirubin levels. The white blood cell count, renal function, and electrolyte levels are always within their normal limits [13]. Most patients undergo multiple hospital admissions, diagnostic studies, medication evaluations, and even laparotomies, all without benefit. Multiple studies of abdominal pain, such as endoscopy, ultrasonography, and abdominal CT yield negative results [3, 9, 11, 14]. Many different specialists such as surgeons, psychiatrists, gastroenterologists, neurologists, and emergency physicians may become variably involved in the diagnostic process, especially for cases presenting with acute and life-threatening clinical features [12, 14].

In our patient, the abdominal pain was induced by lead toxicity. He was hospitalized elsewhere and underwent extensive studies without any improvement. He had mild normocytic anemia and mildly elevated AST and ALT levels. Basophilic stippling of erythrocytes was found on blood film. However, no lead line over the gum or joint was found. These nonspecific findings did not lead us to consider LP as a differential diagnosis. In addition, the positive urine porphyrin test result raised the suspicion of acute intermittent porphyria and led us to administer hemin therapy without any benefit. A false-positive urine porphyrin test result is possible in porphyria induced by liver cancer, hepatitis, and heavy metal poisoning such as that with lead [15]. Liver cancer and hepatitis were not detected in our case during...
Table 1: The abnormal laboratory results obtained on admission and discharge of patient.

<table>
<thead>
<tr>
<th>Laboratory data</th>
<th>On day 1 of admission</th>
<th>On day 19 after chelation therapy</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>9.4 g/dL</td>
<td>11.5 g/dL</td>
<td>13.5–17.5</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>27.9%</td>
<td>42%</td>
<td>41–53%</td>
</tr>
<tr>
<td>AST</td>
<td>57 U/L</td>
<td>32 U/L</td>
<td>0–37 U/L</td>
</tr>
<tr>
<td>ALT</td>
<td>87 U/L</td>
<td>40 U/L</td>
<td>0–40 U/L</td>
</tr>
<tr>
<td>Blood lead level</td>
<td>62.8 g/dL</td>
<td>31 g/dL</td>
<td><40 µg/dL</td>
</tr>
<tr>
<td>Urine delta-ALA</td>
<td>81.8 mg/L</td>
<td>nil</td>
<td><7 mg/L/24 hr</td>
</tr>
<tr>
<td>Urine PBG</td>
<td>1.0 mg/L</td>
<td>nil</td>
<td><4 mg/L/24 hr</td>
</tr>
</tbody>
</table>

ALT = alanine aminotransferase; AST = aspartate aminotransferase; PBG = porphobilinogen; ALA = aminolevulinic acid.

Figure 1: The heme synthetic pathway showing the enzymes mediating formation of delta-ALA, PBG, and the initial porphyrins (uroporphyrinogen), respectively. Lead poisoning and acute porphyria both affect the heme synthetic pathway. In LP, the metal directly inhibits the ALA dehydratase. The result is overproduction of delta-ALA only; PBG normal, reflecting the impaired conversion of delta-ALA to PBG. ALA = aminolevulinic acid; PBG = porphobilinogen; CoA = coenzyme A; Pb** = lead.

Lead toxicity is reversible if diagnosed early by removal of the sources of exposure and early chelation therapy. LP may be fatal if the diagnosis is delayed or untreated [4–8, 19, 20]. Chelation therapy is needed in more severe cases based on whole-blood lead levels and the presence of symptoms [4, 5, 21]. Symptoms such as abdominal pain, subtle mood change, headache, irritability, or neuropathy warrant
treatment with parenteral chelation. Chelation therapy is recommended when blood lead levels exceed 80 µg/dL in asymptomatic patients and 50 µg/dL in symptomatic patients [19, 21]. Chelation agents include the oral agent succimer, the intramuscular agent dimercaprol, and the intravenous agent CaEDTA [19–21]. Patients requiring parenteral therapy should be admitted to the hospital. Adequate hydration and urinary output are also important. Chelation therapy is usually stopped when symptoms resolve or when blood lead levels return to premorbid levels. A further course of chelation may be required if blood lead levels are still over 50 µg/dL after the end of the initial course of treatment.

An EDTA lead-mobilization test can be used to determine whether chelating therapy is necessary. This test measures the urinary excretion of lead over 8 h after CaEDTA is given. The amount of lead excreted per milligram of CaEDTA given is calculated. If the ratio is above 0.6, chelating therapy is indicated. A 24-h urinary lead excretion and urinary ALA is also be used to adjust the duration of therapy [22].

Our patient had a high blood lead level (62.8 µg/dL) and abdominal colic. He was treated with parenteral chelation (CaEDTA) for 5 days as recommended by a toxicologist, with a rapid improvement in symptoms. In our case, the decision to adjust or cease chelation therapy was according to a toxicologist’s expert advice and the resolution of the patient’s symptoms. No relapse occurred thereafter and during the 1-year follow-up.

4. Conclusion

This report provides physicians with the awareness that LP can be misdiagnosed as NSAP and acute porphyria. Testing for heme precursors in urine is the key to the differential diagnosis between LP and acute porphyria. A detailed traditional medical history taking is important for the diagnosis of LP. Therefore, each element of the triad of unexplained recurrent abdominal pain, anemia with basophilic stippling, and history of traditional medical intake should be considered in the diagnosis of lead poisoning.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[22] M. E. Markowitz and J. F. Rosen, “Assessment of lead stores and urinary output are also important.”
Submit your manuscripts at https://www.hindawi.com